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In recent years, a wealth of factors are associated with increased risk of developing non-alco-
holic fatty liver disease (NAFLD) and NAFLD is now thought to increase the risk of mul-
tiple extra-hepatic diseases. The aim of this review is first to focus on the role of ageing and
sex as key, poorly understood risk factors in the development and progression of NAFLD.
Secondly, we aim to discuss the roles of white adipose tissue (WAT) and intestinal dysfunc-
tion, as producers of extra-hepatic factors known to further contribute to the pathogenesis of
NAFLD. Finally, we aim to summarise the role of NAFLD as a multi-system disease affect-
ing other organ systems beyond the liver. Both increased age and male sex increase the risk
of NAFLD and this may be partly driven by alterations in the distribution and function of
WAT. Similarly, changes in gut microbiota composition and intestinal function with ageing
and chronic overnutrition are likely to contribute to the development of NAFLD both dir-
ectly (i.e. by affecting hepatic function) and indirectly via exacerbating WAT dysfunction.
Consequently, the presence of NAFLD significantly increases the risk of various extra-hep-
atic diseases including CVD, type 2 diabetes mellitus, chronic kidney disease and certain
extra-hepatic cancers. Thus changes in WAT and intestinal function with ageing and chronic
overnutrition contribute to the development of NAFLD – a multi-system disease that sub-
sequently contributes to the development of other chronic cardiometabolic diseases.

Non-alcoholic fatty liver disease: Adipose tissue dysfunction: Gut microbiota: Diabetes:
CVD: Age: Sex

Current estimates indicate that about 30 % of the global
adult population are affected by non-alcoholic fatty liver
disease (NAFLD) and the increasing prevalence of this

disease has occurred in parallel with the global epidemic
of obesity and type 2 diabetes mellitus (T2DM)(1,2).
Considered to be the predominant cause of chronic
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liver disease in many parts of the world, NAFLD repre-
sents a spectrum of progressive hepatic disease pheno-
types extending from hepatic steatosis to non-alcoholic
steatohepatitis (NASH), liver fibrosis and cirrhosis(1,3,4).
Evidence now shows that NAFLD increases the risk of
liver-related complications and is also a multi-system dis-
ease that increases the risk of CVD and cardiac dis-
ease(5,6), chronic kidney disease (CKD)(7), T2DM(8,9)

and some extra-hepatic cancers(1). Therefore, it is no sur-
prise that the presence of NAFLD is strongly associated
with an increased risk of all-cause mortality(3,10). Indeed,
CVD is the main cause of mortality in patients with
NAFLD, followed by extra-hepatic cancers and liver-
related complications(10). Additionally, recent evidence
suggests that there may be an even greater cardiometa-
bolic risk with the more advanced stages of liver disease,
such as liver fibrosis, which is also a strong predictor of
all-cause and disease-specific mortality(11–13).

In recent years, a wealth of factors have been shown to
be associated with an increased risk of developing
NAFLD. The aim of this review is first to focus on the
role of ageing and sex as key, poorly understood risk fac-
tors in the development and progression of NAFLD.
Secondly, we will discuss the roles of white adipose tissue
(WAT) and intestinal dysfunction, as producers of extra-
hepatic factors known to further contribute to the patho-
genesis of NAFLD. Finally, we will summarise the role
of NAFLD as a multi-system disease affecting other
organ systems beyond the liver.

Sex and age as risk factors for non-alcoholic fatty
liver disease

The involvement of age and sex in the development of
NAFLD has received increased attention in recent
years yet the reasons why these are risk factors for
NAFLD remain poorly understood. The prevalence of
NAFLD is higher in men and is thought to increase
into middle age and then decline after the age of 50–60
years(14). In contrast, pre-menopausal women appear to
be relatively protected from NAFLD; however, this pro-
tective capacity is lost after the fifth decade of life when
the prevalence of NAFLD is thought to be similar in
both sexes(14,15). The incidence of NASH and cirrhosis
is also thought to be greater in both men and women
who are ≥50 years of age compared to younger age
groups(2). Recent meta-analysis suggests that whilst pre-
menopausal women may have a lower risk of NAFLD,
women ≥50 years of age may be at an increased risk of
NAFLD progression, compared to men of a similar
age(16). Specifically, among older age groups (≥50 years
of age), the relative risk of NASH and advanced liver
fibrosis was found to be 17 and 56% higher respectively,
in women compared to men(16). Conversely, the risk of
NAFLD progression was not significantly different
between men and women in populations with an average
age of ≤50 years(16). Further work is required to elucidate
potential mechanisms underlying the apparent increased
risk of NAFLD progression in older women. For
example, studies exploring sexual dimorphism in liver

metabolism have recently linked hepatic actions of oes-
trogens to lipid metabolism and female reproductive
functions(17). Whether these or other sexually dimorphic
metabolic or endocrine factors are important in NAFLD
remains to be investigated(18).

Advancing age also increases the risk of hepatic and
extra-hepatic complications of NAFLD(14). Thus it is
expected that older patients with NAFLD will have a
higher likelihood of overall and disease-specific mortal-
ity(19,20). Whether the association between NAFLD and
all-cause mortality is modified by sex is currently unclear.
Previous studies suggest a worse outcome in men(20,21),
whilst others have found trends suggesting that
NAFLD is associated with an increased risk of all-cause
mortality in women but not men(22). Thus, further large
prospective cohort studies should explore whether the
direction and magnitude of the association between
NAFLD and mortality are modified by sex.

White adipose tissue mass and distribution in
non-alcoholic fatty liver disease

A wealth of evidence indicates that obesity increases the
risk of NAFLD(23–26). Obesity is defined as excess body
fat and results from chronic overnutrition. For adults,
it is most frequently classified as a weight for height
index or BMI and includes underweight or ‘wasting’
(<18⋅5 kg/m2), overweight (≥25 kg/m2), obesity (≥30 kg/
m2) and morbid obesity (≥40 kg/m2)(27). In contrast,
waist circumference provides a simpler anthropometric
measurement to diagnose central obesity which is an
important independent risk factor for NAFLD and an
important component of the metabolic syndrome
(MetS). As previously described(28), MetS is defined as
the presence of three or more of the following criteria;
increased waist circumference, hypertriglyceridemia,
reduced HDL-cholesterol, hypertension and hypergly-
caemia. It is worth highlighting that neither BMI nor
waist circumference is considered reliable indicators of
adiposity per se since they do not provide an assessment
of WAT mass nor volume(29). Nonetheless, BMI and
waist circumference have proved to be extremely useful
measures for population-based studies and firmly estab-
lished the importance of obesity as a risk factor for
NAFLD. Despite this, it is an oversimplification to con-
sider NAFLD solely as a consequence of obesity given
the growing evidence indicating that NAFLD can also
occur in individuals with a non-obese BMI, or low
WAT mass(30,31). It has been proposed that an increase
in the accumulation of central WAT and a reduction in
the functional capacity of WAT (particularly subcutane-
ous WAT (SAT)) to store excess energy as TAG are cru-
cial factors that underpin the relationship between
obesity, systemic metabolic disease and NAFLD(31).

Studies utilising adipose tissue-targeted technologies
coupled with histological assessment have suggested
that the hypertrophic expansion of adipocytes within vis-
ceral WAT (VAT) rather than SAT is particularly asso-
ciated with NAFLD. After approximately 4 years of
follow up, a larger VAT area was found to be associated
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with a higher risk of incident NAFLD, whereas larger
areas of SAT were associated with regression of
NAFLD(32). Moreover, several recent studies have
demonstrated that increased VAT, as opposed to SAT,
increases the risk of, and predicts advanced liver fibrosis
in patients with NAFLD(33–35). Similarly, evidence also
indicates that VAT accumulation is an independent risk
factor for hepatocellular carcinoma (HCC) recurrence
in patients with suspected NASH(36). Thus, this evidence
supports a fundamental hypothesis that ‘the risk of devel-
oping metabolic disease associated with obesity is gov-
erned by the regional distribution of WAT within the
individual, with the expansion of certain fat depots
being more strongly associated with metabolic dysfunc-
tion than others’(37). Collectively, it is likely that the dis-
tribution and capacity of SAT to effectively expand and
store lipid, rather than the obesity per se, is a pivotal fac-
tor in the relationship between increased adiposity and
NAFLD risk.

The distribution of WAT is known to differ signifi-
cantly between sexes, changes with increasing age and
has been hypothesised to be partly responsible for the
increased prevalence of NAFLD in men and older
age groups, particularly post-menopausal women
(Fig. 1)(38–40). Whilst the mechanisms regulating the
distribution of WAT remain largely elusive, evidence
indicates that ageing and male sex are associated with
a restricted capacity to effectively expand so-called
‘metabolically protective’ SAT depots(41). Whilst pre-
menopausal women typically have greater total adipos-
ity, men tend to accumulate greater amounts of VAT
with ageing and pre-menopausal women accumulate glu-
teal femoral SAT which is associated with a lower risk of
metabolic disease and NAFLD(42). In both men and
women, older age (i.e. post-menopausal women and
men >50 years) is associated with a reduction in the cap-
acity of SAT to expand and an increase in VAT(43–45).
The limited capacity of SAT to store TAG in men and
with increasing age is likely to re-direct lipid accumula-
tion ectopically in non-adipose tissues, including the
liver, leading to lipotoxicity, a chronic local and systemic
pro-inflammatory environment and eventually NAFLD
development(46). The importance of effective SAT expan-
sion can be seen in individuals with certain genetic or
acquired lipodystrophies that are characterised by the
complete or partial absence of SAT(47). In spite of their
often lean appearance, these individuals appear to
exhibit much higher rates of NAFLD/NASH progression
and other cardiometabolic complications than would be
expected based on their BMI alone(31,47). Given this, it
is likely that differences in WAT distribution between
sexes and changes occurring with increasing age are
both important in the increased risk of NAFLD asso-
ciated with ageing and with male sex.

Adipose tissue dysfunction and non-alcoholic fatty
liver disease

WAT is composed of mature unilocular adipocyte frac-
tion and a stromal vascular fraction, comprised of

numerous cell types such as vascular, mesenchymal and
immune cells. At a cellular level, WAT expansion can
be mediated by an enlargement of individual adipocytes
(hypertrophy), an increase in the number of adipocytes
(hyperplasia) or a mixture of both. Adipocyte hyper-
trophy, rather than hyperplasia, is more closely asso-
ciated with WAT dysfunction and metabolic disease(48).
Factors including hypoxia, low-grade chronic inflamma-
tion (i.e. metaflammation) and improper extracellular
matrix remodelling are thought to limit adipocyte differ-
entiation and the healthy expansion of adipose tissue
(hyperplasia)(49,50). This limit can result in adipocyte
hypertrophy, dysfunction, stress and eventually
death(51,52). In this context, WAT dysfunction refers to
a reduction in the tissues ability to effectively sense and
respond to dynamic changes in nutrient availability (i.e.
metabolic inflexibility) and can coexist with adipose insu-
lin resistance and metaflammation. Specifically, this dys-
function is thought to affect WAT metabolism and in
particular its ability to handle lipids and increase the
lipolytic rate of WAT due to a reduction in tissue insulin
sensitivity, increasing the flux of non-esterified fatty acids
(NEFA) to the liver and consequently increasing the risk
of NAFLD(31,53–55).

Accompanying the changes in the distribution of
WAT, ageing is associated with a marked reduction in
insulin, lipolytic and NEFA responsiveness in WAT.
This metabolic inflexibility may underly the known
association between ageing and increased risk of
NAFLD(43–45). The reduction in SAT with ageing in both
men and women may in part be driven by a reduction in
the adipogenic potential of progenitor cells and the accu-
mulation of senescent adipocytes in aged WAT.
Preadipocytes isolated from peripheral SAT in elderly
individuals were found to have a reduced rate of replica-
tion compared to those isolated from younger indivi-
duals(56). Additionally, ageing is associated with an
accumulation of senescent adipocyte-derived stem cells
within SAT which lack the ability to differentiate
into adipocytes in response to metabolic stress, conse-
quently affecting the tissue’s capacity to store TAG(57).
Through their senescence-associated secretory pheno-
type, senescent adipocyte progenitor cells within WAT
are also likely to contribute to WAT inflammation and
subsequent metabolic complications(58,59).

In addition to ageing, there are also sexually
dimorphic differences in WAT function whereby WAT
in females is generally more insulin-sensitive, more lipo-
genic and less susceptible to inflammation than WAT
from males. This phenomenon is also strongly associated
with differences in sex hormone concentrations(60,61).
Menopause appears to associate with a preferential
increase in VAT (rather than SAT) in both obese and
non-obese women(62–65), further supporting a role for
sex hormones, such as oestrogen, in regulating the benefi-
cial distribution and function of WAT. Circulating con-
centrations of oestrogen decrease markedly after
menopause which is thought to lead to the redistribution
of lipids into VAT and the liver which, in combination
with overnutrition, increases the risk of VAT accumula-
tion and NAFLD in post-menopausal women(66).
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Pre-clinical studies utilising ovariectomised murine mod-
els also support a causative relationship between reduced
oestrogen production, increased VAT mass and the
development of NASH(42,66–68). Whilst an in-depth dis-
cussion of the role of oestrogen within WAT is beyond
the scope of this review (see other relevant
reviews(42,69,70)), it is thought that the increased expres-
sion of oestrogen receptor α in the gluteal femoral SAT
of premenopausal women promotes lipoprotein lipase
activity and accumulation of TAG in adipocytes within
this depot(71). Thus, it is likely that differences in WAT
function (partly driven by differences in sex hormone
concentrations and the expression of functional target
receptors) is an important factor underlying the observed
differences in NAFLD risk between men and women.
Furthermore, changes in WAT with ageing are likely to
exacerbate WAT dysfunction associated with a state of
chronic energy surplus and are likely to have an import-
ant role in the increased risk of NAFLD associated with
older age.

Adipokines and non-alcoholic fatty liver disease

WAT is an endocrine tissue capable of secreting a wide
range of adipokines which have various roles in the

regulation of whole-body energy homeostasis and inter-
organ communication(72). The aberrant production of
these adipokines has been linked to multiple
obesity-related metabolic diseases. Amongst these adipo-
kines, leptin and adiponectin are predominately produced
by adipocytes. In addition to its well-established role in
regulating appetite and energy homeostasis(49,73), leptin
exerts a dual action on hepatic function and NAFLD
severity. Recent meta-analyses including an analysis of
over thirty studies indicated that circulating concentra-
tions of leptin are elevated in patients with NAFLD com-
pared to healthy controls and supports a positive
relationship between leptin and NAFLD(74). As recently
highlighted(75,76), under normoleptinemia conditions, lep-
tin is thought to suppress hepatic glucose production
and hepatic lipogenesis thus providing an insulin-
sensitising anti-steatotic effect. Conversely, in the context
of chronic hyperleptinemia as is common in obesity, a
state of leptin resistance can result, which may also con-
tribute to the NASH phenotype. It is suggested that in
the liver, high concentrations of leptin can increase the
expression of matrix remodelling enzymes via interacting
with leptin receptors on Kupffer and sinusoidal endothe-
lial cells, in turn activating hepatic stellate cells, and pos-
sibly contributing to liver fibrosis(77).

Fig. 1. Age-related changes in WAT distribution in men and women are associated with increased risk NAFLD, MetS, T2DM and
CVD. Sex and age are key factors that modify the risk of NAFLD and NAFLD progression. NAFLD risk is lower in younger women
compared to younger men whereas the risk of NAFLD is similar in older men and women (i.e. post-menopausal). Younger women
have an increased capacity to preferentially expand gluteal femoral SAT consequently protecting them from NAFLD. Age-associated
changes in WAT leads to the redistribution of WAT which is typically characterised by a marked reduction in SAT and increased
central metabolically-unfavourable VAT which may partly explain the increased risk of NAFLD associated with ageing in both men and
women. WAT distribution is different between men and women, is heavily influenced by ageing and is strongly associated with
NAFLD risk. T2DM, type 2 diabetes; MetS, metabolic syndrome; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue;
NAFLD, non-alcoholic fatty liver disease; WAT, white adipose tissue.
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Sexual dimorphism has also been reported for leptin
expression(78). Despite their lower risk of NAFLD, circu-
lating concentrations of leptin are higher in pre-
menopausal women compared to age-matched men and
higher leptin levels are thought to be driven by both
greater adiposity and an increased production rate of lep-
tin per unit mass of WAT in women compared to
men(79). In both men and women, circulating concentra-
tions of leptin are thought to gradually decline with age-
ing, with reductions being most noticeable in women
compared to men whilst appearing to be independent
of menopausal status(79,80). Despite these findings, it is
currently unknown whether differences in circulating
concentrations of leptin between sexes and age groups
have an impact on the risk of NAFLD.

Similar to leptin, a wealth of studies indicate that the
circulating concentrations of adiponectin, the most sys-
temically abundant adipokine, are altered in patients
with NAFLD (as reviewed in(81)). Adiponectin is a hepa-
toprotective adipokine that has well-established anti-
inflammatory(82–84) and insulin-sensitising effects(85)

both systemically and within the liver. Meta-analysis
indicates that adiponectin concentrations are signifi-
cantly lower in patients with NAFLD compared to
healthy controls; furthermore, NASH is associated with
lower adiponectin when compared to simple steatosis(86).
Conversely, adiponectin concentrations are thought to
increase in patients with NAFLD-cirrhosis potentially
due to a reduction in the hepatic clearance of adiponectin
and/or an increase in its production as a result of the tis-
sue repair process associated with NAFLD-cirrhosis(87–
89). Along with its well-established role in promoting hep-
atic insulin sensitivity(90,91), evidence indicates that adi-
ponectin also has antifibrogenic effects via inhibiting
the proliferation of hepatic stellate cells(92). Whilst the
role of adiponectin in ageing remains uncertain, it is
thought that circulating concentrations of adiponectin
are paradoxically increased in older age and are posi-
tively associated with physical disability and mortality
in elderly individuals(93). Furthermore, some evidence
suggests that the association between adiponectin and
ageing may be modified by sex(94). In addition to leptin
and adiponectin, a wealth of other studies have demon-
strated that numerous other adipokines may be involved
in the development and progression of NAFLD
(Table 1). It should be noted that there is a substantial
amount of conflicting evidence regarding the changes in
circulating concentrations of other adipokines in the con-
text of NAFLD and little is known about the potential
pathological role of these adipokines in NAFLD
(Table 1). Moreover, further studies are required to elu-
cidate whether the effects of age and sex on adipokine
production influences NAFLD risk.

WAT dysfunction and changes in adipokine secretion
are also strongly associated with increased low-grade
chronic inflammation in WAT (metaflammation); char-
acterised by the infiltration of various leucocytes, an
increase in the ratio of proinflammatory/anti-inflammatory
macrophages and leucocytes and the increased presence
of crown-like structures (dying adipocytes surrounded
by pro-inflammatory macrophages)(95). Consequently,

metaflammation in WAT (particularly VAT inflamma-
tion) is associated with an increased expression of
pro-inflammatory cytokines such as IL-6, IL-1β,
TNF-α and monocyte chemoattractant protein-1(96–98).
Some of these have been shown to contribute to local
insulin resistance, elevated fatty acid lipolysis, anti-
adipogenesis and pro-inflammatory macrophage infiltra-
tion(49,97–101). This in turn can impact both metabolic
and endocrine functions of WAT. Evidence from murine
diet-induced obesity studies indicates that WAT inflam-
mation and reductions in protective anti-inflammatory
lipokines such as palmitoleic acid may be important in
the development of NASH(102–104).

By virtue of its anatomical links, via the portal vein,
increased VAT inflammation is of particular importance
in NAFLD/NASH since VAT-derived inflammatory
cytokines (other adipokines, lipokines and metabolites
(e.g. NEFA)) are initially transported to the liver
and therefore may exacerbate NAFLD severity.
Consequently, this may in turn increase the associated
risk of T2DM and CVD(105,106). Collectively, findings
indicate that changes in the production of adipokines
and increased WAT inflammation may contribute to
NAFLD via modulating local and hepatic function,
inducing insulin resistance and modulating the local
and systemic pro-inflammatory conditions. Whether
these changes in WAT function contribute to the
increased risk of extra-hepatic diseases associated with
NAFLD independently requires further investigation.

Intestinal dysfunction, dysbiosis and non-alcoholic
fatty liver disease

Emerging evidence now suggests that changes in gut
microbiota (GM) (i.e. dysbiosis) and intestinal function
may exacerbate WAT dysfunction which may indirectly
contribute to metabolic dysfunction and NAFLD(107).
The gastrointestinal tract is the first point of contact for
ingested nutrients where it has an integral role in nutrient
breakdown and absorption, regulation of whole-body
energy homeostasis and is an important host defence bar-
rier. Occupying the gastrointestinal tract is an extensive
number of microorganisms, collectively known as the
GM which are thought to modulate local and distal tis-
sue function via a range of complex mechanisms(108,109).
The microbial organisms occupying the gastrointestinal
tract mainly include bacteria, archaea, fungi and viruses
(predominantly bacteriophages); however, studies explor-
ing the role of the GM in NAFLD have predominantly
focused on bacteria(110,111).

A plethora of studies have revealed that GM dysbiosis
is associated with and is a contributing factor to
NAFLD(112–115). The dominating phyla within human
GM are Bacteroidetes and Firmicutes with a significant
inter-individual variation in the GM at lower taxonom-
ical levels(116,117). Previous evidence indicates that the
relative abundance of Bacteroidetes is lower in patients
with NASH compared to those with hepatic steatosis
and healthy controls(117). More recently, Bacteroides
abundance was found to be significantly increased in
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patients with NASH and the abundance of
Ruminococcus was increased in patients with liver fibro-
sis(118). As recently reviewed(113), this shifting in GM in
relation to NAFLD severity is supported by numerous
other studies. Indeed, the presence of bacteria belonging
to the Proteobacteria phylum was increased significantly
in patients with ≥F3 when compared to patients with
F0–F2 liver fibrosis (Table 2)(119). Emerging evidence
also supports a strong link between the GM and
NAFLD-cirrhosis indicating that the composition of
the GM may be a useful tool for the identification and
staging of NAFLD. Utilising a unique twin and family
study design, one study identified a specific GM signature
that had a robust diagnostic accuracy, with an area under
the receiver operating characteristic of 0⋅92, for the detec-
tion of NAFLD-cirrhosis(120). Further work demon-
strated the robustness and potential universal
applicability of this microbiome signature of NAFLD-
cirrhosis in two independent cohorts across geographic-
ally and culturally distinct populations(121). However,
given the impact of host genetics and environmental fac-
tors on the composition of GM(122), it is unlikely that a
single GM signature will be able to distinguish between
NAFLD phenotypes at an individual level.

Miele et al. were the first to identify that patients with
NAFLD generally have increased intestinal permeability
and alterations in intestinal tight junction integrity
(observed as a reduction in zonula occludens-1 within
intestinal crypt cells), compared to healthy subjects(123).
Recent meta-analysis found that 39⋅1% of NAFLD
patients had evidence of increased intestinal permeability
compared to 6⋅8% of healthy controls (OR 5⋅08, 95 % CI
1⋅98, 13⋅05)(124). Furthermore, subgroup analysis indi-
cated that there was a higher incidence of increased intes-
tinal permeability in patients with NASH compared to
patients with simple steatosis(124). It is generally well-

accepted that the increased intestinal permeability com-
monly seen in NAFLD facilitates the translocation of
GM-derived metabolites and bacterial products (such
as lipopolysaccharides (LPS) and ethanol) which may
in turn contribute to metaflammation and the pathogen-
esis of NAFLD(125).

In addition to altered GM and intestinal permeability,
the abundance of GM-dependent metabolites is thought
to be altered in NAFLD, many of which may be detected

Table 1. Changes in circulating concentrations of adipokines and their potential roles in NAFLD

Adipokine Association with NAFLD Potential role in NAFLD

Leptin Increased(74) Anti-steatotic during normoleptinemia(77)

Pro-fibrogenic during hyperleptinemia via increasing the expression of fibrogenic factors
from activated HSC(176,177)

Adiponectin Decreased(86) Hypoadiponectinemia is thought to contribute to: increased hepatic steatosis, increased
hepatic insulin resistance and an increased pro-inflammatory state(81,178)

Resistin No association(179–181),
increased(182–184)

Largely unknown, increased concentrations potentially promotes a pro-inflammatory
environment(185)

RBP-4 Increased(186,187) Largely unknown, potentially induces hepatic mitochondrial dysfunction and promotes
hepatic steatosis(188,189)

Adipsin Decreased(190), no association(191),
increased(192)

Largely unknown, low concentrations may impact hepatic function via a reduction in insulin
production(193)

Chemerin Increased(191,194,195) Largely unknown, increased concentrations potentially protective via the suppression of
pro-inflammatory cytokines(196)

Apelin Not associated(197), increased(198) Largely unknown, increased concentrations are potentially profibrogenic via increasing the
expression of profibrotic factors from HSC(199,200)

HSC, hepatic stellate cells; NAFLD, non-alcoholic fatty liver disease; RBP-4, retinol binding protein-4.
In contrast to classic adipocyte-derived adipokines leptin and adiponectin, studies investigating changes in circulating concentrations of other adipokines in
patients with NAFLD are largely inconsistent. Similarly, whilst the role of leptin and adiponectin in the development and progression of NAFLD remains somewhat
debated, there is currently very little known about the potential roles of other adipokines on hepatic function and NAFLD. It should be noted that the expression
of many adipokines (e.g. chemerin and RBP-4) is not restricted to WAT and also occurs within other tissues including the liver. Consequently, whilst changes in
the secretion of WAT-derived adipokines may contribute to altered circulating concentrations, other sources (particularly hepatic) may also influence circulating
concentrations, hepatic function and NAFLD.

Table 2. Histological definitions of liver fibrosis stages and
corresponding liver-biopsy validated liver VCTE cut-off values

Liver fibrosis
stage Histological definition

Liver VTCE cut-off
(kPa)

F0 None
F1 Perisinusoidal or periportal
F1A Mild, zone 3 perisinusoidal
F1B Moderate, zone 3,

perisinusoidal
F1C Portal/periportal
F2 Perisinusoidal and portal/

periportal
8⋅2

F3 Bridging fibrosis 9⋅7
F4 Cirrhosis 13⋅6

VCTE, vibration-controlled transient elastography; kPa, kilopascal; PPV,
positive predictive value; NPV, negative predictive value; NASH,
non-alcoholic steatohepatitis.
Liver fibrosis stages and corresponding histological definitions are based on
the NASH clinical scoring network scoring system(201). Liver VCTE cut-off
values are based on the findings from a recent large validation study(202).
The liver VCTE threshold of 8⋅2 kPa was found to have a: sensitivity of 0⋅71
(0⋅64–0⋅77), specificity of 0⋅70 (0⋅62–0⋅77), PPV of 0⋅78 (0⋅71–0⋅83) and NPV
of 0⋅61 (0⋅54–0⋅69) for the identification of ≥F2 liver fibrosis. For the
prediction of ≥F3 liver fibrosis, 9⋅7 kPa was found to have a sensitivity of
0⋅71 (0⋅62–0⋅78), specificity of 0⋅75 (0⋅69–0⋅80), PPV of 0⋅63 (0⋅55–0⋅71) and
NPV of 0⋅81 (0⋅74–0⋅85). For the prediction of ≥F4 fibrosis, 13⋅6 kPa was
found to have a sensitivity of 0⋅85 (0⋅69–0⋅95), specificity of 0⋅79 (0⋅74–0⋅83),
PPV of 0⋅29 (0⋅24–0⋅57) and NPV of 0⋅98 (0⋅95–0⋅99).
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in stool samples and may offer a tool for the assessment
of disease severity. For example, work comparing the
abundance of distinct stool metabolites in patients with
NAFLD-cirrhosis v. healthy subjects revealed 17 meta-
bolites which, in combination, were able to accurately
detect the presence of NAFLD-cirrhosis (AUROC
0⋅91, 95 % CI 0⋅89, 0⋅93)(121). Thus, evidence is accumu-
lating to suggest that accumulation of certain microbial
species, changes in intestinal function and increased
intestinal permeability are likely to contribute not only to
the pathogenesis of NAFLD but also to increased liver
disease severity. Further studies are required to elucidate
the potential role of non-bacterial species within the GM
on the development and progression of NAFLD.

Intestinal dysfunction, dysbiosis and links with white
adipose tissue function in non-alcoholic fatty liver disease

Associated with WAT dysfunction are changes in intes-
tinal function and GM dysbiosis, which have also been
proposed to be key factors contributing to NAFLD.
Receiving about 70 % of its blood supply from intestinal
vascularisation, the liver is constantly exposed to the
metabolic products, toxins and nutrients produced by
the GM(126). It has been suggested that when in a dysbio-
tic state, GM may contribute to the development and
progression of NAFLD via a range of pathways; includ-
ing changes in dietary energy harvest(127,128), alterations
in SCFA production (particularly butyrate)(129,130),
increased bacterial LPS translocation(125,131), alterna-
tions in bile acid profiles(132) and increased endogenous
ethanol production(133). Indeed, the potential effects of
these factors on hepatic function and NAFLD have
been discussed in various recent reviews(110,112–
114,125,134); furthermore, alterations in appetite-regulating
gut hormones are also likely to have an important role in
the development and progression of NAFLD, as recently
reviewed(135–137).

Disruptions in intestinal permeability associated with
obesity and NAFLD are likely to be accompanied by a
reduction in the integrity of intestinal tight junc-
tions(123,138). Increased intestinal permeability in the
presence of GM dysbiosis is thought to facilitate the trans-
location of bacterial products including pro-inflammatory
endotoxins such as LPS. Circulating concentrations of
LPS were found to be significantly higher in patients
with NAFLD compared to healthy controls(139,140) and
have been shown to be positively associated with the
expression of pro-inflammatory genes within both VAT
and SAT in individuals with obesity(141). This is supported
by evidence from pre-clinical murine studies indicating
that increased LPS may directly contribute to WAT
inflammation and increase the release of WAT-derived
pro-inflammatory cytokines(142). Accompanying these
findings, various other studies have proposed additional
mechanisms by which changes in intestinal function and
GM dysbiosis may impact NAFLD development both
directly and in-directly via detrimentally impacting WAT
function (Table 3 and Fig. 2).

Evidence also suggests that the composition of the
GM and intestinal function can differ between sexes
and such differences may partly explain differences in
the risk of metabolic disease between sexes(143–145).
Similarly, changes in GM composition and intestinal
function are strongly associated with ageing and are
likely to contribute to the increased risk of NAFLD
associated with older age both directly and indirectly
via exacerbating WAT dysfunction(146–148). Similar to
obesity, ageing is also associated with disruptions in
intestinal permeability subsequently facilitating the
translocation of bacterial products such as LPS which
are known to contribute to both hepatic and WAT dys-
function (Fig. 2)(149,150). Collectively, existing studies
demonstrate the existence of a gut-WAT axis which,
in addition to the well-established gut-liver axis, may
indirectly contribute to NAFLD pathogenesis.
Furthermore, differences in GM composition and intes-
tinal function between men and women and with age-
ing may contribute to both hepatic and WAT
dysfunction and subsequently drive the development
of NAFLD.

Non-alcoholic fatty liver disease and extra-hepatic
complications

Non-alcoholic fatty liver disease, type 2 diabetes mellitus
and metabolic syndrome

Type 2 diabetes is both a risk factor for NAFLD and
an extra-hepatic complication of NAFLD. The associ-
ation between T2DM and NAFLD is well-established
and T2DM is considered to be one of the most import-
ant risk factors for NAFLD. A meta-analysis of
twenty-four studies found that the pooled prevalence
of NAFLD in patients with T2DM was 59⋅7 % (95 %
CI 54⋅3, 64⋅9 %), with the prevalence of NAFLD
being slightly higher in men (60⋅1 %, 95 % CI 53⋅6,
66⋅4 %), compared to women (59⋅35 %, 95 % CI 53⋅3,
65⋅3 %)(151). Furthermore, the presence of obesity,
hypertension and dyslipidaemia, as features of the
MetS, were associated with an increased prevalence
of NAFLD in patients with T2DM, suggesting that
these factors may act with T2DM to further increase
the risk of NAFLD(151). The presence of T2DM
increases the risk of liver fibrosis by approximately 2–
6-fold(1). The mechanism by which T2DM increases
the risk of liver fibrosis is uncertain. However, numer-
ous factors have been proposed that could mediate the
increase in the risk of liver fibrosis in patients with
T2DM and these include insulin resistance, hypergly-
caemia, hypoadiponectinemia, mitochondrial dysfunc-
tion, increased reactive oxygen species, excess free
cholesterol, increased proinflammatory cytokines and
endoplasmic reticulum stress(152). Recently we have
shown in patients with NAFLD that increased circulat-
ing concentrations of growth-differentiation factor-15,
a stress-inducible cytokine, are independently asso-
ciated with the presence of ≥F3 and ≥F2 liver fibrosis
(Table 2)(153). We also showed in this work that
growth-differentiation factor-15 may be an important
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factor contributing to the increased risk of liver fibrosis
associated with T2DM, and that HbA1c levels
explained about 30 % of the variance in growth-
differentiation factor-15 concentrations(153). However,
further work is required to fully elucidate the role of
growth-differentiation factor-15 in the development
and progression of NAFLD in patients with T2DM.

The estimated global prevalence of NAFLD among
patients with T2DM is 55⋅5% (95 % CI 47⋅3, 63⋅7%)
with prevalence estimates varying between geographical
regions(154). This study also found that the estimated
global prevalence of NASH and advanced fibrosis in
patients with T2DM was 37⋅3% (95% CI 24⋅7, 50⋅0
%) and 4⋅8% (95% CI 0⋅0, 17⋅5%) respectively(154).
The presence of T2DM is also an important risk factor
for the faster progression of NAFLD towards NASH,
cirrhosis or HCC(1,155,156). Patients with NAFLD and
coexisting T2DM are thought to have between a 2
and 6-fold increased risk of developing advanced fibrosis
compared to patients with only NAFLD(1). In addition
to T2DM, the presence of MetS is also recognised as an
important NAFLD risk factor. The presence of MetS in
patients with NAFLD but without diabetes is associated
with more severe NAFLD compared to patients without
MetS(157). Furthermore, this study suggested that a
higher number of MetS features was associated with a
greater probability of NASH, with 70% of patients
diagnosed with NASH having three or more features
of MetS. The presence of MetS has also recently been
shown to be associated with progression to advanced
fibrosis in patients with NAFLD(158). These findings
support those of others which also show that NAFLD
severity is positively associated with the presence of
MetS features, particularly the level of hypertension,
hyperglycaemia and hypertriglyceridemia(159).

It is important to highlight that the link between
T2DM, MetS and NAFLD is complex and bi-

directional. Evidence from a recent large meta-
analysis of over 500 000 individuals found that
NAFLD was associated with an about 2⋅2-fold increased
risk of incident diabetes independently of age, sex, adi-
posity and other common metabolic risk factors(160).
Interestingly, in this study, the risk of incident diabetes
was found to increase in relation to the underlying sever-
ity of NAFLD with a particularly noticeable increase in
risk according to the severity of liver fibrosis (n 5 studies;
random-effects HR 3⋅42, 95 % CI 2⋅3, 5⋅1)(160). These
findings support other evidence from meta-analyses and
observational studies which demonstrate that individuals
with NAFLD had a higher risk for incident T2DM than
individuals without NAFLD(8,161). Evidence collated
from eight studies with a median follow-up period of
4⋅5 years indicated that NAFLD was associated with
an increased risk of incident MetS with a pooled relative
risk of 3⋅2 (95 % CI 3⋅1, 3⋅4) when NAFLD was diag-
nosed via ultrasonography(162). Collectively, this evi-
dence suggests that a vicious cycle of worsening disease
states is likely to exist between T2DM, MetS and
NAFLD(1).

Non-alcoholic fatty liver disease and CVD

Evidence indicates that NAFLD is an important risk
factor for various extra-hepatic diseases and the detri-
mental relationship between T2DM and NAFLD likely
exacerbates this risk. Furthermore, given the strong
associations with NAFLD and other cardiometabolic
risk factors, including central obesity, atherogenic dysli-
pidaemia and hypertension, it is no surprise that
NAFLD is also associated with an increased risk of
CVD(6,163). Recent evidence suggests that CVD is one
of the most important causes of death among people
with NAFLD(164), and patients with NAFLD are
more likely to experience CVD-related death than a

Table 3. Changes in GM-derived factors/metabolites in NAFLD and their proposed effects in WAT and the liver

Factor/
metabolite

Association with
NAFLD Proposed effect on WAT Proposed effect on liver

LPS Increased(139,140,203) Increased inflammation and decreased insulin
sensitivity(131,204,205)

Increased liver inflammation via the activation of
hepatic macrophages and platelets(203).
Pro-fibrogenic via the activation of HSC(206)

Endogenous
ethanol

Increased(133,207) Largely unknown. Potentially induces oxidative
stress and inflammation(208)

Increased hepatic mitochondrial dysfunction(209),
increased hepatic steatosis and inflammation(133)

Butyrate Decreased(210) Decreased production is thought to contribute to
increased inflammation and decreased fatty acid
oxidation(211,212)

Decreased production is thought to contribute to
hepatic mitochondrial dysfunction(213), increased
hepatic steatosis and inflammation(214)

TMAO Increased(215,216) Increased inflammation and impaired expression
of insulin signalling-related genes(217,218)

Reduced insulin sensitivity and increased hepatic
steatosis and inflammation(217,219)

Indole Decreased(220) Reduced regulation of microRNA expression
(specifically miR-181) leading to increased
inflammation and decreased insulin
sensitivity(221)

Decreased production is thought to contribute to
increased hepatic steatosis and inflammation(220)

LPS, lipopolysaccharide; HSCs, hepatic stellate cells; TMAO, trimethylamine N-oxide; NAFLD, non-alcoholic fatty liver disease; WAT, white adipose tissue.
Changes in the production of various GM-derived metabolites/factors may contribute to the development of NAFLD both directly (i.e. via a direct action within the
liver) and indirectly via affecting the function of WAT. Whilst evidence of altered circulating concentrations of certain factors (namely LPS, endogenous ethanol
and TMAO) is well-reported in patients with NAFLD, changes in circulating concentrations of other factors (particularly SCFA) require further investigation.
Furthermore, more research is required to elucidate the potential contribution of endogenously produced ethanol on WAT dysfunction in the context of NAFLD.
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liver-related death(26,163,165). Recent meta-analysis
incorporating a total of sixteen observational studies
and over 34 000 individuals with a median follow-up
of about 7 years concluded that NAFLD conferred an
OR of 1⋅6 for fatal and/or non-fatal CVD events
(random-effects OR of 1⋅6, 95 % CI 1⋅3, 2⋅1)(166). This
is consistent with findings from others that suggest
that the risk of incident CVD events increases further
with greater severity of NAFLD even after adjusting
for other established CVD risk factors(13). Emerging
data also support the evolving notion that sex is an
important modifier of NAFLD outcomes and suggest
that the occurrence and prevalence of CVD-related
events and mortality are likely to differ between sexes.
One study found that in about 108 000 individuals
with NAFLD, cardiovascular events were two times
higher in women compared to men (OR 2⋅1, 95 % CI
1⋅7, 2⋅7)(167). Women also had higher cardiovascular
mortality with advancing age starting at age 42 years
further highlighting the importance of both age and
sex as important risk factors for both NAFLD and
CVD(167).

Non-alcoholic fatty liver disease and chronic kidney
disease

The risk of CKD is also increased in patients with
NAFLD. CKD is a complex, progressive chronic condi-
tion that is defined by an abnormality in either the struc-
ture and/or function of the kidneys for ≥3 months with
serious implications for health(7,168). Evidence from
three meta-analyses demonstrates a higher incidence of
CKD in patients with NAFLD(169–171). The first of
these studies, which included thirty-three observational
(twenty cross-sectional and thirteen longitudinal) studies
concluded that NAFLD was associated with a 2-fold
increased prevalence of CKD (random-effects OR 2⋅1,
95 % CI 1⋅7, 2⋅7) and that NAFLD was associated
with a nearly 80 % increased risk of incident CKD
(random-effects HR 1⋅8, 95 % CI 1⋅7, 2⋅0)(7,169).
Similarly, the second more recent meta-analysis
confirmed that NAFLD was associated with an about
40 % increase in the long-term risk of incident CKD
(random-effects HR 1⋅4, 95 % CI 1⋅2, 1⋅5)(170). Most
recently, findings from a large updated meta-analysis

Fig. 2. NAFLD is associated with changes in gut microbiota-derived factors that can alter hepatic and
WAT function Changes in GM in NAFLD result in alterations in the production of various metabolites/
factors that are thought to contribute to NAFLD both directly (i.e. by directly impacting hepatic function)
and indirectly through detrimentally influencing WAT function. As highlighted on the left, intestinal eubiosis
and healthy gut function (such as that typically found in young individuals) promotes intestinal barrier
integrity and homeostasis whilst restricting the production and dissemination of metabolically detrimental
factors (such as LPS and endogenous ethanol) into circulation, the liver and WAT. Conversely, as
highlighted on the right, intestinal dysbiosis (such as that often associated with older age) leads to
alterations in various GM-derived factors/metabolites that impair the function of tight junction-associated
proteins located within the intestinal epithelium. Consequently, these changes are thought to contribute to
an increased risk of NAFLD both directly (via inducing hepatic mitochondrial function, inflammation and
steatosis) and indirectly through detrimentally impacting WAT function (impairing WAT expansion,
metabolic flexibility and increasing the production of pro-inflammatory cytokines). The increased
production of inflammatory cytokines is thought to lead to a state of chronic low-grade inflammation which
is likely to further disrupt the function of tight junction-associated proteins, thus forming a vicious cycle of
worsening metabolic dysfunction and NAFLD disease severity. GM, gut microbiota; LPS,
lipopolysaccharide; TMAO, trimethylamine N-oxide; NAFLD, non-alcoholic fatty liver disease; WAT, white
adipose tissue.
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indicate that NAFLD was significantly associated with
an about 1⋅45-fold increased long-term risk of incident
CKD and this association was independent of age, sex
and conventional CKD risk factors(171). Interestingly,
these studies also support an association between
increased NAFLD severity (particularly the presence of
advanced fibrosis) and increased risk of CKD(169–171).
Another large database study in Germany also supports
a strong link between NAFLD and increased risk of
CKD that is independent of age, sex and the presence
of additional cardiometabolic risk factors such as dia-
betes, obesity and hypertension(172).

Non-alcoholic fatty liver disease and non-hepatic cancers

In addition to increasing the risk of HCC, recent evi-
dence suggests that NAFLD may also increase the risk
of various non-hepatic cancers. Findings from a recent
large population-based cohort study concluded that,
compared to healthy controls, patients with biopsy-
confirmed NAFLD had significantly increased overall
cancer incidence over a median 13⋅8 years follow-up per-
iod (adjusted HR 1⋅3, 95 % CI 1⋅2, 1⋅4)(173). Whilst this
increase was mostly driven by a higher HCC incidence,
the presence of NAFLD was also associated with mod-
estly increased rates of melanoma, pancreatic and kid-
ney/bladder cancers(173). In support of these findings,
a meta-analysis of ten cohort studies (>180 000 indivi-
duals, 24⋅8% with NAFLD) found that NAFLD was
significantly associated with a nearly 1⋅5–2-fold increased
risk of developing gastrointestinal cancers (oesophagus,
stomach, pancreas or colorectal cancers) independently
of confounding factors such as age, sex, obesity, diabetes
and smoking status(174). There is currently very limited
data on the severity of NAFLD (particularly the severity
of liver fibrosis) and the risk of developing extra-hepatic
cancers. One recent study found that more severe
NAFLD was associated with significantly increased
overall mortality with most of the excess mortality
observed being driven by extrahepatic cancer and liver
cirrhosis(175). Whilst it is reasonable to assume that the
risk of developing extra-hepatic cancers is increased in
relation to NAFLD severity, further large prospective
studies are needed to confirm this link. Such studies
should account for the potential modifying effect of
important genetic variants, age, sex and obesity along
with other NAFLD-associated comorbidities when con-
sidering the relationship between NAFLD severity and
risk of specific extra-hepatic cancers. This latter consider-
ation is particularly important since it is not yet clear
whether NAFLD is associated with an increased risk of
certain extra-hepatic cancers simply as a consequence
of shared metabolic risk factors or whether NAFLD
itself directly contributes to an increased risk of develop-
ing extrahepatic cancers(174).

Conclusions

The risk of developing NAFLD differs between sexes,
changes with age and is likely to be modulated by

complex interactions between genetic and environmental
factors. Differences in WAT mass, its distribution (VAT
v. SAT) and functionality (metabolic and endocrine), are
likely to be key drivers of hepatic steatosis and NAFLD
development. Similarly, differences in the regional distri-
bution and function of WAT between men and women
and between age groups are likely to contribute to the
increased risk of NAFLD progression associated with
sex and age. The development of GM dysbiosis and
intestinal dysfunction is likely to contribute to NAFLD
both directly and indirectly via the exacerbation of
WAT inflammation and dysfunction through a range of
GM-derived factors. Collectively, in the presence of
chronic nutritional surplus, both WAT and intestinal
dysfunction act in a synergistic manner to drive systemic
metabolic dysfunction and the development of NAFLD
and are further influenced by sex and age. In turn,
NAFLD increases the risk of chronic hepatic and extra-
hepatic metabolic diseases including T2DM, CVD,
CKD, HCC and certain extra-hepatic cancers.
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