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Abstract

We prove some new structure results for automorphic products of singular weight. First,
we give a simple characterisation of the Borcherds function Φ12. Second, we show that
holomorphic automorphic products of singular weight on lattices of prime level exist
only in small signatures and we derive an explicit bound. Finally, we give a complete
classification of reflective automorphic products of singular weight on lattices of prime
level.
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1. Introduction

The singular theta correspondence (see [Bor98] and also [Bru02]) is a map from modular forms
for the Weil representation of SL2(Z) to automorphic forms on orthogonal groups. More precisely,
let L be an even lattice of signature (n, 2), n > 2 and even with discriminant form D and F
a modular form for the Weil representation of SL2(Z) on C[D] of weight (2 − n)/2, which is
holomorphic on the upper halfplane and has integral principal part. Then Borcherds associates
an automorphic form Ψ(F ) of weight c0(0)/2 for O(L) to F where c0(0) denotes the constant
coefficient in the Fourier expansion of F0. The function Ψ(F ) has nice product expansions at
the rational 0-dimensional cusps and is called the automorphic product associated to L and
F . The divisor of Ψ(F ) is a linear combination of rational quadratic divisors whose orders are
determined by the principal part of F . Bruinier [Bru14] has shown that if L splits two hyperbolic
planes, then every automorphic form for O(L) whose divisor is a linear combination of rational
quadratic divisors is an automorphic product.

The smallest possible weight of a non-constant holomorphic automorphic form on On,2(R) is
given by (n−2)/2. Forms of this so-called singular weight are particularly interesting because their
Fourier coefficients are supported only on isotropic vectors. Holomorphic automorphic products
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of singular weight seem to be very rare. The few known examples are all related to infinite-
dimensional Lie superalgebras, i.e. given by the denominator functions of generalised Kac–Moody
superalgebras. One of the main open problems in the theory of automorphic forms on orthogonal
groups is to classify holomorphic automorphic products of singular weight [Bor95]. In this paper,
we prove some new results in this direction.

The simplest holomorphic automorphic product of singular weight is the function Φ12. It is
the theta lift of the inverse of the Dedekind function ∆ on the unimodular lattice II 26,2. The
product expansion of Φ12 at a cusp is given by

Φ12(Z) = e((ρ, Z))
∏

α∈II+25,1

(1− e((α,Z)))[1/∆](−α2/2),

where ρ is a primitive norm 0 vector in II 25,1 corresponding to the Leech lattice. The function
Φ12 is holomorphic and has zeros of order 1 orthogonal to the roots of II 26,2. Since Φ12 has
weight 12, i.e. singular weight, its Fourier coefficients are supported only on norm 0 vectors. This
can be used to show that it has the sum expansion

e((ρ, Z))
∏

α∈II+25,1

(1− e((α,Z)))[1/∆](−α2/2) =
∑
w∈W

det(w)e((wρ,Z))

∞∏
n=1

(1− e((nwρ,Z)))24.

Here W is the reflection group of II 25,1.
This identity is the denominator identity of an infinite-dimensional Lie algebra describing

the physical states of a bosonic string moving on the torus R25,1/II 25,1 called the fake monster
algebra [Bor90].

The function Φ12 also has some nice geometric applications. In [GHS07], the authors show
that the moduli space of polarised K3 surfaces of degree d is of general type for d > 61 using
quasi-pullbacks of Φ12.

The first main result of this paper is the following characterisation (see Theorem 4.5).

The function Φ12 is the only holomorphic automorphic product of singular weight on
a unimodular lattice.

Next, we consider lattices of prime level. We show that for a given discriminant form D of
prime level, the number of lattices with dual quotient isomorphic to D carrying a holomorphic
automorphic product of singular weight is finite and we give an explicit bound for the signature.
The precise statement is as follows (see Theorems 5.7 and 5.12).

Let c > 1/log (πe/6) = 2.83309 . . . . Then there exists a constant d with the following
property: let L be an even lattice of signature (n, 2), n > 2 and prime level splitting
a hyperbolic plane II 1,1. Let D be the discriminant form of L. Suppose L carries a
holomorphic automorphic product of singular weight. Then

n 6 c log |D|+ d.

The constant d does not depend on the level, but only on c. The proof is constructive. We can
take, for example, c = 3.59750 . . . and d = 40.52171 . . . . Given a discriminant form D of prime
level, the theorem allows us to determine all holomorphic automorphic products of singular
weight on lattices with dual quotient isomorphic to D by working out the obstruction theory in
the possible signatures.
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We sketch the proofs of the first two main results. To obtain a restriction on the signature in
the prime level case, we pair the vector valued modular form F associated to the automorphic
product Ψ with an Eisenstein series for the dual Weil representation. We obtain a relation
between the signature and a sum over the principal part of F . We expand this sum in the
degrees of the divisors which are non-negative by the holomorphicity of Ψ. Then we apply the
Riemann–Roch theorem to F to derive the bound. In the unimodular case, a similar argument
gives the uniqueness.

The expansion of an automorphic form on On,2(R) at a cusp is sometimes the denominator
function of an infinite-dimensional Lie superalgebra. In that case, the divisor of the automorphic
form is locally the sum of rational quadratic divisors α⊥ of order 1 where α is a root. An
automorphic form on On,2(R) is called reflective if this condition holds globally (see also [Bor99,
GN02]). So far, all known examples of holomorphic automorphic products of singular weight are
reflective.

In [Sch06], certain reflective automorphic products of singular weight on lattices of prime level
are classified. The assumptions are that the underlying lattice L does not have maximal p-rank
and that all roots of a fixed norm give zeros, i.e. the corresponding vector valued modular form is
invariant under the orthogonal group of the discriminant form of L. The second condition is quite
restrictive. Surprisingly we find only three additional cases when we remove these assumptions.
This is the third main result of this paper (see Theorem 6.28).

Let L be a lattice of prime level and signature (n, 2) with n > 2 and Ψ a
reflective automorphic product of singular weight on L. Then, as a function on the
corresponding Hermitian symmetric domain, Ψ is the theta lift of one of the following
modular forms.

p L F Co0

2 II 18,2(2+10
II ) Fη1−82−8 ,0 1828

II 10,2(2+2
II ) F16η1−1628 ,0

1−8216

II 10,2(2+10
II ) Fη182−16 ,0 1−8216

II 6,2(2−6
II ) Fη142−8 ,γ 2−448

3 II 14,2(3−8) Fη1−63−6 ,0 1636

II 8,2(3−3) F9η1−933 ,0
1−339

II 8,2(3−7) Fη133−9 ,0 1−339

II 6,2(3+6) F(1/4)η(1/3)−3123−3 ,M+ 133−293

II 4,2(3−5) Fη113−3 ,γ 3−193

5 II 10,2(5+6) Fη1−45−4 ,0 1454

II 6,2(5+3) F5η1−551 ,0
1−155

II 6,2(5+5) Fη115−5 ,0 1−155

7 II 8,2(7−5) Fη1−37−3 ,0 1373

11 II 6,2(11−4) Fη1−211−2 ,0 12112

23 II 4,2(23−3) Fη1−123−1 ,0 11231

With three exceptions, all of these functions come from symmetric modular forms.
At a suitable cusp Ψ is the twisted denominator function of the fake monster algebra
by the indicated element in Conway’s group.
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Conversely, all the given modular forms lift to reflective automorphic products of
singular weight on the respective lattices.

The cases not coming from symmetric modular forms are those corresponding to the elements
of order 4 and 9 in Conway’s group.

The sum expansion of the theta lift of F(1/4)η(1/3)−3123−3 ,M+ gives a new infinite product

identity (see Proposition 6.23).
The above result can be used to classify generalised Kac–Moody superalgebras whose

denominator functions are reflective automorphic products of singular weight on lattices of prime
level.

We describe the proof of the theorem. Reflective automorphic products of singular weight
associated to symmetric forms can be classified by the Eisenstein condition [Sch06]. It turns
out that in the non-symmetric case the Riemann–Roch theorem imposes strong restrictions (see
Theorem 6.5). In the remaining cases we work out the obstruction theory and determine the
possible reflective modular forms. Many of them lift to the same function leaving us with the
above list.

The paper is organised as follows. In § 2, we summarise some results on modular forms for
the Weil representation. Then we recall Borcherds’ singular theta correspondence and define
reflective forms. In § 4, we prove that the only holomorphic automorphic product of singular
weight on a unimodular lattice is the theta lift of 1/∆ on II 26,2. Next, we show that holomorphic
automorphic products of singular weight on lattices of prime level exist only in small signatures.
Finally, we give a complete classification of reflective automorphic products of singular weight
on lattices of prime level.

2. Modular forms for the Weil representation

In this section, we recall some results on modular forms for the Weil representation from [Sch09,
Sch15].

Let D be a discriminant form with quadratic form q : D → Q/Z and associated bilinear form
( , ) (see [Sch09, Nik79] and [CS99, ch. 15]). We assume that D has even signature. The level of
D is the smallest positive integer N such that Nq(γ) = 0 mod 1 for all γ ∈ D. We define a scalar
product on the group ring C[D] which is linear in the first and antilinear in the second variable
by (eγ , eβ) = δγβ. Then there is a unitary action of the group Γ = SL2(Z) on C[D] satisfying

ρD(T )eγ = e(−q(γ))eγ ,

ρD(S)eγ =
e(sign(D)/8)√

|D|
∑
β∈D

e((γ, β))eβ,

where S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
are the standard generators of Γ. This representation is called the

Weil representation of Γ on C[D]. It commutes with the orthogonal group O(D) of D. Suppose
the level of D divides N and let M =

(
a b
c d

)
∈ Γ0(N). Then

ρD(M)eγ =

(
a

|D|

)
e((a− 1) oddity(D)/8)e(−bdq(γ))edγ .

A general formula for the action of ρD is given in [Sch09, Theorem 4.7].
Let

F (τ) =
∑
γ∈D

Fγ(τ)eγ

1858
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be a holomorphic function on the complex upper halfplane H with values in C[D] and k an

integer. Then F is a modular form for ρD of weight k if

F (Mτ) = (cτ + d)kρD(M)F (τ)

for all M =
(
a b
c d

)
∈ Γ and F is meromorphic at ∞. We say that F is symmetric if it is invariant

under the action of O(D).

Classical examples of modular forms for the dual Weil representation ρD are theta functions.

Let L be a positive-definite even lattice of even rank 2k with discriminant form D. For γ ∈ D
define

θγ(τ) =
∑

α∈γ+L

qα
2/2,

where qα
2/2 = e(τα2/2). Then

θ =
∑
γ∈D

θγe
γ

is a modular form for the dual Weil representation ρD of weight k which is holomorphic at ∞.

Let f be a complex function on H and k an integer. For M =
(
a b
c d

)
∈ Γ we define the function

f |k,M on H by f |k,M (τ) = (cτ + d)−kf(Mτ).

We can easily construct modular forms for the Weil representation by symmetrising scalar-

valued modular forms on congruence subgroups (see [Sch15, Theorem 3.1]).

Theorem 2.1. Let D be a discriminant form of even signature and level dividing N .

Let f be a scalar-valued modular form on Γ0(N) of weight k and character χD and H an

isotropic subset of D that is invariant under (Z/NZ)∗. Then

FΓ0(N),f,H =
∑

M∈Γ0(N)\Γ

∑
γ∈H

f |k,MρD(M−1)eγ

is a modular form for ρD of weight k.

Let γ ∈ D and f a scalar-valued modular form on Γ1(N) of weight k and character χγ . Then

FΓ1(N),f,γ =
∑

M∈Γ1(N)\Γ

f |k,MρD(M−1)eγ

is a modular form for ρD of weight k.

Let f be a scalar-valued modular form on Γ(N) of weight k and γ ∈ D. Then

FΓ(N),f,γ =
∑

M∈Γ(N)\Γ

f |k,MρD(M−1)eγ

is a modular form for ρD of weight k.

Every modular form for ρD can be written as a linear combination of liftings from Γ1(N) or

Γ(N).

Explicit formulas for these function are given in [Sch15, § 3].

We also have the following proposition.

1859

https://doi.org/10.1112/S0010437X17007266 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007266


N. R. Scheithauer

Proposition 2.2. Let D be a discriminant form of even signature and H an isotropic subgroup

of D. Then DH = H⊥/H is a discriminant form of the same signature as D.

Let FD be a modular form for ρD. For γ ∈ H⊥ define

FDH ,γ+H =
∑

β∈γ+H

FD,β .

Then FDH is a modular form for ρDH .

Conversely, let FDH be a modular form for the Weil representation of DH . Define

FD,γ = FDH ,γ+H

if γ ∈ H⊥ and FD,γ = 0 otherwise. Then FD is a modular form for ρD.

We will need the Eisenstein series for the dual Weil representation. They can be constructed

as follows. Let D be a discriminant form of even signature and level dividing N . Let Γ+
∞ = {Tn |

n ∈ Z}. Then

Ek =
1

2

∑
M∈Γ+

∞\Γ1(N)

1|k,M

is an Eisenstein series for Γ1(N) of weight k. Let γ ∈ D be isotropic. Then

Eγ =
∑

M∈Γ1(N)\Γ

Ek|k,MρD(M−1)eγ

is an Eisenstein series for the dual Weil representation ρD. It is easy to see that Eγ gives the

Eisenstein series defined in [Bru02]. For γ = 0 we have

E0 =
∑

M∈Γ0(N)\Γ

Ek,χ|k,MρD(M−1)e0,

where

Ek,χ =
∑

M∈Γ1(N)\Γ0(N)

χ(M)Ek|k,M

is an Eisenstein series for Γ0(N) of weight k and character χ = χ = χD. We will write E for the

Eisenstein series E0.

The dimension of the space of holomorphic modular forms for the Weil representation can

be worked out using the Riemann–Roch theorem [Fre12] or the Selberg trace formula [ES95,

Bor00].

The residue theorem implies the following result.

Proposition 2.3. Let D be a discriminant form of even signature and F a modular form for

ρD of weight 2− k with k > 3. Let G be a modular form for ρD of weight k. Then the constant

coefficient of (F,G) =
∑

γ∈D FγGγ vanishes.

More generally we have (see [Bor99, Theorem 3.1] and [Bru02, Theorem 1.17]) the following

theorem.
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Theorem 2.4. Let P =
∑

γ∈D Pγe
γ , where

Pγ =
∑

n∈Z−q(γ)
n<0

cγ(n)qn

is a finite Fourier polynomial with complex coefficients. Then P is the principal part of a modular
form of weight 2− k, k > 3, for ρD if and only if the linear map

φP : SρD,k −→ C
G 7−→ constant coefficient of (P,G)

vanishes on SρD,k.

We will use Theorem 2.1 to work out the obstruction spaces SρD,k in several cases in § 6.

3. Automorphic products

We describe some properties of automorphic products [Bor98] and define reflective automorphic
products.

Let L be an even lattice of signature (n, 2), n > 2 even, V = L ⊗Z R and V (C) = V ⊗R C.
Then

K = {Z ∈ V (C) | (Z,Z) = 0, (Z,Z) < 0}
is a complex manifold with two connected components that are exchanged by the map Z 7→ Z.
We choose one of the components and denote it by H. There is a subgroup O(V )+ of index 2
in the orthogonal group O(V ), which preserves the two connected components of K. This group
acts holomorphically on H.

Let Γ be a finite index subgroup of O(L)+ and χ : Γ → C∗ a unitary character. Since the
abelianisation of Γ is finite, χ has finite order. Let k be an integer. A meromorphic function
Ψ : H→ C is called an automorphic form of weight k for Γ with character χ if

Ψ(MZ) = χ(M)Ψ(Z),

Ψ(tZ) = t−kΨ(Z)

for all M ∈ Γ and t ∈ C∗.
The weight of a holomorphic automorphic form is bounded below (see [Bor95, Corollary

3.3]).

Proposition 3.1. Let L be an even lattice of signature (n, 2), n > 2 even and rational Witt
rank 2. Let Ψ be a non-constant holomorphic automorphic form of weight k for the discriminant
kernel of O(L)+. Then, k > (n− 2)/2. If Ψ has weight (n− 2)/2, then the non-vanishing Fourier
coefficients correspond to isotropic vectors.

The weight (n− 2)/2 is called the singular weight.
Let L be an even lattice of signature (n, 2), n > 2 even with discriminant form D. Let F

be a modular form for the Weil representation of Γ on C[D] of weight 1 − n/2 with integral
principal part. We denote the Fourier coefficients of F by cγ(n) and assume that c0(0) is even.
Then Borcherds’ singular theta correspondence [Bor98, Theorem 13.3] associates an automorphic
form Ψ to F .
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Theorem 3.2. There is a meromorphic function Ψ : H→ C with the following properties.

(1) The function Ψ is an automorphic form of weight c0(0)/2 for the group O(L,F )+.

(2) The only zeros or poles of Ψ lie on rational quadratic divisors γ⊥ where γ is a primitive
vector of positive norm in L′. The divisor γ⊥ has order∑

m>0

cmγ(−m2γ2/2).

(3) For each primitive isotropic vector z in L and for each Weyl chamber W of K = (L ∩
z⊥)/Zz the restriction Ψz has an infinite product expansion converging in a neighbourhood of
the cusp corresponding to z that is up to a constant

e((Z, ρ))
∏

α∈K′+

∏
γ∈L′/L

γ|
(L∩z⊥)

=α

(1− e((γ, z′) + (α,Z)))cγ(−α2/2).

The function Ψ is called the automorphic product corresponding to F .
Bruinier proved the following converse theorem [Bru14, Theorem 1.2].

Theorem 3.3. Let L be an even lattice of signature (n, 2), n > 2 and even and Ψ an automorphic
form for the discriminant kernel of O(L)+ whose divisor is a linear combination of rational
quadratic divisors. If L = K⊕ II 1,1⊕ II 1,1(m) for some positive integer m, then up to a constant
factor the function Ψ is the theta lift of a modular form for the Weil representation of L.

Let L and FL be as above. Suppose L = K⊕ II 1,1(m) for some positive integer m. Let M be
a finite index sublattice of K. Then H = K/M ⊂ K ′/M ⊂M ′/M is an isotropic subgroup of the
discriminant form of M with orthogonal complement H⊥ = K ′/M . Note that H⊥/H is naturally
isomorphic to K ′/K. The function FL induces a modular form FN on N = M ⊕ II 1,1(m). The
embedding N → L gives an identification of the domains HN and HL.

Proposition 3.4. Under this identification, the automorphic products Ψ(FL) and Ψ(FN )
coincide as functions on HL.

Proof. We choose a primitive norm 0 vector z in II 1,1(m). Then, the product expansion of Ψ(FN )
at the cusp corresponding to z is given by

Ψ(FN )z(Z) = cNe((ρN , Z))
∏

α∈M ′+

∏
j∈Z/mZ

(1− e(j/m)e((α,Z)))cN,α+jz/m(−α2/2).

The components FN,α+jz/m of FN vanish unless α ∈ H⊥ and FN,α+jz/m = FL,(α+H)+jz/m in that
case. It follows

Ψ(FN )z(Z) = cNe((ρN , Z))
∏

α∈K′+

∏
j∈Z/mZ

(1− e(j/m)e((α,Z)))cL,α+jz/m(−α2/2).

This implies

Ψ(FN )z(Z) =
cN
cL

Ψ(FL)z(Z).

It is not difficult to see that cN/cL = 1. Hence, Ψ(FN ) and Ψ(FL) coincide in a neighbourhood
of the cusp z and, therefore, coincide on HL. 2
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Let L be an even lattice of signature (n, 2), n > 2 even with discriminant form D. A root of
L is a primitive vector α of positive norm in L such that the reflection σα(x) = x− 2(x, α)α/α2

is in O(L). Let γ ∈ D be of norm q(γ) = 1/k mod 1 for some positive integer k. We say that
γ corresponds to roots if the order of γ divides k and if there is a vector α ∈ L ∩ kL′ of norm
α2 = 2k with α/k = γ mod L then α is a root. Let F be a modular form for the Weil representation
of L. The function F is called reflective if F has weight 1− n/2 and the only singular terms of
F come from components Fγ with γ corresponding to roots of L and are of the form q−1/k. An
automorphic product Ψ on L is called reflective if it is the theta lift of a reflective modular form
F . The divisor of Ψ has a nice geometric description in this case (see [Sch06, § 9]).

Proposition 3.5. Let Ψ be a reflective automorphic product on L. Then, Ψ is holomorphic and
its zeros are zeros of order 1 at the rational quadratic divisors α⊥ where α is a root of L with
α2 = 2k and cα/k(−1/k) = 1.

4. Singular weight forms on unimodular lattices

In this section, we show that the function Φ12 is the only holomorphic automorphic product of
singular weight on a unimodular lattice.

Let L be an even unimodular lattice of signature (n, 2) with n > 2 and let Ψ(F ) be a
holomorphic automorphic product of singular weight on L.

Since L is unimodular, we have that n = 2 mod 8. By assumption the modular form F has
weight 1− n/2, is holomorphic on H and has a finite order pole at ∞. We write

F (τ) =
∑
m∈Z

c(m)qm

with c(0) = n−2 and define m∞ = −ν∞(F ), i.e. m∞ is the largest integer such that c(−m∞) 6= 0.
The coefficients c(−m), m > 0 of the principal part of F are integral.

Let

Ek(τ) = 1− 2k

Bk

∑
m>0

σk−1(m)qm

be the Eisenstein series of weight k = 1 + n/2 for Γ. Pairing F with Ek (see Proposition 2.3) we
obtain the following result.

Proposition 4.1. The principal part of F satisfies

2(k − 2)− 2k

Bk

∑
m>0

c(−m)σk−1(m) = 0.

This result restricts the possible values of k.

Proposition 4.2. We have k = 2 mod 12.

Proof. The previous proposition implies (k− 2)Bk ∈ Z. The von Staudt–Clausen theorem states
that

Bk +
∑

(p−1)|k

1

p
∈ Z.

Hence, (k − 2)
∑

(p−1)|k (1/p) ∈ Z and k − 2 = 0 mod 3. The assertion now follows from the
condition on n. 2
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The modular form F∆(k−2)/12 has weight 0, is holomorphic on H and possibly has a pole
at ∞. Hence,

m∞ >
k − 2

12
.

The divisor of Ψ(F ) is a linear combination of rational quadratic divisors γ⊥ where γ is a primitive
vector of positive norm in L. The order of γ⊥ is

∑
m>0 c(−m2γ2/2). The holomorphicity of Ψ(F )

does not imply that the coefficients of the principal part of F are non-negative. However, the
function g on the positive integers defined by

g(d) =
∑
m>0

c(−dm2)

is non-negative because the lattice L splits a hyperbolic plane II 1,1 and therefore contains
primitive vectors of arbitrary norm.

Theorem 4.3. The principal part of F satisfies the inequality∑
m>0

c(−m)σk−1(m) > mk−1
∞ .

Proof. We have ∑
m>0

c(−m)σk−1(m) =
∑
m>0

c(−m)
∑
d|m

dk−1

=
∑
d>0

dk−1
∑
d|m

c(−m)

=
∑
d>0

dk−1
∑
t>0

c(−td)

=
∑
d>0

dk−1
∑
m>0

t squarefree

c(−m2td)

=
∑
d>0

dk−1
∑

t squarefree

g(td)

=
∑
m>0

g(m)
∑
d|m

m/d squarefree

dk−1

so that ∑
m>0

c(−m)σk−1(m) > g(m∞)mk−1
∞ = c(−m∞)mk−1

∞ > mk−1
∞ .

This proves the theorem. 2

We obtain the inequalities (
k − 2

12

)k−1

6 mk−1
∞ 6

k − 2

k
Bk.

Note that k = 2 mod 4 implies that the Bernoulli numbers Bk are positive.
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Proposition 4.4. The only solution of the inequality(
k − 2

12

)k−1

6
k − 2

k
Bk

with k > 2 and k = 2 mod 12 is k = 14. In this case, equality holds.

Proof. We can write the inequality as

1 6
(k − 2)2

12k

(
12

k − 2

)k
Bk.

For k →∞ we have Bk ∼ 2(k!/(2π)k) and k! ∼
√

2πk(k/e)k so that

(k − 2)2

12k

(
12

k − 2

)k
Bk ∼ 2

√
2πk

(k − 2)2

12k

(
k

k − 2

)k( 6

πe

)k
∼ 1

6

√
2πe2k3/2

(
6

πe

)k
.

Since πe > 6, the last expression tends to 0 as k → ∞. Hence, the inequality has only finitely
many solutions. It is easy to verify that k = 14 is the only solution. 2

Now, the classification result follows.

Theorem 4.5. Let L be an even unimodular lattice of signature (n, 2) with n > 2 and let Ψ(F )
be a holomorphic automorphic product of singular weight on L. Then n = 26 and F = 1/∆. The
expansion of Ψ at a cusp is given by

e((ρ, Z))
∏

α∈II+25,1

(1− e((α,Z)))[1/∆](−α2/2) =
∑
w∈W

det(w)∆((wρ,Z)).

Proof. We have k = 14 and m∞ = 1. Hence,

F (τ) = q−1 + 24 + · · ·
by Proposition 4.1. Since F is holomorphic on H we obtain F = 1/∆. 2

We conclude this section with some examples.
Let

j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · ·
be the modular invariant. Then the function

F (τ) = (j(τ)3 − 2256j(τ)2 + 1105920j(τ)− 40890369)/∆(τ)

= q−4 − q−1 + 1610809344 + 11828339932860q + · · ·
=
∑
m∈Z

c(m)qm

is a modular form of weight −12 for Γ, holomorphic on H with a pole of order 4 at∞. Note that
the coefficient c(−1) = −1 of the principal part of F is negative. Let L be an even unimodular
lattice of signature (26, 2) and Ψ(F ) the automorphic product corresponding to F on L. Then
Ψ(F ) is a holomorphic automorphic form of weight 805404672 whose zeros are zeros of order 1
at the divisors γ⊥ where γ is a primitive vector of norm γ2 = 8 in L. If γ is a vector of norm
γ2 = 2 in L, then the divisor γ⊥ has order c(−4) + c(−1) = 0.

Next, we consider non-holomorphic automorphic products.
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Proposition 4.6. Let L be an even unimodular lattice of signature (n, 2) with

n = 26, 50, 74, 122, 146, 170 or 194.

Then, L carries infinitely many meromorphic automorphic products of weight 12.

Proof. First, we consider the case n = 26. Let F = (aj + b)/∆ with a, b ∈ Z. Then

F (τ) = aq−2 + (768a+ b)q−1 + (215064a+ 24b) + · · · .

Since (215064, 24) = 24 there are infinitely many choices for a and b such that F has constant
coefficient 24. This implies that there are infinitely many meromorphic automorphic products of
weight 12 on L. In the general case, write n = 24m+ 2 and let

F = (amj
m + · · ·+ a1j + a0)/∆m.

Then there are infinitely many (a0, . . . , am) ∈ Zm+1 such that F has constant coefficient 24. 2

We explain the exception at n = 98. Let

F (τ) =
∑
m∈Z

c(m)qm

be a modular form of weight 1−98/2 = −48 for Γ, holomorphic on H with a pole at∞. Suppose
F has integral principal part. Since the Eisenstein series E10 has Fourier expansion

E10(τ) = 1− 264
∑
m>0

σ9(m)qm

the constant coefficient of FE5
10 is given by c(0) + 264(· · ·). This coefficient has to vanish so that

c(0) = 0 mod 264. This implies that the weight of a meromorphic automorphic product on a
unimodular lattice of signature (98, 2) is divisible by 132.

Finally, we remark that lifting constants with Gritsenko’s additive lift [Gri91] (see also [Bor98,
Theorem 14.3]) shows that holomorphic automorphic forms of singular weight exist on any
unimodular lattice of signature (n, 2) with n > 2. By Theorem 3.3, the divisor of such a function
is not a linear combination of rational quadratic divisors.

5. The prime level case

Let L be an even lattice of prime level carrying a holomorphic automorphic product of singular
weight. We derive an explicit bound for the signature of L.

We consider the cases of even and odd p-ranks separately.

5.1 Even p-rank
Let L be an even lattice of prime level p and genus II n,2(pεpnp) with n > 2 and np even carrying
a holomorphic automorphic product Ψ(F ) of singular weight.

Let D be the discriminant form of L. The oddity formula (see [CS99, ch. 15, § 7.7])

e(sign(D)/8) = γp(D)

implies

e((n− 2)/8) = εp

(−1

p

)np/2
.

1866

https://doi.org/10.1112/S0010437X17007266 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007266


Automorphic products of singular weight

Hence, n = ±2 mod 8 and k = 1 + n/2 is an even integer. Note that k > 4. Define

ξ = εp

(−1

p

)np/2
= −(−1)k/2.

Let E be the Eisenstein series of weight k for ρD corresponding to 0. Write

E =
∑
γ∈D

Eγe
γ

with
Eγ(τ) =

∑
m∈Z+q(γ)

aγ(m)qm.

Define

ck,p,np = ξ
2k

Bk

1

pk − 1

1

p(np−2)/2
.

Note that ck,p,np is positive. By explicit calculation we can derive the following formulas for the
Fourier coefficients aγ(m) (see also [Sch06, Theorem 7.1]).

Proposition 5.1. Let γ ∈ D and m ∈ q(γ) + Z, m > 0.
If q(γ) 6= 0 mod 1, then

aγ(m) = −ck,p,npσk−1(pm).

Suppose q(γ) = 0 mod 1. Write m = pνa with (a, p) = 1. Then

aγ(m) = −ck,p,npp(ν+1)(k−1)σk−1(a)

if γ 6= 0 and

aγ(m) = −ck,p,npp(ν+1)(k−1)σk−1(a) + ξck,p,npp
np/2σk−1(a)− ξck,p,npp(np−2)/2(p− 1)σk−1(m)

if γ = 0.

Write
F =

∑
γ∈D

Fγe
γ

with
Fγ(τ) =

∑
m∈Z−q(γ)

cγ(m)qm.

Pairing F with the Eisenstein series E (see Proposition 2.3) we obtain

2(k − 2) +
∑
γ∈D

∑
m>0

cγ(−m)aγ(m) = 0.

In the following, we will often need that L splits a hyperbolic plane II 1,1. We give a criterion for
this.

Proposition 5.2. The lattice L splits a hyperbolic plane II 1,1 if and only if

np = n and ξ = +1

or
np 6 n− 2.
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Proof. Suppose L splits II 1,1, i.e. II n,2(pεpnp) = II n−1,1(pεpnp)⊕ II 1,1. If np 6 n−2, this gives no
restriction on εp. If np = n, then the sign rule (see [CS99, ch. 15, § 7.7]) applied to II n−1,1(pεpnp)
implies εp = (−1/p) so that

ξ = εp

(−1

p

)np/2
=

(−1

p

)1+n/2

= +1.

The converse is now clear. 2

Let d be a positive rational number such that pd is integral. We define functions

gγ(d) =
∑
m>0

cmγ(−m2d),

where we assume m to be integral. We have

gγ(d) = g0(p2d) +
∑

(m,p)=1

cmγ(−m2d).

This implies

gγ(d) = g0(p2d)

if q(γ) 6= d mod 1.
The divisor of Ψ(F ) is a linear combination of rational quadratic divisors γ⊥, where γ is a

primitive vector of positive norm in L. The divisor γ⊥ has order
∑

m>0 cmγ(−m2γ2/2). Since
Ψ(F ) is holomorphic this is a non-negative integer.

Proposition 5.3. Suppose L splits a hyperbolic plane II 1,1. Then

gγ(d) > 0

for all γ ∈ D.

Proof. By the above remark we can assume that d = q(γ) mod 1. Write L = M ⊕ II 1,1. Choose
a representative of γ in M ′. By adding a primitive element of suitable norm in II 1,1 we obtain
a primitive element γ ∈ L′ of norm γ2/2 = d. The holomorphicity of Ψ(F ) implies that

gγ(d) =
∑
m>0

cmγ(−m2d) =
∑
m>0

cmγ(−m2γ2/2) > 0.

This proves the proposition. 2

We also define the multiplicative function

h(m) =
∑
d|m

m/d squarefree
(m/d,p)=1

dk−1.

Now we expand the sum −∑γ∈D
∑

m>0 cγ(−m)aγ(m) in terms of the non-negative divisor
degrees gγ .
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Theorem 5.4. Suppose L splits II 1,1. Let cp = 1− 1/p. Then

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m) > ck,p,np
∑
γ∈D

q(γ)6=0 mod 1

∑
m/p=q(γ) mod 1

gγ(m/p)h(m)

+ ck,p,npp
k−1

∑
γ∈D\{0}

q(γ)=0 mod 1

∑
m>0

gγ(m)h(m)

+ cpck,p,npp
k−1

∑
m>0

g0(m)h(m).

Proof. Let γ ∈ D with q(γ) 6= 0 mod 1. Then

−
p−1∑
j=1

∑
m>0

cjγ(−m)ajγ(m) = ck,p,np

p−1∑
j=1

∑
(m,p)=1

cjγ(−m/p)
∑
d|m

dk−1

= ck,p,np
∑

(d,p)=1

dk−1
p−1∑
j=1

∑
(t,p)=1

cjγ(−td/p)

= ck,p,np
∑

(d,p)=1

dk−1
p−1∑
j=1

∑
t squarefree

(t,p)=1

∑
(m,p)=1

cjγ(−m2td/p)

= ck,p,np
∑

(d,p)=1

dk−1
p−1∑
j=1

p−1∑
l=1

∑
t squarefree

(t,p)=1

∑
m=l mod p

cjγ(−m2td/p)

= ck,p,np
∑

(d,p)=1

dk−1
p−1∑
j=1

p−1∑
l=1

∑
t squarefree

(t,p)=1

∑
m=l mod p

cljγ(−m2td/p)

= ck,p,np
∑

(d,p)=1

dk−1
p−1∑
j=1

∑
t squarefree

(t,p)=1

(gjγ(td/p)− g0(tdp))

= ck,p,np

p−1∑
j=1

∑
(m,p)=1

(gjγ(m/p)− g0(mp))
∑
d|m

m/d squarefree

dk−1

= ck,p,np

p−1∑
j=1

∑
m/p=q(jγ) mod 1

(gjγ(m/p)− g0(mp))h(m).

For γ ∈ D\{0} with q(γ) = 0 mod 1 we find analogously

−
p−1∑
j=1

∑
m>0

cjγ(−m)ajγ(m) = ck,p,npp
k−1

p−1∑
j=1

∑
m>0

(gjγ(m)− g0(mp2))h(m).
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For γ = 0, we have

−
∑
m>0

cγ(−m)aγ(m) = ck,p,npp
k−1

∑
d>0

dk−1
∑

(t,p)=1

c0(−td)

− ξck,p,nppnp/2
∑

(d,p)=1

dk−1
∑
t>0

c0(−td)

+ ξck,p,npp
(np−2)/2(p− 1)

∑
d>0

dk−1
∑
t>0

c0(−td)

= ck,p,npp
k−1

∑
d>0

dk−1
∑

t squarefree

(t,p)=1

(g0(td)− g0(tdp2))

− ξck,p,nppnp/2
∑

(d,p)=1

dk−1
∑

t squarefree
(t,p)=1

(g0(td) + g0(tdp))

+ ξck,p,npp
(np−2)/2(p− 1)

∑
d>0

dk−1
∑

t squarefree
(t,p)=1

(g0(td) + g0(tdp))

= ck,p,npp
k−1

∑
m>0

(g0(m)− g0(mp2))h(m)

− ξck,p,nppnp/2
∑

(m,p)=1

(g0(m) + g0(mp))h(m)

+ ξck,p,npp
(np−2)/2(p− 1)

∑
m>0

(g0(m) + g0(mp))h(m).

Using ∑
m>0

g0(m)h(m) =
∑

(m,p)=1

g0(m)h(m) + pk−1
∑

(m,p)=1

g0(mp)h(m)

+ p2(k−1)
∑
m>0

g0(mp2)h(m)

and ∑
m>0

g0(mp)h(m) =
∑

(m,p)=1

g0(mp)h(m) + pk−1
∑
m>0

g0(mp2)h(m),

we find

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m) = ck,p,np
∑
γ∈D

q(γ)6=0 mod 1

∑
m/p=q(γ) mod 1

gγ(m/p)h(m)

+ ck,p,npp
k−1

∑
γ∈D\{0}

q(γ)=0 mod 1

∑
m>0

gγ(m)h(m)

+ ck,p,npc
0
k,p,np

∑
(m,p)=1

g0(m)h(m)
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+ ck,p,np

p−1∑
j=1

c1
k,np,j

∑
m=j mod p

g0(mp)h(m)

+ ck,p,npc
>2
k,p,np

∑
m>0

g0(mp2)h(m)

with

c0
k,p,np = pk−1 − ξp(np−2)/2,

c1
k,p,np,j = pn − ak,p,np,j + ξp(np−2)/2((p− 1)pk−1 − 1),

c>2
k,p,np

= pk−1(pn − ak,p,np,0 + ξp(np−2)/2(p− 1)(pk−1 + 1)),

where ak,p,np,j denotes the number of elements γ ∈ D of norm q(γ) = j/p mod 1. For j 6= 0 mod p

we have

ak,p,np,j = pnp−1 − ξp(np−2)/2

(see [Sch06, Proposition 3.2]) so that

c1
k,p,np,j = pn − pnp−1 + ξp(n+np−2)/2(p− 1),

c>2
k,p,np

= pk−1(pn − pnp−1 + ξp(n+np−2)/2(p− 1)).

Since L splits II 1,1, we obtain the following bounds

c0
k,p,np > (1− 1/p)pk−1,

c1
k,p,np,j > (1− 1/p)p2(k−1),

c>2
k,p,np

> (1− 1/p)p3(k−1).

Applying the above formula for
∑

m>0 g0(m)h(m) once more, we obtain

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m) > ck,p,np
∑
γ∈D

q(γ)6=0 mod 1

∑
m/p=q(γ) mod 1

gγ(m/p)h(m)

+ ck,p,npp
k−1

∑
γ∈D\{0}

q(γ)=0 mod 1

∑
m>0

gγ(m)h(m)

+ cpck,p,npp
k−1

∑
m>0

g0(m)h(m).

This proves the theorem. 2

Define m∞ = maxγ∈D(−ν∞(Fγ)). Note that m∞ > 0.

Proposition 5.5. Suppose L splits II 1,1. Then

m∞ >
k − 2

12
.

Let γ ∈ D such that ν∞(Fγ) = −m∞. Then cγ(−m∞) is a positive integer.
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Proof. The function F0 is a non-zero modular form for Γ0(p) of weight 2 − k. Applying the
Riemann–Roch theorem to F0 we obtain

pν0(F0) + ν∞(F0) 6 −k − 2

12
(p+ 1)

(see [HBJ94, Theorem 4.1]). The formula for the S-transformation (see § 2) implies

ν0(F0) = ν∞

(∑
γ∈D

Fγ

)
.

Let γ ∈ D such that ν∞(Fγ) is minimal. Since L splits II 1,1, there is a primitive vector µ in L′

with µ = γ mod L and µ2/2 = m∞. Then, the divisor µ⊥ has order cγ(−m∞) which is a positive
integer by the holomorphicity of Ψ(F ). Hence,

ν∞

(∑
γ∈D

Fγ

)
= min

γ∈D
ν∞(Fγ).

It follows

pmin
γ∈D

ν∞(Fγ) + min
γ∈D

ν∞(Fγ) 6 −k − 2

12
(p+ 1).

This completes the proof. 2

We obtain the following inequalities.

Proposition 5.6. Suppose L splits II 1,1. Then(
k − 2

12

)k−1

6 mk−1
∞ 6 ξ

pnp/2

cp

k − 2

k
Bk.

Proof. Suppose ν∞(F0) < ν∞(Fγ) for all γ ∈ D\{0}. Then the Eisenstein condition and the
estimate in Theorem 5.4 give

2(k − 2) = −
∑
γ∈D

∑
m>0

cγ(−m)aγ(m)

> cpck,p,npp
k−1g0(m∞)h(m∞)

> cpck,p,npp
k−1mk−1

∞

so that

mk−1
∞ 6 ξ

pnp/2

cp

k − 2

k
Bk.

The assertion now follows from Proposition 5.5. Suppose ν∞(Fγ) 6 ν∞(F0) for some γ ∈ D\{0}.
Choose γ 6= 0 such that −ν∞(Fγ) = m∞. Then,

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m) > ck,p,npp
k−1mk−1

∞

and the statement follows analogously. 2

We remark that the first inequality in the proposition is a consequence of the Riemann–Roch
theorem and the second is a consequence of the Eisenstein condition.
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Theorem 5.7. Let L be an even lattice of level p and genus II n,2(pεpnp) with n > 2 and np
even splitting a hyperbolic plane II 1,1. Suppose L carries a holomorphic automorphic product
of singular weight. Then for each c > 1/log (πe/6) there exists a constant d depending only on c
such that

n 6 cnp log(p) + d.

Proof. Recall that k > 4. Using 2ζ(k) = ξ((2π)k/k!)Bk and k! 6 e
√
k(k/e)k we derive from

Proposition 5.6 the inequality

1 6 e2pnp/2k3/2

(
6

πe

)k
respectively

0 6 2 +
np
2

log(p) +
3

2
log(k)− k log

(
πe

6

)
.

If t is a tangent of the real logarithm then log(x) 6 t(x) for all x > 0. Thus, log(k) 6 (k−x)/x+
log(x) for all x > 0. It follows

0 6 −
(

log

(
πe

6

)
− 3

2x

)
k +

np
2

log(p) +
3

2
(log(x)− 1) + 2

for all x > 0. If x > 3/2 log(πe/6) = 4.24964 . . . this gives an upper bound on k and on n, i.e.

n 6 c(x)np log(p) + d(x)

with

c(x) =
2

2 log(πe/6)− 3/x

d(x) = (3 log(x) + 1)c(x)− 2

in this case. 2

Note that the proof is constructive. For example, taking x = 20 gives the bounds c =
3.59750 . . . and d = 33.92899 . . . .

5.2 Odd p-rank
Now let L be an even lattice of prime level p and genus II n,2(pεpnp) with n > 2 and np odd.
Suppose Ψ(F ) is a holomorphic automorphic product of singular weight on L.

Since np is odd, it follows that p is odd as well.
The oddity formula implies

e((n− 2)/8) =


εp

(
2

p

)
if p = 1 mod 4,

εp

(
2

p

)
(−1)(np−1)/2e(1/4) if p = 3 mod 4,

so that

n =

{
±2 mod 8 if p = 1 mod 4,

0 mod 4 if p = 3 mod 4.
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Define k = 1 + n/2 and

ξ = εp

(
2

p

)(−1

p

)(np−1)/2

.

Then

ξ =

{
−(−1)k/2 if p = 1 mod 4,

−(−1)(k−1)/2 if p = 3 mod 4.

Let χ(j) = (j/p). Define the twisted divisor sum

σl,χ(m) =
∑
d|m

χ(m/d)dl

and the generalised Bernoulli numbers Bm,χ by

p∑
j=1

χ(j)xejx

epx − 1
=
∑
m>0

Bm,χ
xm

m!

(see [Iwa72]). Let

ck,p,np = ξ
2k

Bk,χ

1

p(np−1)/2
.

The positivity of L(k, χ) implies that ck,p,np is positive. We describe the Fourier coefficients
aγ(m) of the Eisenstein series E.

Proposition 5.8. Let γ ∈ D and m ∈ q(γ) + Z, m > 0.
If q(γ) 6= 0 mod 1, then

aγ(m) = −ck,p,npσk−1,χ(pm).

Suppose q(γ) = 0 mod 1. Write m = pνa with (a, p) = 1. Then

aγ(m) = −ck,p,npp(ν+1)(k−1)σk−1,χ(a)

if γ 6= 0 and

aγ(m) = −ck,p,npp(ν+1)(k−1)σk−1,χ(a)− ξck,p,npp(np−1)/2χ(a)σk−1,χ(a)

if γ = 0.

We have the following result.

Proposition 5.9. The lattice L splits a hyperbolic plane II 1,1 if and only if

np 6 n− 1.

As above, we denote the Fourier coefficients of F by cγ and define the functions gγ . We also
define

hχ(m) =
∑
d|m

m/d squarefree

χ(m/d)dk−1.

The function hχ is bounded below by hχ(m) > (2− ζ(2))mk−1 > mk−1/3.
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Theorem 5.10. Suppose L splits II 1,1. Let cp = 1− 1/p. Then

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m) > ck,p,np
∑
γ∈D

q(γ)6=0 mod 1

∑
m/p=q(γ) mod 1

gγ(m/p)hχ(m)

+ ck,p,npp
k−1

∑
γ∈D\{0}

q(γ)=0 mod 1

∑
m>0

gγ(m)hχ(m)

+ cpck,p,npp
k−1

∑
m>0

g0(m)hχ(m).

Proof. The argument is analogous to the proof of Theorem 5.4. We describe the necessary
modifications.

Let γ ∈ D with q(γ) 6= 0 mod 1. Then

−
p−1∑
j=1

∑
m>0

cjγ(−m)ajγ(m) = ck,p,np

p−1∑
j=1

∑
m/p=q(jγ) mod 1

(gjγ(m/p)− g0(mp))hχ(m).

For γ ∈ D\{0} with q(γ) = 0 mod 1 we find

−
p−1∑
j=1

∑
m>0

cjγ(−m)ajγ(m) = ck,p,npp
k−1

p−1∑
j=1

∑
m>0

(gjγ(m)− g0(mp2))hχ(m).

If γ = 0, then

−
∑
m>0

cγ(−m)aγ(m) = ck,p,npp
k−1

∑
m>0

(g0(m)− g0(mp2))hχ(m)

+ ξck,p,npp
(np−1)/2

∑
(m,p)=1

(g0(m) + g0(mp))χ(m)hχ(m).

Using ∑
m>0

g0(m)hχ(m) =
∑

(m,p)=1

g0(m)hχ(m) + pk−1
∑

(m,p)=1

g0(mp)hχ(m)

+ p2(k−1)
∑
m>0

g0(mp2)hχ(m),

we obtain

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m) = ck,p,np
∑
γ∈D

q(γ)6=0 mod 1

∑
m/p=q(γ) mod 1

gγ(m/p)hχ(m)

+ ck,p,npp
k−1

∑
γ∈D\{0}

q(γ)=0 mod 1

∑
m>0

gγ(m)hχ(m)

+ ck,p,np

p−1∑
j=1

∑
m=j mod p

c0
k,p,np,jg0(m)hχ(m)
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+ ck,p,np

p−1∑
j=1

∑
m=j mod p

c1
k,p,np,jg0(mp)hχ(m)

+ ck,p,npc
>2
k,p,np

∑
m>0

g0(mp2)hχ(m)

with

c0
k,p,np,j = pk−1 + ξχ(j)p(np−1)/2,

c1
k,p,np,j = p2(k−1) − ak,p,np,j + ξχ(j)p(np−1)/2,

c>2
k,p,np

= p3(k−1) − pk−1ak,p,np,0,

where ak,p,np,j denotes the number of elements γ ∈ D of norm q(γ) = j/p mod 1. Since L splits
II 1,1 we have

c0
k,p,np,j > (1− 1/p)pk−1,

c1
k,p,np,j > (1− 1/p2)p2(k−1),

c>2
k,p,np,m

> (1− 1/p2)p3(k−1).

This implies the assertion. 2

Pairing F with the Eisenstein series E and applying the Riemann–Roch theorem to F0, we
obtain the following result.

Proposition 5.11. Suppose L splits II 1,1. Then(
k − 2

12

)k−1

6 mk−1
∞ 6 3ξ

p(np+1)/2

cp

k − 2

k

Bk,χ
pk

.

We can now derive a bound on n.

Theorem 5.12. Let L be an even lattice of level p and genus II n,2(pεpnp) with n > 2 and np
odd splitting a hyperbolic plane II 1,1. Suppose L carries a holomorphic automorphic product of
singular weight. Then for each c > 1/log(πe/6) there exists a constant d depending only on c
such that

n 6 cnp log(p) + d.

Proof. Here we use 2L(k, χ) = ξ
√
p((2π)k/k!)(Bk,χ/p

k) and L(k, χ) 6 ζ(3) to obtain

1 6
5

2
e2pnp/2k3/2

(
6

πe

)k
.

As above, this implies
n 6 c(x)np log(p) + d(x)

with

c(x) =
2

2 log(πe/6)− 3/x
,

d(x) = (3 log(x) + 1 + 2 log(5/2))c(x)− 2

for x > 3/2 log(πe/6). 2

Note that the constant d is slightly larger here than in Theorem 5.7. Taking x = 20 we obtain
the bounds c = 3.59750 . . . and d = 40.52171 . . . .
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5.3 An example
Let L be a lattice of genus II n,2(2+n2

II ) with n > 2 and n2 = 2, 4 or 6 carrying a holomorphic
automorphic product of singular weight. Then n 6 34, 42 respectively 42 and

k − 2

12
6 m∞ 6

(
2(n2+2)/2k − 2

k
Bk

)1/(k−1)

by Theorem 5.7 and Proposition 5.6. The values of the bounds are given in the following table.

n k (k − 2)/12 2+2
II 2+4

II 2+6
II

10 6 0.33333 . . . 0.57616 . . . 0.66183 . . . 0.76024 . . .

18 10 0.66666 . . . 0.85431 . . . 0.92271 . . . 0.99658 . . .

26 14 1 1.11253 . . . 1.17346 . . . 1.23772 . . .

34 18 1.33333 . . . 1.36385 . . . 1.42060 . . . 1.47973 . . .

42 22 1.66666 . . . 1.61161 . . . 1.66570 . . . 1.72159 . . .

50 26 2 1.85716 . . . 1.90937 . . . 1.96305 . . .

Since m∞ is half-integral we obtain the following theorem.

Theorem 5.13. Let L be a lattice of genus II n,2(2+n2
II ) with n > 2 and n2 = 2, 4 or 6 carrying

a holomorphic automorphic product of singular weight. Then n = 10 or 26.

6. Reflective forms

In this section, we remove the hypotheses made in [Sch06] and give a complete classification of
reflective automorphic products of singular weight on lattices of prime level.

6.1 General results
We derive some general bounds and formulate the Eisenstein condition for reflective modular
forms.

Let L be an even lattice of prime level p and genus II n,2(pεpnp) with n > 2. Let F =∑
γ∈D Fγe

γ be a non-zero reflective modular form on L (see § 3). Then F has weight 1− n/2,

F0(τ) = c0(−1)q−1 +
∑
m∈Z
m>0

c0(m)qm

with c0(−1) = 0 or 1,

Fγ(τ) = cγ(−1/p)q−1/p +
∑

m∈Z−1/p
m>0

cγ(m)qm

with cγ(−1/p) = 0 or 1 if q(γ) = 1/p mod 1 and the other components Fγ of F are holomorphic
at ∞. We define integers c1 = c0(−1) and cp = |{γ ∈ D | q(γ) = 1/p mod 1 and Fγ singular}|.

Proposition 6.1. We have n < 26. If c1 = 0, then n 6 2 + 24/(p+ 1).

Proof. The conditions imply F0 6= 0. Since F is reflective, the product F0∆ is a modular form for
Γ0(p) of weight 13− n/2 which is holomorphic on the upper halfplane and at the cusps. Hence,
n 6 26. If n = 26 the function F0 must be 1/∆. However, as a result, F does not transform
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correctly under S. This proves the first statement. If c1 = 0 the Riemann–Roch theorem applied
to F0 gives

−1 6 pν0(F0) + ν∞(F0) 6
m

12
(p+ 1),

where m = 1− n/2 is the weight of F0. This implies the second statement. 2

Pairing F with the Eisenstein series E of weight k = 1 +n/2 we obtain (see Propositions 5.1
and 5.8) the following result.

Proposition 6.2. Suppose F0 has constant coefficient n− 2. Then

k − 2

k
Bk(p

k − 1) = ξeven(pk−np/2c1 + p1−np/2cp)− c1

with ξeven = −(−1)k/2 if np is even and

k − 2

k
Bk,χ = ξodd(pk−(np+1)/2c1 + p(1−np)/2cp) + c1

with

ξodd =

{
−(−1)k/2 if p = 1 mod 4,

−(−1)(k−1)/2 if p = 3 mod 4,

if np is odd.

We will also need the following result.

Proposition 6.3. If np = n+ 2, then n− 2 = 0 mod 8 and L is a rescaling of II n,2 by p.

Proof. Since γp(D) is a fourth root of unity the oddity formula e(sign(D)/8) = γp(D) implies
that n is even. Then np is also even and

γp(D) = εp

(−1

p

)np/2
.

Hence, n−2 = 0 or 4 mod 8 and γp(D) = εp. The lattice L has determinant pn+2 so that ε1εp = 1
by the sign rule. Now ε1 = +1 because L has maximal p-rank and therefore εp = +1. Applying
the oddity formula again, we obtain n − 2 = 0 mod 8. The second statement follows from the
fact that there is only one class in the genus II n,2(pεpnp) under the given conditions. 2

6.2 Symmetric forms
Here we classify reflective modular forms that are invariant under O(D).

Let L be an even lattice of prime level p and genus II n,2(pεpnp) with n > 2. Then the number
of elements γ in D of order p and norm q(γ) = 1/p mod 1 is given by

pnp−1 − ξevenp
(np−2)/2

if np is even and by

pnp−1 + ξoddp
(np−1)/2
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if np is odd (see [Sch06, Proposition 3.2]). Suppose L carries a symmetric reflective modular form
F with [F0](0) = n− 2. Then the Eisenstein condition takes the form

k − 2

k
Bk(p

k − 1) = ξeven(pk−np/2d1 + pnp/2dp)− d1 − dp

if np is even and

k − 2

k
Bk,χ = ξodd(pk−(np+1)/2d1 + p(np−1)/2dp) + d1 + dp

if np is odd. Here d1 and dp can be 0 or 1. In the case np < n+2, the solutions of these equations
have been determined in [Sch06].

Theorem 6.4. Let L be an even lattice of prime level p and genus II n,2(pεpnp) with n > 2
carrying a symmetric reflective modular form F . Suppose F0 has constant coefficient n−2. Then
L and F are given in the following table.

p L F

2 II 18,2(2+10
II ) η1−82−8

II 10,2(2+2
II ), II 10,2(2+10

II ) 16η1−1628 , η182−16

3 II 14,2(3−8) η1−63−6

II 8,2(3−3), II 8,2(3−7) 9η1−933 , η133−9

5 II 10,2(5+6) η1−45−4

II 6,2(5+3), II 6,2(5+5) 5η1−551 , η115−5

7 II 8,2(7−5) η1−37−3

11 II 6,2(11−4) η1−211−2

23 II 4,2(23−3) η1−123−1

The η-product in the last column is a modular form for Γ0(p) whose lift on 0 gives F .
Conversely, each of these functions is a reflective modular form on L with the above stated

properties.

Proof. We only have to consider the case np = n + 2. Then n = 10 or 18 and ξeven = +1 by
Propositions 6.3 and 6.1. The Eisenstein condition simplifies to

k − 2

k
Bk = dp.

Now the left-hand side is 1/63 for k = 6 and 2/33 for k = 10. Hence, there are no reflective forms
if np = n+ 2. 2

6.3 Bounds in the non-symmetric case
In this section, we derive bounds on the signature for reflective modular forms which are not
invariant under O(D).

First, we recall the Riemann–Roch theorem for Γ1(p).
Let p be prime. For p > 3, the group Γ1(p) has p−1 classes of cusps which can be represented

by 1/c with c = 1, . . . , (p−1)/2 of width p and a/p with a = 1, . . . , (p−1)/2 of width 1. The cusps
of Γ1(2) can be represented by 1/2 of width 1 and 1/1 of width 2. Let f 6= 0 be a meromorphic
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modular form on Γ1(p) of weight m and finite-order character. For p > 5, there are no torsion
points and the Riemann–Roch theorem states

(p−1)/2∑
c=1

pν1/c(f) +

(p−1)/2∑
a=1

νa/p(f) +
∑

τ∈Γ1(p)\H

ντ (f) =
m

24
(p2 − 1).

For p = 3, we have

3ν1/1(f) + ν1/3(f) +
1

3
νe3(f) +

∑
τ∈Γ1(3)\H

τ 6=e3 mod Γ1(3)

ντ (f) =
m

3

with e3 = (3 + i
√

3)/6 and

2ν1/1(f) + ν1/2(f) +
1

2
νe2(f) +

∑
τ∈Γ1(2)\H

τ 6=e2 mod Γ1(2)

ντ (f) =
m

4

with e2 = (1 + i)/2 if p = 2.

Theorem 6.5. Let L be an even lattice of prime level p and signature (n, 2) with n > 2 carrying
a non-symmetric reflective modular form F . Then p 6 11 and n 6 2 + 24/p.

Proof. Since F is non-symmetric there are γ1, γ2 ∈ D\{0} of the same norm such that

f = Fγ1 − Fγ2 6= 0.

The function f is a modular form on Γ1(p) of weight m = 1− n/2 and finite-order character.
Let γ ∈ D and M =

(
a b
c d

)
∈ Γ. Then

Fγ |m,M =

(
a

|D|

)
e(−abq(γ))Faγ

if c = 0 mod p and

Fγ |m,M =
e(−sign(D)/8)√

|D|

(−c
|D|

)∑
µ∈D

e(−c−1dq(µ))e(−b(µ, γ))e(−abq(γ))Faγ+µ

if c 6= 0 mod p. The coefficient at F0 in this sum is

e(−c−1dq(µ))e(−b(µ, γ))e(−abq(γ)) = e(−c−1aq(γ)),

i.e. only depends on the norm of γ.
This implies that for all M ∈ Γ, the function f |m,M is a linear combination of functions Fγ

with γ 6= 0. Hence,
νs(f) > −1/p

for all cusps s of Γ1(p). It follows that

−p− 1

2

(
1 +

1

p

)
6
m

24
(p2 − 1).

This proves the theorem. 2

Note that the bounds do not hold in the symmetric case.
Using Theorem 6.5, we can determine the non-symmetric forms on lattices of prime level by

analysing the obstructions in a finite number of cases. For p = 3, which is the most complicated
case, we describe this explicitly in the next section. The other cases are analogous.
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6.4 Level 3
In this section we determine the reflective forms on lattices of level 3 and signature (n, 2) where
n = 4, 6, 8 or 10.

Let L be a lattice of genus II 10,2(3ε3n3) and F a reflective form on L. Suppose F0 has constant
coefficient [F0](0) = 8. Then c1 = 1 (see Proposition 6.1) and the Eisenstein condition gives the
following value for c3 (see Proposition 6.2).

II 10,2(3−2) II 10,2(3+4) II 10,2(3−6) II 10,2(3+8)

c1 = 1 −2074/9 −616/3 −130 96

II 10,2(3−10) II 10,2(3+12)

c1 = 1 774 2808

Since c3 should be a non-negative integer, this already excludes the first three cases.
The space S6(Γ(3)) has dimension 3 and is spanned by the functions η18θ

2
A2

, η18θA2θν+A2

and η1636 . The liftings of these functions generate the obstruction space SρD,6.
Pairing F with the lift Fη1636 ,0 of the η-product η1636(τ) = η(τ)6η(3τ)6 we obtain

1− 1

3n3/2
− c3

3(n3+4)/2
= 0.

Proposition 6.6. There are no reflective modular forms with constant coefficient 8 on lattices
of genus II 10,2(3ε3n3).

Next, we consider the case n = 8. Let L be a lattice of genus II 8,2(3ε3n3) and F a reflective
modular form on L with [F0](0) = 6. Then we obtain the following for c3.

II 8,2(3+1) II 8,2(3−3) II 8,2(3+5) II 8,2(3−7) II 8,2(3+9)

c1 = 0 2 6 18 54 162

c1 = 1 −78 −72 −54 0 162

The discriminant form of type 3+1 contains no elements γ of norm q(γ) = 1/3 mod 1. Hence,
this case can be excluded.

The space S5(Γ(3)) has dimension 2 and is spanned by the functions η18θA2 and η18θν+A2 .
The liftings of these functions generate the obstruction space SρD,5.

The lattice A2 has genus II 2,0(3−1) and is isomorphic to its rescaled dual A′2(3). The theta
functions of A2 can be written as

θA2 =
η13 + 9η93

η31
,

θν+A2 = 1
2(θA′2 − θA2).

They transform under S =
(

0 −1
1 0

)
as

θA2 |1,S =
e(−1/4)√

3
(θA2 + 2θν+A2) =

e(−1/4)√
3

θA′2 ,

θν+A2 |1,S =
e(−1/4)√

3
(θA2 − θν+A2).
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Let γ ∈ D be of norm q(γ) = 1/3 mod 1. Then the lift of η18θA2 with respect to the dual
Weil representation ρD on γ is given by

Fη18θA2
,γ = F1/3 + F1/1

with
F1/3 = η18θA2(eγ + e−γ)

and

F1/1 = − 1

3(n3−1)/2

∑
µ∈D

e((γ, µ))gjµ(eµ + e−µ),

where
η18(θA2 + 2θν+A2) = g0 + g1 + g2

and gj |5,T = e(j/3)gj . Note that g0 = 0. We obtain an analogous result for the lift of η18θν+A2

with respect to ρD on an element γ ∈ D of norm q(γ) = 2/3 mod 1.
Let

M = {γ ∈ D | q(γ) = 1/3 mod 1 and Fγ singular}.
We assume now that M is non-empty. Then |M | = c3 = 2 · 3(n3−1)/2 and M = −M because
Fγ = F−γ . The crucial result to determine the structure of M is the following proposition.

Proposition 6.7. Let γ ∈ D be of norm q(γ) 6= 0 mod 1. Then

|M ∩ γ⊥| =
{

2|M |/3 if γ ∈M,

|M |/3 otherwise.

Proof. Let γ ∈ D be of norm q(γ) = 1/3 mod 1. Suppose γ ∈M . Then pairing F with Fη18θA2
,γ

gives

2− 1

3(n3−1)/2

∑
µ∈M

(e((γ, µ)) + e(−(γ, µ))) = 0

so that ∑
µ∈M

(e((γ, µ)) + e(−(γ, µ))) = |M |.

This implies
|M ∩ γ⊥| = 2|M |/3.

If γ /∈M the same argument shows |M ∩ γ⊥| = |M |/3. In case q(γ) = 2/3 mod 1 the statement
follows from pairing F with Fη18θν+A2

,γ . 2

The proposition implies that M⊥ is an isotropic subgroup of D. Let γ ∈ M and µ ∈ M⊥.
Then M ∩ γ⊥ = M ∩ (γ + µ)⊥. Hence, the group M⊥ acts on M by translations.

Proposition 6.8. Let γ, µ ∈M such that (γ, µ) = 2/3 mod 1. Then γ + µ ∈M .

Proof. The sets M ∩ γ⊥ and M ∩ µ⊥ are both subsets of M\{±γ}. Hence,

|(M ∩ γ⊥) ∩ (M ∩ µ⊥)| > 4|M |/3− (|M | − 2) = |M |/3 + 2.

Since (M ∩ γ⊥) ∩ (M ∩ µ⊥) ⊂ (M ∩ (γ + µ)⊥) this implies |M ∩ (γ + µ)⊥| = 2|M |/3 and
γ + µ ∈M . 2
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Proposition 6.9. Let γ, µ ∈M such that (γ, µ) = 0 mod 1. Then

(M ∩ γ⊥) ∩ (M ∩ µ⊥) = M ∩ (γ + µ)⊥.

Proof. We have |M ∩ γ⊥| = |M ∩ µ⊥| = 2|M |/3 so that

|(M ∩ γ⊥) ∩ (M ∩ µ⊥)| > 4|M |/3− |M | = |M |/3.

On the other hand, (M ∩ γ⊥) ∩ (M ∩ µ⊥) ⊂ (M ∩ (γ + µ)⊥) and |M ∩ (γ + µ)⊥| = |M |/3
because q(γ + µ) = 2/3 mod 1. This implies the statement. 2

Proposition 6.10. Let γ, µ, ν ∈M such that

(γ, µ) = (µ, ν) = 2/3 mod 1.

Then
(γ, ν) = 2/3 mod 1.

Proof. First suppose (γ, ν) = 0 mod 1. Define σ = γ − ν. Then (σ, µ) = 0. However, this
contradicts (M ∩ γ⊥)∩ (M ∩ ν⊥) = M ∩σ⊥. Next we assume (γ, ν) = 1/3 mod 1. Here we define
σ = γ + µ+ ν. Note that γ + µ is in M and (γ + µ, ν) = 0 mod 1. Then (σ, µ) = 0 mod 1. This
contradicts (M ∩ (γ + µ)⊥) ∩ (M ∩ ν⊥) = M ∩ σ⊥. Hence, (γ, ν) = 2/3 mod 1. 2

A consequence of this result is the following proposition.

Proposition 6.11. Let γ, µ ∈M such that (γ, µ) 6= 0 mod 1. Then

M ∩ γ⊥ = M ∩ µ⊥.

Proposition 6.12. Let γ, µ ∈M such that (γ, µ) = 2/3 mod 1. Then γ − µ ∈M⊥.

Proof. Define σ = γ−µ. Then M ∩γ⊥ = M ∩µ⊥ implies (M ∩γ⊥) ⊂ (M ∩σ⊥). Let ν ∈M such
that (γ, ν) = 2/3 mod 1. Then (γ, µ) = (µ, ν) = (γ, ν) = 2/3 mod 1 by the above transitivity
result. Hence, (σ, ν) = 0 mod 1. Similarly, if ν ∈ M such that (γ, ν) = 1/3 mod 1, then
(σ, ν) = 0 mod 1. Hence, all elements in M are orthogonal to σ. 2

Proposition 6.13. The group M⊥ is an isotropic subgroup of D order 3(n3−3)/2.

Proof. Let γ ∈M . Then the elements µ ∈M with (γ, µ) 6= 0 mod 1 are in ±γ +M⊥. Hence, M
decomposes as

M = (γ +M⊥) ∪ (−γ +M⊥) ∪ (M ∩ γ⊥)

so that
|M | = 2|M⊥|+ 2|M |/3.

This implies the statement. 2

Proposition 6.14. The set M is of the form

M =
3⋃
i=1

(γi +M⊥) ∪
3⋃
i=1

(−γi +M⊥)

with γi ∈M and (γi, γj) = 0 mod 1 for i 6= j.
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Let H be an isotropic subgroup of D of order |H| = 3(n3−3)/2. Then the lift of 9η1−933 , with
respect to ρD on H, is given by

F9η1−933 ,H
= F1/3 + F1/1

with
F1/3 =

∑
γ∈H

9η1−933e
γ

and
F1/1 =

∑
γ∈H⊥

gjγe
γ

where η133−9(τ/3) = g0(τ) + g1(τ) + g2(τ) and gj |−3,T = e(j/3)gj . Note that

g0 = −3η1−933 ,

g1 = 0.

The function F9η1−933 ,H
has 0-component F0 = 6η1−933 and is reflective. The singular components

are the Fγ with γ ∈ H⊥ and q(γ) = 1/3 mod 1. The discriminant form H⊥/H is of type 3−3.
It is generated by elements {γ1, γ2, γ3} with q(γi) = 1/3 mod 1 and (γi, γj) = 0 mod 1 for i 6= j.
We obtain the following result (see Theorem 2.1 and Proposition 2.2).

Proposition 6.15. Let L be a lattice of genus II 8,2(3ε3n3) carrying a reflective modular form.
Suppose F0 is holomorphic at∞ and has constant coefficient 6. Then n3 > 3 and F = F9η1−933 ,H

for some isotropic subgroup H of D of order |H| = 3(n3−3)/2. In this case, the overlattice LH
of L corresponding to H has genus II 8,2(3−3) and the function F can also be induced from the
symmetric form F9η1−933 ,0

on LH .

We can decompose L = K ⊕ II 1,1(3), where K has genus II 7,1(3−ε3(n3−2)) and assume
that H is a maximal isotropic subgroup of the discriminant form of K. Then the embedding
K ⊂ KH gives an embedding L ⊂ LH and identifies the corresponding domains HL and HLH .
Proposition 3.4 implies the following proposition.

Proposition 6.16. The theta lifts of F and F9η1−933 ,0
coincide as functions under this

identification.

We calculate the product expansions of the automorphic product Ψ corresponding to
F9η1−933 ,0

on L of genus II 8,2(3−3).
First, we decompose L = K ⊕ II 1,1(3). Then K = E6 ⊕ II 1,1. We choose a primitive norm 0

vector z in II 1,1(3).

Proposition 6.17. The expansion of Ψ at the cusp corresponding to z is given by∏
α∈K+

(1− e((α,Z)))[9η1−933 ](−α2/2)
∏

α∈(3K′)+

(1− e((α,Z)))[−3η1−933 ](−α2/6)

= 1 +
∑

c(λ)e((λ, Z))

where c(λ) is the coefficient at qn in η193−3 if λ is n times a primitive norm 0 vector in K+ and
0 otherwise.
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Proof. The product expansion of Ψ at the cusp corresponding to z is∏
α∈K′+

(1− e((α,Z)))[Fα](−α2/2)(1− e(1/3)e((α,Z)))[Fα+z/3](−α2/2)

× (1− e(2/3)e((α,Z)))[Fα+2z/3](−α2/2).

By the above formulas for the components of F9η1−933 ,0
, this product is equal to∏

α∈K+

(1− e((α,Z)))[9η1−933 ](−α2/2)
∏

α∈(3K′)+

(1− e((α,Z)))[−3η1−933 ](−α2/6).

Since Ψ has singular weight, the Fourier expansion of Ψz is supported only on norm 0 vectors of
K ′. Hence, Ψz has the stated sum expansion. 2

This is the twisted denominator identity of the fake monster superalgebra [Sch00]
corresponding to an element of class 3A in O(E8) (see [Sch01, Proposition 6.1]).

Now, we decompose L = K ⊕ II 1,1 with K = E6 ⊕ II 1,1(3) and choose a primitive norm 0
vector z in II 1,1. Then we have the following result.

Proposition 6.18. The expansion of Ψ at the cusp corresponding to z is given by

e((ρ, Z))
∏

α∈K′+
(1− e((α,Z)))[η133−9 ](−3α2/2)

∏
α∈K+

(1− e((α,Z)))[9η1−933 ](−α2/2)

=
∑
w∈W

det(w)η1−339((wρ,Z)),

where W is the reflection group of K ′ generated by the roots of norm α2 = 2/3.

This is the twisted denominator identity of the fake monster algebra corresponding to an
element of class 3C in Co0 (see [Sch04, Proposition 10.7]).

Again, let L be a lattice of genus II 8,2(3ε3n3) carrying a reflective modular form F .
The lift of η133−9(τ) = η(τ)3η(3τ)−9 with respect to ρD on 0 is given by

Fη133−9 ,0 = F1/3 + F1/1

with

F1/3 = η133−9e0

and

F1/1 = 3(11−n3)/2
∑
γ∈D

gjγe
γ ,

where η1−933(τ/3) = g0(τ) + g1(τ) + g2(τ) and gj |−3,T = e(j/3)gj . The modular form Fη133−9 ,0 is
reflective and has 0-component

F0(τ) = q−1 + (3(11−n3)/2 − 3) + · · · .

Proposition 6.19. Let L be a lattice of genus II 8,2(3ε3n3) and let F be a reflective modular
form on L with c1 = 1 and [F0](0) = 6. Then, n3 = 7 and F = Fη133−9 ,0 or n3 = 9 and F =
Fη133−9 ,0 + F9η1−933 ,H

for some isotropic subgroup H of order 27.
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Suppose L has genus II 8,2(3−7). Then the level 1 expansion of the theta lift of Fη133−9 ,0

on L is the twisted denominator identity of the fake monster superalgebra corresponding to an
element in O(E8) of class 3A and the level 3 expansion gives the twisted denominator identity
of the fake monster algebra corresponding to an element in Co0 of class 3C.

The case n3 = 9 has already been described above because we have the following result.

Proposition 6.20. Let L be of genus II 8,2(3+9). Then the theta lift of Fη133−9 ,0 on L is constant.

Proof. We decompose L = K ⊕ II 1,1(3), where K has genus II 7,1(3−7) and choose a primitive
norm 0 vector z in II 1,1(3). Then the product expansion of the theta lift Ψ of Fη133−9 ,0 at the
cusp corresponding to z is given by

e((ρ, Z))
∏
α∈K+

(1− e((α,Z)))[η133−9 ](−α2/2)
∏

α∈(3K′)+

(1− e((α,Z)))[3η1−933 ](−α2/6).

The Fourier coefficients [η133−9 ](n) vanish for n = 1 mod 3 and K = E′6(3)⊕ II 1,1(3) contains no
elements α of norm −α2/2 = 2 mod 3. This implies that the first product extends only over the
elements α ∈ K satisfying α2/2 = 0 mod 3, i.e., α ∈ 3K ′. Now, [η133−9 ](3n) = −[3η1−933 ](n) so
that the product is constant. This finishes the proof. 2

Now we consider the case n = 6. Let L be a lattice of genus II 6,2(3ε3n3) and F a reflective
form on L with [F0](0) = 4. We find the following value for c3.

II 6,2(3+2) II 6,2(3−4) II 6,2(3+6)

c1 = 0 4/3 4 12

c1 = 1 −80/3 −26 −24

Hence, we can assume that F0 is holomorphic at ∞ and n3 = 4 or 6.
The space S4(Γ(3)) has dimension 1 and is spanned by the function η18 . The liftings of this

function generate the obstruction space SρD,4.
Let γ ∈ D be of norm q(γ) = 1/3 mod 1. Then the lift of η18(τ) = η(τ)8 with respect to the

dual Weil representation ρD on γ is given by

Fη18 ,γ = F1/3 + F1/1

with
F1/3 = η18(eγ + e−γ)

and

F1/1 = − 1

3(n3−2)/2

∑
µ∈D

q(µ)=1/3 mod 1

e((µ, γ))η18(eµ + e−µ).

As above, we define

M = {γ ∈ D | q(γ) = 1/3 mod 1 and Fγ singular}.

Then |M | = 4 · 3(n3−4)/2 and M = −M . Pairing F with Fη18 ,γ we obtain the following result.

Proposition 6.21. Let γ ∈ D be of norm q(γ) = 1/3 mod 1. Then

|M ∩ γ⊥| =
{

5|M |/6 if γ ∈M,

|M |/3 otherwise.
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This excludes the case n3 = 4. We assume now that n3 = 6. Then the proposition shows that
M must be of the form

M = {±γ1, . . . ,±γ6}
with (γi, γj) = 0 mod 1 for i 6= j. In particular, M+ = {γ1, . . . , γ6} is a basis of D. Let γ ∈ D be
of norm q(γ) = 1/3 mod 1 with γ /∈M . Then γ is a linear combination of four of the γi so that
|M ∩ γ⊥| = 4. Hence, the principal part of F satisfies all obstructions coming from SρD,4. This
implies that a reflective modular form with constant coefficient 4 on II 6,2(3+6) exists.

We give an explicit construction. Let γ ∈ D be of norm q(γ) = 1/3 mod 1. Then the lift of
θ2
A2
/η18 on γ with respect to ρD is given by

Fθ2A2
/η18 ,γ

= F1/3 + F1/1

with

F1/3 =
θ2
A2

η18
(eγ + e−γ)

and

F1/1 =
1

33

∑
µ∈D

e(−(γ, µ))gjµ(eµ + e−µ)

where θ2
A′2
/η18 = g0 + g1 + g2 and gj |−2,T = e(j/3)gj . Note that g2 = θ2

A2
/η18 .

The function η(1/3)−3123−3(τ) = η1−3329−3(τ/3) is a modular form for Γ(3) of weight −2. If
we decompose η(1/3)−3123−3 = h0 + h1 + h2 with hj |−2,T = e(j/3)hj , then g2 = h2, g1 = 4h1 and
g0 = 4h0. It follows

Fθ2A2
/η18 ,γ

= 1
3Fη(1/3)−3123−3 ,γ .

Now let M+ = {γ1, . . . , γ6} ⊂ D such that q(γi) = 1/3 mod 1, (γi, γj) = 0 mod 1 for i 6= j
and M = M+ ∪ (−M+). Define

F3θ2A2
/4η18 ,M

+ =
3

4

6∑
i=1

Fθ2A2
/η18 ,γi

.

The components of F3θ2A2
/4η18 ,M

+ can be described as follows. Write µ ∈ D as µ =
∑6

i=1 ciγi and

let wt(µ) denote the number of non-zero ci. Then

Fµ(τ) = g2(τ) = q−1/3 + 20q2/3 + 176q5/3 + 1020q8/3 + 4794q11/3 + · · ·

if µ ∈M and

Fµ = 1
12(4− wt(µ))gjµ

with jµ/3 = −q(µ) mod 1 otherwise. In particular,

F0(τ) = 1
3g0(τ) = 4 + 60q + 432q2 + 2328q3 + 10320q4 + 40068q5 + · · ·

and Fµ = 0 if q(µ) = 1/3 mod 1 and µ /∈ M . Hence, F is reflective. Conversely, we have the
following proposition.

Proposition 6.22. Let L be a lattice of genus II 6,2(3ε3n3) and F a reflective form on L with
[F0](0) = 4. Then n3 = 6 and F = F3θ2A2

/4η18 ,M
+ for some M+ ⊂ D as above.
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Let L be a lattice of genus II 6,2(3+6). We can decompose L as L = K ⊕ II 1,1(3) with
K = A2 ⊕ A2 ⊕ II 1,1(3). Then K has genus II 5,1(3−4). We choose an orthogonal basis {γ1, γ2,
γ3, µ4} of the discriminant form of K satisfying q(γ1) = q(γ2) = q(γ3) = −q(µ4) = 1/3 mod 1
and an orthogonal basis {µ5, γ6} of the discriminant form of II 1,1(3) satisfying −q(µ5) = q(γ6) =
1/3 mod 1. We define γ4 = µ4 +µ5, γ5 = µ4−µ5 and M+ = {γ1, . . . , γ6}. Let Ψ be the theta lift
of F = F3θ2A2

/4η18 ,M
+ on L. We choose a primitive norm 0 vector z in II 1,1(3). Then z has level

3 and wt(z/3) = 3.

Proposition 6.23. The expansion of Ψ at the cusp corresponding to z is given by

e((ρ, Z))
∏

α∈K′+
wt(α)=0

(1− e((α,Z)))[g0/4](−α2/2)(1− e((3α,Z)))[g0/12](−α2/2)

×
∏

α∈K′+
wt(α)=3

wt(α±z/3)=3

(1− e((3α,Z)))[g0/12](−α2/2)

×
∏

α∈K′+
wt(α)=3

wt(α±z/3)=6

(1− e((α,Z)))[g0/4](−α2/2)(1− e((3α,Z)))[−g0/6](−α2/2)

×
∏

α∈K′+
wt(α)=2

wt(α±z/3)=2

(1− e((3α,Z)))[g1/6](−α2/2)

×
∏

α∈K′+
wt(α)=2

wt(α±z/3)=5

(1− e((α,Z)))[g1/4](−α2/2)(1− e((3α,Z)))[−g1/12](−α2/2)

×
∏

α∈K′+
wt(α)=5

(1− e((α,Z)))[−g1/12](−α2/2)

×
∏

α∈K′+
wt(α)=1

(1− e((α,Z)))[g2](−α2/2)

=
∑
w∈W

det(w)η133−293((wρ,Z)),

where ρ is a primitive norm 0 vector in K ′ with wt(ρ) = 3 and wt(ρ ± z/3) = 6 and W is the
reflection group of K ′ generated by the roots α ∈ K ′ of norm α2 = 2/3 and weight wt(α) = 1.

This identity is a new infinite product identity. One can show that it can also be obtained
by twisting the denominator identity of the fake monster algebra by an element of class 9C in
Co0.

Finally, we consider the case n = 4. Let L be a lattice of genus II 4,2(3ε3n3) and F a reflective
form on L with [F0](0) = 2. Then, the Eisenstein condition gives the following value for c3.

II 4,2(3−1) II 4,2(3+3) II 4,2(3−5)

c1 = 0 2/9 2/3 2

c1 = 1 −88/9 −34/3 −16
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Since S3(Γ(3)) is trivial, the obstruction space SρD,3 vanishes. Hence, L carries a reflective
form with constant coefficient 2 if and only if it has genus II 4,2(3−5).

Let D be a discriminant form of type 3−5 and γ ∈ D of norm q(γ) = 1/3 mod 1. Then, the
lift of η113−3 on γ with respect to the Weil representation ρD is given by

Fη113−3 ,γ = F1/3 + F1/1

with
F1/3 = η113−3(eγ + e−γ)

and
F1/1 =

∑
µ∈D

e(−(γ, µ))gjµ(eµ + e−µ),

where η1−331(τ/3) = g0(τ)+g1(τ)+g2(τ) and gj |−1,T = e(j/3)gj . Note that Fη113−3 ,γ is reflective
and F0 has constant coefficient 2.

Proposition 6.24. Let L be a lattice of genus II 4,2(3ε3n3) and F a reflective form on L with
[F0](0) = 2. Then L has genus II 4,2(3−5) and F = Fη113−3 ,γ for some element γ ∈ D of norm
q(γ) = 1/3 mod 1.

Let L be a lattice of genus II 4,2(3−5). We choose an element γ ∈D of norm q(γ) = 1/3 mod 1.
Let Ψ be the automorphic product corresponding to Fη113−3 ,γ on L.

We decompose L = K⊕II 1,1(3) such that γ is in the discriminant form of II 1,1(3) and choose
a primitive norm 0 vector z in II 1,1(3). Then (γ, z/3) 6= 0 mod 1. Note that K = A2 ⊕ II 1,1(3).

Proposition 6.25. The expansion of Ψ at the cusp corresponding to z is given by∏
α∈K′+

(1− e((α,Z)))[3η1−331 ](−3α2/2)(1− e((3α,Z)))[−η1−331 ](−3α2/2) = 1 +
∑

c(λ)e((λ, Z))

where c(λ) is the coefficient at qn in η133−1 if λ is n times a primitive norm 0 vector in K ′+ and
0 otherwise.

This is the twisted denominator identity of the fake monster superalgebra corresponding to
an element of class 9A.

We can also decompose L = K⊕ II 1,1(3) such that γ is in the discriminant form of K. Again
we choose a primitive norm 0 vector z in II 1,1(3). Then we have the following result.

Proposition 6.26. The expansion of Ψ at the cusp corresponding to z is given by

e((ρ, Z))
∏

α∈K′+
(1− e((3α,Z)))[(e((γ,α))+e(−(γ,α)))η1−331 ](−3α2/2)

×
∏

α∈K′+
α=±γ mod K

(1− e((α,Z)))[η113−3 ](−α2/2)

=
∑
w∈W

det(w)η3−193((wρ,Z)),

where W is the reflection group of K ′ generated by the vectors α ∈K ′ of norm α2 = 2/3 satisfying
α = ±γ mod K.

This is the twisted denominator identity of the fake monster algebra corresponding to an
element in Co0 of class 9B.

The automorphic product Ψ was first described in [DHS15].
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6.5 Classification
In this section, we formulate the classification theorems for reflective forms.

First, we list the reflective modular forms on lattices of prime level.

Theorem 6.27. Let L be a lattice of prime level and signature (n, 2) with n > 2 carrying a
reflective modular form F . Suppose F0 has constant coefficient n − 2. Then L and F are given
in the following table.

p L F Remarks

2 II 18,2(2+10
II ) Fη1−82−8 ,0 symmetric

II 10,2(2+2
II ) F16η1−1628 ,0

symmetric

II 10,2(2+n2
II ), F16η1−1628 ,H

|H| = 2(n2−2)/2

n2 = 4, 6, . . . , 12

II 10,2(2+10
II ) Fη182−16 ,0 symmetric

II 10,2(2+12
II ) Fη182−16 ,0 + F16η1−1628 ,H

|H| = 25

II 6,2(2−6
II ) Fη142−8 ,γ

3 II 14,2(3−8) Fη1−63−6 ,0 symmetric

II 8,2(3−3) F9η1−933 ,0
symmetric

II 8,2(3ε3n3) F9η1−933 ,H
|H| = 3(n3−3)/2

n3 = 5, 7, 9

II 8,2(3−7) Fη133−9 ,0 symmetric

II 8,2(3+9) Fη133−9 ,0 + F9η1−933 ,H
|H| = 33

II 6,2(3+6) F(1/4)η(1/3)−3123−3 ,M+ M+ = {γ1, . . . , γ6},
(γi, γj) = 0 mod 1

II 4,2(3−5) Fη113−3 ,γ

5 II 10,2(5+6) Fη1−45−4 ,0 symmetric

II 6,2(5+3) F5η1−551 ,0
symmetric

II 6,2(5+n5) F5η1−551 ,H
|H| = 5(n5−3)/2

n5 = 5, 7

II 6,2(5+5) Fη115−5 ,0 symmetric

II 6,2(5+7) Fη115−5 ,0 + F5η1−551 ,H
|H| = 52

7 II 8,2(7−5) Fη1−37−3 ,0 symmetric

11 II 6,2(11−4) Fη1−211−2 ,0 symmetric

23 II 4,2(23−3) Fη1−123−1 ,0 symmetric

Conversely each of the functions F is a reflective modular form on L with constant coefficient
[F0](0) = n− 2.

We have seen that many of these forms give the same function under the singular theta
correspondence.

Theorem 6.28. Let L be a lattice of prime level and signature (n, 2) with n > 2 and let Ψ be a
reflective automorphic product of singular weight on L. Then, as a function on the corresponding
Hermitian symmetric domain, the automorphic product Ψ is the theta lift of one of the following
modular forms.
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p L F Co0

2 II 18,2(2+10
II ) Fη1−82−8 ,0 1828

II 10,2(2+2
II ) F16η1−1628 ,0

1−8216

II 10,2(2+10
II ) Fη182−16 ,0 1−8216

II 6,2(2−6
II ) Fη142−8 ,γ 2−448

3 II 14,2(3−8) Fη1−63−6 ,0 1636

II 8,2(3−3) F9η1−933 ,0
1−339

II 8,2(3−7) Fη133−9 ,0 1−339

II 6,2(3+6) F(1/4)η(1/3)−3123−3 ,M+ 133−293

II 4,2(3−5) Fη113−3 ,γ 3−193

5 II 10,2(5+6) Fη1−45−4 ,0 1454

II 6,2(5+3) F5η1−551 ,0
1−155

II 6,2(5+5) Fη115−5 ,0 1−155

7 II 8,2(7−5) Fη1−37−3 ,0 1373

11 II 6,2(11−4) Fη1−211−2 ,0 12112

23 II 4,2(23−3) Fη1−123−1 ,0 11231

Hence, with three exceptions, all these functions come from symmetric modular forms. Moreover,
at a suitable cusp Ψ is the twisted denominator identity of the fake monster algebra by the
indicated element in Conway’s group.

Conversely all the given modular forms lift to reflective automorphic products of singular
weight on the corresponding lattices.
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