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ABSTRACT

We prove some new structure results for automorphic products of singular weight. First,
we give a simple characterisation of the Borcherds function ®15. Second, we show that
holomorphic automorphic products of singular weight on lattices of prime level exist
only in small signatures and we derive an explicit bound. Finally, we give a complete
classification of reflective automorphic products of singular weight on lattices of prime

level.
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1. Introduction

The singular theta correspondence (see [Bor98] and also [Bru02]) is a map from modular forms
for the Weil representation of SLg(Z) to automorphic forms on orthogonal groups. More precisely,
let L be an even lattice of signature (n,2), n > 2 and even with discriminant form D and F
a modular form for the Weil representation of SLy(Z) on C[D] of weight (2 — n)/2, which is
holomorphic on the upper halfplane and has integral principal part. Then Borcherds associates
an automorphic form W(F) of weight ¢(0)/2 for O(L) to F' where ¢y(0) denotes the constant
coefficient in the Fourier expansion of Fy. The function W(F') has nice product expansions at
the rational 0-dimensional cusps and is called the automorphic product associated to L and
F'. The divisor of ¥(F) is a linear combination of rational quadratic divisors whose orders are
determined by the principal part of F. Bruinier [Brul4] has shown that if L splits two hyperbolic
planes, then every automorphic form for O(L) whose divisor is a linear combination of rational
quadratic divisors is an automorphic product.

The smallest possible weight of a non-constant holomorphic automorphic form on O,, 2(R) is
given by (n—2)/2. Forms of this so-called singular weight are particularly interesting because their
Fourier coefficients are supported only on isotropic vectors. Holomorphic automorphic products
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of singular weight seem to be very rare. The few known examples are all related to infinite-
dimensional Lie superalgebras, i.e. given by the denominator functions of generalised Kac—-Moody
superalgebras. One of the main open problems in the theory of automorphic forms on orthogonal
groups is to classify holomorphic automorphic products of singular weight [Bor95]. In this paper,
we prove some new results in this direction.

The simplest holomorphic automorphic product of singular weight is the function ®q5. It is
the theta lift of the inverse of the Dedekind function A on the unimodular lattice II262. The
product expansion of ®19 at a cusp is given by

P13(2) =e((p,2)) [] (1—el(a,2)))/A/2),

an;m

where p is a primitive norm 0 vector in II95 corresponding to the Leech lattice. The function
®15 is holomorphic and has zeros of order 1 orthogonal to the roots of Ils62. Since ®12 has
weight 12, i.e. singular weight, its Fourier coefficients are supported only on norm 0 vectors. This
can be used to show that it has the sum expansion

e((p,2) T (1=ella, 2B = 3™ det(w)e((wp, 2)) [ (1 = e((nwp, 2)))*.
a€llf; weWw n=1

Here W is the reflection group of IIo5 1.

This identity is the denominator identity of an infinite-dimensional Lie algebra describing
the physical states of a bosonic string moving on the torus R?>!/ITo5; called the fake monster
algebra [Bor90].

The function ®15 also has some nice geometric applications. In [GHS07], the authors show
that the moduli space of polarised K3 surfaces of degree d is of general type for d > 61 using
quasi-pullbacks of ®1s.

The first main result of this paper is the following characterisation (see Theorem 4.5).

The function @19 is the only holomorphic automorphic product of singular weight on
a unimodular lattice.

Next, we consider lattices of prime level. We show that for a given discriminant form D of
prime level, the number of lattices with dual quotient isomorphic to D carrying a holomorphic
automorphic product of singular weight is finite and we give an explicit bound for the signature.
The precise statement is as follows (see Theorems 5.7 and 5.12).

Let ¢ > 1/log (we/6) = 2.83309.... Then there exists a constant d with the following
property: let L be an even lattice of signature (n,2), n > 2 and prime level splitting
a hyperbolic plane II, 1. Let D be the discriminant form of L. Suppose L carries a
holomorphic automorphic product of singular weight. Then

n < clog |D| + d.

The constant d does not depend on the level, but only on ¢. The proof is constructive. We can
take, for example, ¢ = 3.59750... and d = 40.52171.... Given a discriminant form D of prime
level, the theorem allows us to determine all holomorphic automorphic products of singular
weight on lattices with dual quotient isomorphic to D by working out the obstruction theory in
the possible signatures.

1856
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We sketch the proofs of the first two main results. To obtain a restriction on the signature in
the prime level case, we pair the vector valued modular form F' associated to the automorphic
product ¥ with an Eisenstein series for the dual Weil representation. We obtain a relation
between the signature and a sum over the principal part of F. We expand this sum in the
degrees of the divisors which are non-negative by the holomorphicity of W. Then we apply the
Riemann—Roch theorem to F' to derive the bound. In the unimodular case, a similar argument
gives the uniqueness.

The expansion of an automorphic form on Oy, 2(R) at a cusp is sometimes the denominator
function of an infinite-dimensional Lie superalgebra. In that case, the divisor of the automorphic
form is locally the sum of rational quadratic divisors o of order 1 where « is a root. An
automorphic form on Oy, 2(R) is called reflective if this condition holds globally (see also [Bor99,
GNO02]). So far, all known examples of holomorphic automorphic products of singular weight are
reflective.

In [Sch06], certain reflective automorphic products of singular weight on lattices of prime level
are classified. The assumptions are that the underlying lattice L does not have maximal p-rank
and that all roots of a fixed norm give zeros, i.e. the corresponding vector valued modular form is
invariant under the orthogonal group of the discriminant form of L. The second condition is quite
restrictive. Surprisingly we find only three additional cases when we remove these assumptions.
This is the third main result of this paper (see Theorem 6.28).

Let L be a lattice of prime level and signature (n,2) with n > 2 and ¥ a
reflective automorphic product of singular weight on L. Then, as a function on the
corresponding Hermitian symmetric domain, V is the theta lift of one of the following
modular forms.

L F OOQ

2 | II152(23°) Fy s, 50 1828
1110,2(2}?2) F16771—162870 178216
1I02(27'%) Fysy-16,0 178216
116,2(2;[6) Fn142—8,’7 2744°

3 | II142(37%) Fy 6y 6.0 1636
II8,2(3_3) Fg771793370 17339
Hg5(377) Fysy 00 17339
II6(3%9) F1 /0y, 531248, M+ 1337293
I45(37°) Fyysn 37193

5 | IT192(57°) Fy i 40 1454
I1672(5+3) F5771—551:0 17155
116,2(5+5) F771157570 1715°

7| Hga(777) Fy 5 50 137
11| Hgp(117%) Fy 4 20 12112
23 | I142(237%) Fy 1yt 0 11231

With three exceptions, all of these functions come from symmetric modular forms.
At a suitable cusp V is the twisted denominator function of the fake monster algebra
by the indicated element in Conway’s group.
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Conversely, all the given modular forms lift to reflective automorphic products of
singular weight on the respective lattices.

The cases not coming from symmetric modular forms are those corresponding to the elements
of order 4 and 9 in Conway’s group.

The sum expansion of the theta lift of Fy 4 M+ gives a new infinite product

M(1/3)=3123—3>
identity (see Proposition 6.23).

The above result can be used to classify generalised Kac—-Moody superalgebras whose
denominator functions are reflective automorphic products of singular weight on lattices of prime
level.

We describe the proof of the theorem. Reflective automorphic products of singular weight
associated to symmetric forms can be classified by the Eisenstein condition [Sch06]. It turns
out that in the non-symmetric case the Riemann—Roch theorem imposes strong restrictions (see
Theorem 6.5). In the remaining cases we work out the obstruction theory and determine the
possible reflective modular forms. Many of them lift to the same function leaving us with the
above list.

The paper is organised as follows. In § 2, we summarise some results on modular forms for
the Weil representation. Then we recall Borcherds’ singular theta correspondence and define
reflective forms. In §4, we prove that the only holomorphic automorphic product of singular
weight on a unimodular lattice is the theta lift of 1/A on 126 . Next, we show that holomorphic
automorphic products of singular weight on lattices of prime level exist only in small signatures.
Finally, we give a complete classification of reflective automorphic products of singular weight
on lattices of prime level.

2. Modular forms for the Weil representation

In this section, we recall some results on modular forms for the Weil representation from [Sch09,
Sch15].

Let D be a discriminant form with quadratic form ¢ : D — Q/Z and associated bilinear form
(, ) (see [Sch09, Nik79] and [CS99, ch. 15]). We assume that D has even signature. The level of
D is the smallest positive integer N such that Ng(v) = 0 mod 1 for all v € D. We define a scalar
product on the group ring C[D] which is linear in the first and antilinear in the second variable
by (&7, e?) = 677, Then there is a unitary action of the group I = SLy(Z) on C[D] satisfying

pp(T)e? = e(—q(7))e,

(sign(D)/8)

pp(S)e’ = 3 el 8)e?,

where S = ((1) _01) and T' = ((1) %) are the standard generators of I'. This representation is called the
Weil representation of I' on C[D]. It commutes with the orthogonal group O(D) of D. Suppose
the level of D divides N and let M = (¢%) € To(N). Then

po(0)e" = ( 5 Yel(a 1) oddity (D) 8)e~big(2)) e

A general formula for the action of pp is given in [Sch09, Theorem 4.7].

Let
F(r) =Y F(r)e

yeD
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be a holomorphic function on the complex upper halfplane H with values in C[D] and k an
integer. Then F' is a modular form for pp of weight k if

F(Mt) = (ct+ d)ka(M)F(T)

for all M = (‘g Z) € I' and F' is meromorphic at co. We say that F' is symmetric if it is invariant
under the action of O(D).

Classical examples of modular forms for the dual Weil representation pp are theta functions.
Let L be a positive-definite even lattice of even rank 2k with discriminant form D. For v € D

define
a2
O’Y(T): Z q /27
aey+L

where ¢°*/2 = e(ra?/2). Then

0=> 0,

yeD

is a modular form for the dual Weil representation pp of weight k& which is holomorphic at co.
Let f be a complex function on ‘H and k an integer. For M = (‘Cl 3) € I' we define the function

flear on H by flea(r) = (er +d)~* f(MrT).
We can easily construct modular forms for the Weil representation by symmetrising scalar-
valued modular forms on congruence subgroups (see [Sch15, Theorem 3.1]).

THEOREM 2.1. Let D be a discriminant form of even signature and level dividing N.
Let f be a scalar-valued modular form on T'g(N) of weight k and character xp and H an
isotropic subset of D that is invariant under (Z/NZ)*. Then

Fro = 9, O Ffleapp(M e

MeTo(N)\I" veH

is a modular form for pp of weight k.
Let v € D and f a scalar-valued modular form on I'y (N) of weight k and character x-. Then

Fronyfry = Z f\k,MPD(M_l)eV
MEeD; (N)\I'

is a modular form for pp of weight k.
Let f be a scalar-valued modular form on I'(N) of weight k and «y € D. Then

Frnypy = Z f‘k,MpD(M_l)eV
MET(N)\TI'

is a modular form for pp of weight k.

Every modular form for pp can be written as a linear combination of liftings from I'y (N) or
['(N).

Explicit formulas for these function are given in [Schl15, §3].

We also have the following proposition.

1859
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PROPOSITION 2.2. Let D be a discriminant form of even signature and H an isotropic subgroup
of D. Then Dy = H*/H is a discriminant form of the same signature as D.
Let Fp be a modular form for pp. For v € H*' define

Fpy~+a = Z Fpg.
Bevy+H

Then Fp,, is a modular form for pp,,.
Conversely, let Fp,, be a modular form for the Weil representation of Dy . Define

Fpy=Fpyq+H

ifv e H+ and Fp, = 0 otherwise. Then Fp is a modular form for pp.

We will need the Eisenstein series for the dual Weil representation. They can be constructed
as follows. Let D be a discriminant form of even signature and level dividing N. Let T}, = {T™ |

n € Z}. Then
1
By=5 >
MeTrL A\ (N)

is an Eisenstein series for I'1 (V) of weight k. Let v € D be isotropic. Then

Ey= Y Epupp(M 1)
MeT' (N)\I'

is an Eisenstein series for the dual Weil representation pp. It is easy to see that E, gives the
Eisenstein series defined in [Bru02]. For v = 0 we have

Eo= > Epxleupp(M 1),
MeTo(N)\T
where
Epy = > X (M) Eyk,m
MeD1(N)\Io(N)

is an Eisenstein series for I'g(N) of weight k& and character Y = x = xp. We will write E for the
Eisenstein series Fj.

The dimension of the space of holomorphic modular forms for the Weil representation can
be worked out using the Riemann-Roch theorem [Frel2] or the Selberg trace formula [ES95,
Bor00].

The residue theorem implies the following result.

PROPOSITION 2.3. Let D be a discriminant form of even signature and F' a modular form for
pp of weight 2 — k with k > 3. Let G be a modular form for pp of weight k. Then the constant

coefficient of (F,G) = > ep PG~ vanishes.

More generally we have (see [Bor99, Theorem 3.1] and [Bru02, Theorem 1.17]) the following
theorem.

1860
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THEOREM 2.4. Let P =}, Pye?, where

Py = Z cy(n)q"
n€Z—q(y)
n<0
is a finite Fourier polynomial with complex coefficients. Then P is the principal part of a modular
form of weight 2 — k, k > 3, for pp if and only if the linear map

¢p: SﬁD,k — C o
G > constant coefficient of (P,G)

vanishes on S5, k-

We will use Theorem 2.1 to work out the obstruction spaces S5, x in several cases in §6.

3. Automorphic products

We describe some properties of automorphic products [Bor98] and define reflective automorphic
products.
Let L be an even lattice of signature (n,2), n > 2 even, V=L ®z R and V(C) =V ®g C.
Then
K={ZecV(C)|(2Z,Z2)=0,(Z,7Z) <0}

is a complex manifold with two connected components that are exchanged by the map Z — Z.
We choose one of the components and denote it by H. There is a subgroup O(V)* of index 2
in the orthogonal group O(V'), which preserves the two connected components of K. This group
acts holomorphically on H.

Let T be a finite index subgroup of O(L)* and x : I' — C* a unitary character. Since the
abelianisation of I is finite, y has finite order. Let k£ be an integer. A meromorphic function
¥ : H — C is called an automorphic form of weight k& for I' with character y if

Y(MZ) = x(M)¥(Z),
U(tZ) =t"%v(2)

for all M € T" and t € C*.
The weight of a holomorphic automorphic form is bounded below (see [Bor95, Corollary
3.3)).

PROPOSITION 3.1. Let L be an even lattice of signature (n,2), n > 2 even and rational Witt
rank 2. Let ¥ be a non-constant holomorphic automorphic form of weight k for the discriminant
kernel of O(L)". Then, k > (n—2)/2. If ¥ has weight (n —2)/2, then the non-vanishing Fourier
coefficients correspond to isotropic vectors.

The weight (n — 2)/2 is called the singular weight.

Let L be an even lattice of signature (n,2), n > 2 even with discriminant form D. Let F
be a modular form for the Weil representation of I' on C[D] of weight 1 — n/2 with integral
principal part. We denote the Fourier coefficients of ' by cy(n) and assume that cy(0) is even.
Then Borcherds’ singular theta correspondence [Bor98, Theorem 13.3] associates an automorphic
form U to F.

1861
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THEOREM 3.2. There is a meromorphic function W : H — C with the following properties.
(1) The function ¥ is an automorphic form of weight co(0)/2 for the group O(L, F)™.

(2) The only zeros or poles of W lie on rational quadratic divisors v where v is a primitive
vector of positive norm in L'. The divisor v has order

Z cmv(—m272/2).

m>0

(3) For each primitive isotropic vector z in L and for each Weyl chamber W of K = (L N
21)/Zz the restriction W, has an infinite product expansion converging in a neighbourhood of
the cusp corresponding to z that is up to a constant

ez [T I @-—eltns)+ (@ 2))=e.
acK't l’yEL’/L
’Y(Lﬂzi):a

The function ¥ is called the automorphic product corresponding to F'.
Bruinier proved the following converse theorem [Brul4, Theorem 1.2].

THEOREM 3.3. Let L be an even lattice of signature (n,2), n > 2 and even and ¥ an automorphic
form for the discriminant kernel of O(L)% whose divisor is a linear combination of rational
quadratic divisors. If L = K & II1 1 @® I11,1(m) for some positive integer m, then up to a constant
factor the function ¥ is the theta lift of a modular form for the Weil representation of L.

Let L and F, be as above. Suppose L = K & II; 1(m) for some positive integer m. Let M be
a finite index sublattice of K. Then H = K/M C K'/M C M'/M is an isotropic subgroup of the
discriminant form of M with orthogonal complement H+ = K’/M. Note that H/H is naturally
isomorphic to K’/K. The function Fy, induces a modular form Fy on N = M & II;1(m). The
embedding N — L gives an identification of the domains Hy and Hp.

PROPOSITION 3.4. Under this identification, the automorphic products V(Fp) and V(Fy)
coincide as functions on Hy,.

Proof. We choose a primitive norm 0 vector z in I 1(m). Then, the product expansion of W(Fy)
at the cusp corresponding to z is given by

V(FN)(Z) = exe((pn. 2)) [[ I (1 - eli/m)e((a, 2)))evarizima®/2),

aEM'T jEL/MZ

The components Fiy o/, of Fiy vanish unless o € H* and Fyatjz/m = FL(a+H)+jz/m 0 that
case. It follows

U(FN)o(Z) = enel(on, 2)) ] TI (0= eli/mel(a, 2))mesommCe2),

a€K't jeZ/mZ

This implies
W(Fy):(Z) = N U(Fp).(2).

crL
It is not difficult to see that ¢y /cr, = 1. Hence, W(Fy) and W(F) coincide in a neighbourhood
of the cusp z and, therefore, coincide on Hj,. ]
1862
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Let L be an even lattice of signature (n,2), n > 2 even with discriminant form D. A root of
L is a primitive vector a of positive norm in L such that the reflection o, (z) = z — 2(z, a)a/a?
is in O(L). Let v € D be of norm ¢(y) = 1/k mod 1 for some positive integer k. We say that
~ corresponds to roots if the order of ~ divides k and if there is a vector « € LN kL' of norm
a? = 2k with a/k = v mod L then « is a root. Let F be a modular form for the Weil representation
of L. The function F is called reflective if F' has weight 1 — n/2 and the only singular terms of
F come from components F, with v corresponding to roots of L and are of the form g Yk, An
automorphic product ¥ on L is called reflective if it is the theta lift of a reflective modular form
F'. The divisor of ¥ has a nice geometric description in this case (see [Sch06, §9]).

PROPOSITION 3.5. Let ¥ be a reflective automorphic product on L. Then, ¥ is holomorphic and
its zeros are zeros of order 1 at the rational quadratic divisors o where « is a root of L with

o =2k and ¢, (—1/k) = 1.

4. Singular weight forms on unimodular lattices

In this section, we show that the function ®15 is the only holomorphic automorphic product of
singular weight on a unimodular lattice.

Let L be an even unimodular lattice of signature (n,2) with n > 2 and let U(F) be a
holomorphic automorphic product of singular weight on L.

Since L is unimodular, we have that n = 2 mod 8. By assumption the modular form F' has
weight 1 — n /2, is holomorphic on H and has a finite order pole at co. We write

MmEZ

with ¢(0) = n—2 and define my, = —voo(F'), i.6. Mmoo is the largest integer such that ¢(—moo) # 0.
The coefficients ¢(—m), m > 0 of the principal part of F' are integral.
Let

Ep(r)=1- Z]Z > or_1(m)g”

be the Eisenstein series of weight k = 1+ n/2 for I. Pairing F' with E}, (see Proposition 2.3) we
obtain the following result.

PROPOSITION 4.1. The principal part of F' satisfies

ok —2) - %]" S e(=m)ox_1(m) = 0.

k m>0

This result restricts the possible values of k.
ProproSITION 4.2. We have k = 2 mod 12.

Proof. The previous proposition implies (k — 2) By € Z. The von Staudt—Clausen theorem states

that
Be+ > ez
ik ”
Hence, (k — 2) Z(p—1)|k (1/p) € Z and k — 2 = 0 mod 3. The assertion now follows from the
condition on n. O
1863
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The modular form FA%®~2/12 has weight 0, is holomorphic on H and possibly has a pole

at co. Hence,
S k—2
Moo 2 12

The divisor of ¥(F) is a linear combination of rational quadratic divisors v where 7 is a primitive
vector of positive norm in L. The order of v is Y, ., ¢(—=m?+?/2). The holomorphicity of ¥(F)
does not imply that the coefficients of the principal part of F' are non-negative. However, the
function g on the positive integers defined by

g(d) = e(—dm?)

m>0

is non-negative because the lattice L splits a hyperbolic plane I7;; and therefore contains
primitive vectors of arbitrary norm.

THEOREM 4.3. The principal part of F satisfies the inequality

S clemyonr(m) > s
m>0

Proof. We have

Z c(—m)og_1(m) = Z c(—m) deil

m>0 m>0 dlm
= Z a1t Z c(—m)
d>0 dlm
= d"1Y " e(—td)
d>0 t>0
= de_l Z c(—m?td)
d>0 m>0

t squarefree

=> dt > gtd)

d>0 t squarefree
k—1
=2 9m) >, d
m>0 dlm

m/d squarefree

so that
Z c(—m)op_1(m) = g(me)mFTt = c(—mog)mFst > mF L
m>0
This proves the theorem. |

We obtain the inequalities

E—2\"! k—2
(12) <me! < B

Note that £ = 2 mod 4 implies that the Bernoulli numbers Bj. are positive.

1864
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PROPOSITION 4.4. The only solution of the inequality
E—2\""1 k-2
ro e < °B
< 12 > kok
with k > 2 and k = 2 mod 12 is k = 14. In this case, equality holds.

Proof. We can write the inequality as

(k—2)2/ 12 \*
1< B,.
12k \k—2) °F

For k — oo we have By ~ 2(k!/(2m)*) and k! ~ v/27k(k/e)* so that
(k—2)2/ 12 \* o k=2 (K Rr6\"
12k k—2 By ~2 12k k—2 me
1 2,3/2( 0 :
~ —\2me“k — .
6 me

Since me > 6, the last expression tends to 0 as £ — oo. Hence, the inequality has only finitely
many solutions. It is easy to verify that k£ = 14 is the only solution. O

Now, the classification result follows.

THEOREM 4.5. Let L be an even unimodular lattice of signature (n,2) with n > 2 and let ¥(F)
be a holomorphic automorphic product of singular weight on L. Then n =26 and F = 1/A. The
expansion of W at a cusp is given by

e((p.2)) I (- el(a,2))/AE2 = 3™ det(w)A((wp, 2)).

a€llf; wew
Proof. We have k = 14 and my, = 1. Hence,
F(iry=q¢'+24+- -
by Proposition 4.1. Since F' is holomorphic on ‘H we obtain F' = 1/A. O

We conclude this section with some examples.
Let
G(7) = ¢~ 4 744 + 196884q + 21493760¢> + - - -

be the modular invariant. Then the function
F(r) = (j(1)? — 22565 (1)? + 11059205 () — 40890369) /A(7)
=q¢ % — ¢~ + 1610809344 + 11828339932860q + - - -
= c(m)q"
meZ

is a modular form of weight —12 for I'; holomorphic on H with a pole of order 4 at co. Note that
the coefficient ¢(—1) = —1 of the principal part of F' is negative. Let L be an even unimodular
lattice of signature (26,2) and ¥(F') the automorphic product corresponding to F' on L. Then
U(F) is a holomorphic automorphic form of weight 805404672 whose zeros are zeros of order 1
at the divisors 4 where 7 is a primitive vector of norm 2 = 8 in L. If 7 is a vector of norm
72 =2 in L, then the divisor 4 has order ¢(—4) + ¢(—1) = 0.

Next, we consider non-holomorphic automorphic products.
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PROPOSITION 4.6. Let L be an even unimodular lattice of signature (n,2) with
n = 26,50, 74,122,146, 170 or 194.

Then, L carries infinitely many meromorphic automorphic products of weight 12.

Proof. First, we consider the case n = 26. Let F' = (aj + b)/A with a,b € Z. Then
F(1) = aq 2 + (768a + b)g~ ' + (215064a + 24b) + - - - .

Since (215064,24) = 24 there are infinitely many choices for a and b such that F' has constant
coefficient 24. This implies that there are infinitely many meromorphic automorphic products of
weight 12 on L. In the general case, write n = 24m + 2 and let

F = (amj™ + - +ayj+ao)/A™.
Then there are infinitely many (ag, . . ., @) € Z™! such that F has constant coefficient 24. O

We explain the exception at n = 98. Let

meZ

be a modular form of weight 1 —98/2 = —48 for I', holomorphic on H with a pole at co. Suppose
F' has integral principal part. Since the Eisenstein series E19 has Fourier expansion

Eio(r) = 1-264 ) 0g(m)q™

m>0

the constant coefficient of FEJ, is given by ¢(0) 4 264(- - -). This coefficient has to vanish so that
¢(0) = 0 mod 264. This implies that the weight of a meromorphic automorphic product on a
unimodular lattice of signature (98, 2) is divisible by 132.

Finally, we remark that lifting constants with Gritsenko’s additive lift [Gri91] (see also [Bor98,
Theorem 14.3]) shows that holomorphic automorphic forms of singular weight exist on any
unimodular lattice of signature (n,2) with n > 2. By Theorem 3.3, the divisor of such a function
is not a linear combination of rational quadratic divisors.

5. The prime level case

Let L be an even lattice of prime level carrying a holomorphic automorphic product of singular
weight. We derive an explicit bound for the signature of L.
We consider the cases of even and odd p-ranks separately.

5.1 Even p-rank
Let L be an even lattice of prime level p and genus I, o(p®™») with n > 2 and n,, even carrying
a holomorphic automorphic product ¥(F') of singular weight.

Let D be the discriminant form of L. The oddity formula (see [CS99, ch. 15, §7.7])

e(sign(D)/8) = 7,(D)

(- 2)/8) = (‘1)/

b

implies
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Hence, n = £2 mod 8 and k = 1+ n/2 is an even integer. Note that k > 4. Define

-1 np/2 k)2
e=a(3) -0

Let E be the Eisenstein series of weight k for pp corresponding to 0. Write

E=> E

yeD
with
Ey(r) = Z ay(m)q™
meZ+q(7)
Define
2k 1 1
Ck,p,np:é-

By, pF — 1 pw—2)/2"

Note that cgpp, is positive. By explicit calculation we can derive the following formulas for the
Fourier coefficients a(m) (see also [Sch06, Theorem 7.1]).

PROPOSITION 5.1. Let v € D and m € q() + Z, m > 0.
If g(y) # 0 mod 1, then

ay(m) = —Ch,pnyOk—1 (pm).

Suppose q(y) = 0 mod 1. Write m = p”a with (a,p) = 1. Then

A~y (m) = *Ck,p,npp(y—i_l)(k_l)ak—l (CL)
if v # 0 and
av(m) = _ck,p,npp(y+l)(k71)0'k71(a) + Eck,p,nppnp/Qkal(a) - ka,p,in(npfz)/z(p - 1)0'k71(m)
ify=0.
Write
F=> Fy
yeD
with

meZ—q(v)

Pairing F' with the Eisenstein series E (see Proposition 2.3) we obtain

2(k—2) + Z Z cy(=m)a(m) = 0.

yeD m>0

In the following, we will often need that L splits a hyperbolic plane IT1 ;. We give a criterion for
this.

PROPOSITION 5.2. The lattice L splits a hyperbolic plane II; if and only if
np=mn and §=+1

or
np <n—2.
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Proof. Suppose L splits 1111, i.e. II,, 2(p"™?) = II,,_1 1(p®"?) @ 111 1. If n,, < n—2, this gives no
restriction on €. If n, = n, then the sign rule (see [CS99, ch. 15, §7.7]) applied to II,,_; 1 (p®"»)

implies €, = (—1/p) so that
1 np/2 1 1+n/2
G
p p

The converse is now clear. O

Let d be a positive rational number such that pd is integral. We define functions
gy(d) = Y cmy(—md),
m>0
where we assume m to be integral. We have
94(d) = 90(p2d) + Z me(_de)~
(m,p)=1

This implies
9+(d) = go(p*d)

if g(y) # d mod 1.

The divisor of W(F) is a linear combination of rational quadratic divisors 4, where 7 is a
primitive vector of positive norm in L. The divisor 4 has order Y, .o ¢my(—m??%/2). Since
U(F') is holomorphic this is a non-negative integer.

PRrOPOSITION 5.3. Suppose L splits a hyperbolic plane II 1. Then
gv(d) 20

for ally € D.

Proof. By the above remark we can assume that d = ¢(v) mod 1. Write L = M & II; ;. Choose
a representative of v in M’. By adding a primitive element of suitable norm in IT; ; we obtain
a primitive element v € L’ of norm 72/2 = d. The holomorphicity of ¥(F) implies that

0o d) = 3 () = 3 e (-5 /2) > 0.
m>0 m>0

This proves the proposition. O

We also define the multiplicative function

hm)= > d"h

dlm
m/d squarefree
(m/d,p)=1

Now we expand the sum —3 . . >7,, ¢y (—m)ay(m) in terms of the non-negative divisor
degrees g,.
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THEOREM 5.4. Suppose L splits II1 ;. Let ¢, =1 —1/p. Then

=3 S e mm)ay(m) 2 ek, > > gy(m/p)h(m)

~veD m>0 yeD m/p=q(v) mod 1
q(7)#0 mod 1

+ Ck,pﬂppk_l Z Z gy(m)h(m

veD\{0} m>0
g(v)=0mod 1

+Cpck,p,nppk_1 Z gO(m h(m

m>0

Proof. Let v € D with ¢(y) # 0 mod 1. Then

p—1
- Z Z cjy(=m)ajy(m) = cepn, Z Z ¢jy(—m/p) Z a!

j=1 m>0 j=1 (m,p)=1 dm
p—1
k—
= Cepmy 3, AT D epn(—td/p)
(d.p)=1 =1 (t,p)=1
k—
= chpny D d DD YEDS enlmitd/p)
(d,p)= j=1 tsquarefree( m,p)=
p—1 p—1
k—
=cepn, 3, ATIY D D DL en(-mitd/p)
(d,p)=1 j=1 [l=1 tsquarefree m=I[ mod p
(tp)=1
p—1 p—1

= Ck,p,ny Z dk 12 Z Z Z Cljv(_m2td/p)

j=1 [=1 t squarefree m=[ mod p
(t.p)=1

= Ckp,n, Z - 12 Z (95~ (td/p) — go(tdp))

j=1 t squarefree
( )p)_l

p—1
= Chpmy D O (9n(m/p) —go(mp)) > d!

=1 (mp)=1 dim
m/d squarefree

p—1
= Copy D > (giv(m/p) = go(mp))h(m).

J=1 m/p=q(jv) mod 1

For v € D\{0} with ¢(v) = 0 mod 1 we find analogously

_Z Zcﬂ m)ajs(m) = cpn, " IZ Z gj~(m) — go(mp®))h(m).

7=1 m>0 7=1 m>0
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For v = 0, we have

— Y ey (=m)ay(m) = chpn,p" D A D co(—td)

m>0 d>0 (t,p)=1

—§ck,p7npp"?’/2 Z dr1 Zco(—td)

(d,p)=1 t>0

+ gck,p,npp(np_Q)/Q (p - 1) Z dk_l Z CO(_td)

d>0 t>0

= Cpmp? Y AN N (go(td) — goltdp?))

d>0 t squarefree
(tp)=1

—Eekpm, ™ D AN (go(td) + go(tdp))
(d,p)=1 t squarefree
(t,p)=1

+ &k pm,p" P (= 1) dT YT (goltd) + goltdp))

d>0 t squarefree
(t.p)=1
= Chpm,?" " Y (90(m) — go(mp?))h(m)
m>0
— &k pm,P™? Y (g0(m) + go(mp))h(m)
(m,p)=1
+ & pn, "2 (p— 1) > (go(m) + go(mp))h(m).
m>0
Using
> go(m)h(m) = > go(m)h(m)+p"" Y go(mp)h(m)
m>0 (m,p)=1 (m,p)=1
p**I > go(mp?)h(m)
m>0
and
> go(mp)h(m) = > go(mp)h(m) +p* " go(mp?)
m>0 (m,p)=1 m>0
we find

=D D olmas(m) = cipm, Y > gy(m/p)h(m)
yeED m>0 yeED m/p=q(y) mod 1
q(7)7#0 mod 1

+ Ck,p,nppk_l Z Z 9~ (m)h(m)

~eD\{0} m>0
g(v)=0 mod 1

+Ck:p,npc(lz,p,np Z go(m)h(m)
(m,p)=1
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p—1
+hpny D Chny D, go(mp)h(m)
j=1

m=7 mod p

+ iy gy D 90(mp?)h(m)

m>0
with
Cgpﬂp _ pkfl - gp(npf2)/2’
cllc,pmp,j =p" = Qkpn,; t gp(npfz)/z((p - 1)pk71 —1),

oy =P 0" = a0+ "I (0= 1) (M 4 1),

where ag p n, ; denotes the number of elements v € D of norm ¢(vy) = j/p mod 1. For j # 0 mod p
we have
Qhpinyg =P = &

(see [Sch06, Proposition 3.2]) so that

Chpmyg =P — " EpTeTA 2 (p 1),

Crr o, =P (" = p T TR (p — 1)),

Since L splits 111 1, we obtain the following bounds

k—
cg,p,np Z (1 - 1/p)p 17
Chpmyg = (1= 1/p)p? 7Y,
>2 k—
2> (-1 p)p,
Applying the above formula for ) ., go(m)h(m) once more, we obtain

=Y Y elmlay(m) = epn, D > gr(m/p)h(m)

veD m>0 yeD m/p=q(v) mod 1
q(7)#0 mod 1

+ Ck,p,nppk_l Z Z 9~ (m)h(m)

veD\{0} m>0
g(v)=0mod 1

+ CpChpn,D" 1Y go(m)h(m).
m>0

This proves the theorem. O
Define mq, = maxyep(—voo(Fy)). Note that me, > 0.

PROPOSITION 5.5. Suppose L splits 111 1. Then

k—2
Moo > ———.

12

Let v € D such that veo(Fy) = —meo. Then ¢, (—m) is a positive integer.
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Proof. The function Fj is a non-zero modular form for I'g(p) of weight 2 — k. Applying the
Riemann—Roch theorem to Fy we obtain

k
pro(Fo) + Voo (Fy) K ————(p+ 1)
(see [HBJ94, Theorem 4.1]). The formula for the S-transformation (see §2) implies
V(](Fo) = Vo <Z F,y) .
YyED

Let v € D such that v (Fy) is minimal. Since L splits II; 1, there is a primitive vector p in L'
with 2 = v mod L and u?/2 = meo. Then, the divisor u* has order ¢, (—muo) Which is a positive
integer by the holomorphicity of ¥(F'). Hence,

Voo (Z E ) = min oo (F).

yeD
It follows .
pgréilrjll/oo(ny) —I—Ivneiguoo(Fy) < - 19 ——((+1).
This completes the proof. |

We obtain the following inequalities.

PROPOSITION 5.6. Suppose L splits 111 1. Then

k—2\""' . plPk—2
—=) <mfl'< Fo2p
( 12 ) it < et o0 kK E

Proof. Suppose Voo (Fy) < Voo(Fy) for all v € D\{0}. Then the Eisenstein condition and the
estimate in Theorem 5.4 give
=D 2 e(=may(m)

vyeD m>0

P cpck,p,nppki 190 (moo ) h(mOO)
P> Cpck,p,nppk_ ! mlgo_l

so that
k=1 pr/2 k-2

Cp k

m

The assertion now follows from Proposition 5.5. Suppose Voo (Fy) < Voo (Fp) for some v € D\{0}.
Choose 7 # 0 such that —v(Fy) = meo. Then,

- Z Z cy(—m)ay(m) = Ck,p,nppk_lmléo_l

yeD m>0

and the statement follows analogously. O

We remark that the first inequality in the proposition is a consequence of the Riemann—Roch
theorem and the second is a consequence of the Eisenstein condition.
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THEOREM 5.7. Let L be an even lattice of level p and genus II,, »(p"?) with n > 2 and n,
even splitting a hyperbolic plane II1 ;. Suppose L carries a holomorphic automorphic product
of singular weight. Then for each ¢ > 1/log (me/6) there exists a constant d depending only on ¢
such that

n < enplog(p) +d.

Proof. Recall that k > 4. Using 2¢(k) = £((27)*/k!)By, and k! < evk(k/e)* we derive from
Proposition 5.6 the inequality

k
1 < e2pn/2p32 <6>

e

respectively

3
0<2+ % log(p) + B log(k) — klog(?).

If ¢ is a tangent of the real logarithm then log(z) < t(z) for all x > 0. Thus, log(k) < (k—z)/z+
log(z) for all x > 0. It follows

me 3 n 3
< — — ) - — P — —
0< <log< > 2x>k +5 log(p) + 2(log(:c) 1)+2

for all z > 0. If x > 3/2log(me/6) = 4.24964 . .. this gives an upper bound on k and on n, i.e.

n < c(z)ny log(p) + d(x)

with
2
o) = 2log(me/6) — 3/x
d(z) = (3log(x) + 1)c(x) — 2
in this case. o

Note that the proof is constructive. For example, taking x = 20 gives the bounds ¢ =
3.59750... and d = 33.92899.. ..

5.2 Odd p-rank
Now let L be an even lattice of prime level p and genus I, 2(p®"?) with n > 2 and n, odd.
Suppose W(F) is a holomorphic automorphic product of singular weight on L.

Since n,, is odd, it follows that p is odd as well.

The oddity formula implies

e((n—2)/8) = v <127> if p =1 mod 4,
€p <]2)> (=1)=1D/2¢(1/4) if p =3 mod 4,

so that
B {iQ mod 8 if p =1 mod 4,

"~ ] 0mod 4 if p =3 mod 4.
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2 -1 (7"010—1)/2
<= <p> <p> |

. —(—1)k/? if p=1mod 4,
= (=1)*D/2if p = 3 mod 4.

Define k =1+ n/2 and

Then

Let x(j) = (j/p). Define the twisted divisor sum
oix(m) =) x(m/d)d
dlm

and the generalised Bernoulli numbers B, , by

(see [IwaT2]). Let
2k 1

hopnp = §Bk7X p(np_l)/2 ’
The positivity of L(k,x) implies that cyyp p,, is positive. We describe the Fourier coefficients

a~(m) of the Eisenstein series F.

PROPOSITION 5.8. Let vy € D and m € q(y) +Z, m > 0.
If g(y) # 0 mod 1, then

a’y(m) = _Ck7p7npo-k_1vx(pm)'
Suppose q(v) = 0 mod 1. Write m = pYa with (a,p) = 1. Then

(l/+1)(k71)0'k-,1 X(a)

ay(m) = —Ck,pnpP
if v # 0 and

EDED gy (@) = ek pn, P VX (@) ok 1 1 (a)

a”y(m) = _ck7p7npp
ifv=0.
We have the following result.

PROPOSITION 5.9. The lattice L splits a hyperbolic plane 11, if and only if
np <n-— 1L

As above, we denote the Fourier coefficients of F' by ¢, and define the functions g,. We also
define

h(m)= > x(m/d)d"".

dlm
m/d squarefree

The function h,, is bounded below by h(m) > (2 — ¢(2))mF~1 > mF=1/3.
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THEOREM 5.10. Suppose L splits I11;. Let ¢, =1 —1/p. Then

=3 > e =m)ay(m) = chpm, D ST gy(m/p)hy(m)

yeD m>0 yeD m/p=q(y) mod 1
q(v)#0 mod 1

+ Ck,p,nppk_l Z Z g’y(m)h (m)

veD\{0} m>0
g(v)=0mod 1

+ Cpck,p,nppk_l Z gO(m h
m>0

Proof. The argument is analogous to the proof of Theorem 5.4. We describe the necessary

modifications.
Let v € D with ¢(y) # 0 mod 1. Then

—Z > ejy(=m)ajy(m) = k,pn,,z ST (giy(m/p) — go(mp))hy(m).

j=1 m>0 J=1 m/p=q(j7) mod 1

For v € D\{0} with ¢() = 0 mod 1 we find

-1
- Z Z cjy(=m)azy(m) = Ck,p,nppk_l Z Z 9iv(m) — go(mp*)) by (m).
j=1 m>0

7=1 m>0
If v =0, then
- Z C’y —m)a,(m) = ck,p,nppkil Z (go(m) — go(mpZ))hX(m)
m>0 m>0
+ EkpnyP ™ V23" (go(m) + go(mp))x(m)hy (m).
(m,p)=1
Using
> go(m)hy(m) = > go(m)hy(m) +p*1 > go(mp)hy(m)
m>0 (m,p)=1 (m,p)=1
206D S go(mp?)hy (m),
m>0

we obtain

= e(-m)ay(m) = crpm, D ST gy(m/p)hy(m)

~yED m>0 yeD m/p=q(y) mod 1
q(7)#0 mod 1

+ Ck,p,nppk_l Z Z g’y(m h

veD\{0} m>0
g(v)=0mod 1

p—1
+ Ck',p,’l’l/p Z Z C%J),nphjgo (m)hX (m)

7j=1 m=j mod p
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p—1
+ Cpony Z Z c,1€7p7np’jg0 (mp)hy (m)

7j=1 m=j mod p

=2
m>0

with
P pmg =P+ Ex ()2,
g = P = g i+ Ex(G)p 2,
cii,np = pik=1) _ pk_lak,p,np,o,

where aj,p.p, ; denotes the number of elements v € D of norm ¢(7) = j/p mod 1. Since L splits
II1; we have

Rrpangg = (1= 1/p)p",
Chpmpg = (1= 1/p7)p? 71,
Cronm = (1= 1/p)p*1.
This implies the assertion. O

Pairing F' with the Eisenstein series &/ and applying the Riemann—Roch theorem to Fpy, we
obtain the following result.

PROPOSITION 5.11. Suppose L splits 111 1. Then

F-2\" I 3§p<np+1)/2 k —2 By,
X o XX o L pk .

12

We can now derive a bound on n.

THEOREM 5.12. Let L be an even lattice of level p and genus II, 2(p®"?) with n > 2 and n,
odd splitting a hyperbolic plane 111 ;. Suppose L carries a holomorphic automorphic product of
singular weight. Then for each ¢ > 1/log(me/6) there exists a constant d depending only on ¢
such that

n < cnylog(p) +d.

Proof. Here we use 2L(k, x) = &/p((2m)* /k!)(By,,/p"*) and L(k, x) < {(3) to obtain
k

1< §e2pnp/zk3/2 6 .

2 e

As above, this implies
n < c(a)ny log(p) + d(a)

with
2
e(w) = 2log(me/6) — 3/x’
d(z) = (3log(z) + 1+ 2log(5/2))c(x) — 2
for © > 3/2log(me/6). O

Note that the constant d is slightly larger here than in Theorem 5.7. Taking x = 20 we obtain
the bounds ¢ = 3.59750... and d = 40.52171.. ...
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5.3 An example
Let L be a lattice of genus II,,2(2};"?) with n > 2 and ny = 2, 4 or 6 carrying a holomorphic
automorphic product of singular weight. Then n < 34, 42 respectively 42 and

1/(k-1)
k=2 o < (2er22F =2 p
12 k

by Theorem 5.7 and Proposition 5.6. The values of the bounds are given in the following table.

n | k| (k-2)/12 212 23 215

10| 6 |0.33333... ] 0.57616... | 0.66183... | 0.76024...
18 | 10 | 0.66666 ... | 0.85431... | 0.92271... | 0.99658...
26 | 14 1 1.11253... | 1.17346... | 1.23772...
34|18 | 1.33333... | 1.36385... | 1.42060... | 1.47973...
42 |22 | 1.66666... | 1.61161... | 1.66570... | 1.72159. ..
50 | 26 2 1.85716... | 1.90937... | 1.96305. ..

Since my, is half-integral we obtain the following theorem.

THEOREM 5.13. Let L be a lattice of genus IIN’Q(Q;}”Q) with n > 2 and ny = 2,4 or 6 carrying
a holomorphic automorphic product of singular weight. Then n = 10 or 26.

6. Reflective forms

In this section, we remove the hypotheses made in [Sch06] and give a complete classification of
reflective automorphic products of singular weight on lattices of prime level.

6.1 General results
We derive some general bounds and formulate the Eisenstein condition for reflective modular
forms.

Let L be an even lattice of prime level p and genus II, 2(p®"™) with n > 2. Let F' =
> ~ep Fye? be a non-zero reflective modular form on L (see §3). Then I has weight 1 —n/2,

Fo(r) = co(=1)g™" + > co(m)g™

mEZ
m=0

with co(—1) =0 or 1,

Fy(r) = Cv(_l/P)qil/p + Z cy(m)g™
mGZ—Ol/p
m>

with ¢y(—1/p) =0 or 1 if g(y) = 1/p mod 1 and the other components F, of F' are holomorphic
at oco. We define integers ¢; = co(—1) and ¢, = |[{y € D | ¢(y) = 1/p mod 1 and F, singular}|.

PROPOSITION 6.1. We have n < 26. If c; =0, thenn <2+ 24/(p+1).

Proof. The conditions imply Fy # 0. Since F' is reflective, the product FyA is a modular form for
To(p) of weight 13 — n/2 which is holomorphic on the upper halfplane and at the cusps. Hence,
n < 26. If n = 26 the function Fy must be 1/A. However, as a result, F' does not transform
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correctly under S. This proves the first statement. If ¢; = 0 the Riemann—Roch theorem applied

to Fy gives
m
—1 < pro(Fo) + veo(Fo) < 5 (0 +1),
where m = 1 —n/2 is the weight of Fy. This implies the second statement. O

Pairing F' with the Eisenstein series E of weight k = 14 n/2 we obtain (see Propositions 5.1
and 5.8) the following result.

PROPOSITION 6.2. Suppose Fy has constant coefficient n — 2. Then

k—2 —n —n
TBk(pk - 1) = geven(pk p/QCl +p1 p/QCp) —C
with Eeven = —(—1)F/2 if n, is even and
k—2 —(n -n
TB’C:X — fodd(pk ( p+1)/201 —l—p(l P)/Qcp) +c

with
fu— —(—=1)k/? if p=1mod 4,
T () =D/2ifp = 3 mod 4,

if n, is odd.
We will also need the following result.
PROPOSITION 6.3. If n, =n+ 2, then n — 2 = 0mod 8 and L is a rescaling of II, » by p.

Proof. Since ~,(D) is a fourth root of unity the oddity formula e(sign(D)/8) = v,(D) implies
that n is even. Then n,, is also even and

(D) =€ <_1> np/z.

p

Hence, n—2 = 0 or 4 mod 8 and ~,(D) = ¢,. The lattice L has determinant p"*2 so that eje, = 1

by the sign rule. Now €; = +1 because L has maximal p-rank and therefore ¢, = +1. Applying
the oddity formula again, we obtain n — 2 = 0 mod 8. The second statement follows from the
fact that there is only one class in the genus II, 2(p®"?) under the given conditions. a

6.2 Symmetric forms
Here we classify reflective modular forms that are invariant under O(D).

Let L be an even lattice of prime level p and genus 11, o(p®"™») with n > 2. Then the number
of elements 7 in D of order p and norm ¢(y) = 1/p mod 1 is given by

pnp -1 gevenp(np72)/2

if n, is even and by
PP+ Eoqap D/
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if n, is odd (see [Sch06, Proposition 3.2]). Suppose L carries a symmetric reflective modular form
F with [Fp](0) = n — 2. Then the Eisenstein condition takes the form
k—2

B0’ = 1) = bowen (0 2y + " dy) — dy — d

if n,, is even and

k—2 _ _
1 Brx = boaa 0"V 2dy 1 pt D 2dy) 4 dy
if n,, is odd. Here d; and dj, can be 0 or 1. In the case n, < n+2, the solutions of these equations

have been determined in [Sch06].

THEOREM 6.4. Let L be an even lattice of prime level p and genus II,2(p®™) with n > 2
carrying a symmetric reflective modular form F. Suppose Fy has constant coefficient n —2. Then
L and F are given in the following table.

P L F
2 1118,2(2?]10) 71-89—8
I[1072(2}}2), I[1072(2}}10) 16m1-1698, N189-16
3| I142(37%) N1-63-6
g 5(373), IIg2(377) 911933, My33-9
5| IT102(579) M -a5-4
62(5%°), He2(57°) | Bi-sst, Muis-—s
7 118,2(7_5) M -37-3
11 | Ig2(1174) M-211-2
23 | 1142(2373) M -193-1

The n-product in the last column is a modular form for T'y(p) whose lift on 0 gives F'.
Conversely, each of these functions is a reflective modular form on L with the above stated
properties.

Proof. We only have to consider the case n, = n + 2. Then n = 10 or 18 and &eyen = +1 by
Propositions 6.3 and 6.1. The Eisenstein condition simplifies to

Now the left-hand side is 1/63 for k = 6 and 2/33 for k£ = 10. Hence, there are no reflective forms
if np, =n+2. O

6.3 Bounds in the non-symmetric case
In this section, we derive bounds on the signature for reflective modular forms which are not
invariant under O(D).

First, we recall the Riemann-Roch theorem for I'1(p).

Let p be prime. For p > 3, the group I';(p) has p—1 classes of cusps which can be represented
by 1/cwithe=1,...,(p—1)/2 of width p and a/p witha =1,...,(p—1)/2 of width 1. The cusps
of I'1(2) can be represented by 1/2 of width 1 and 1/1 of width 2. Let f # 0 be a meromorphic
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modular form on I'1(p) of weight m and finite-order character. For p > 5, there are no torsion
points and the Riemann—Roch theorem states

(p—1)/2 (p—1)/2 m
Z le/c(f) + Z Va/p(f) + Z VT(f) - ﬂ(pz - 1)'
c=1 a=1 Tel (p)\H

For p = 3, we have

Bn(f) s+ gD+ S w =7
Tel1(3)\H
T#e3 mod I'1 (3)
with e3 = (3 +iv/3)/6 and
2ip(f) b np() + et S w() =1

Tel'1 (2)\H
T#e2 mod I'1 (2)

with eg = (1+14)/2 if p = 2.

THEOREM 6.5. Let L be an even lattice of prime level p and signature (n,2) with n > 2 carrying
a non-symmetric reflective modular form F. Then p < 11 and n < 2 + 24/p.

Proof. Since F' is non-symmetric there are v1,v2 € D\{0} of the same norm such that

szWl_Fw?’éO'

The function f is a modular form on I';(p) of weight m = 1 — n/2 and finite-order character.
Let v € D and M = (25) € I'. Then

F’y‘m,M = <’g|> e(*abq(y))Fav
if c =0 mod p and
_ e(—sign(D)/8) [ —c
Filnas = <=2 ()

if ¢ £ 0 mod p. The coefficient at Fy in this sum is

e(—ctdg(p))e(=b(p, 7))e(—abg(v)) = e(—c " ag(y)),
i.e. only depends on the norm of ~.

This implies that for all M € I', the function f|,, s is a linear combination of functions F,
with v # 0. Hence,

> e(—cdg(p))e(—b(n,7))e(—abg()) Fayp
neD

vs(f) =2 =1/p
for all cusps s of I'1(p). It follows that

p—1 1 m, o
——— | 14+—- ) < =(p*—1).
2 ( i p) 2@ Y
This proves the theorem. O

Note that the bounds do not hold in the symmetric case.

Using Theorem 6.5, we can determine the non-symmetric forms on lattices of prime level by
analysing the obstructions in a finite number of cases. For p = 3, which is the most complicated
case, we describe this explicitly in the next section. The other cases are analogous.
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6.4 Level 3
In this section we determine the reflective forms on lattices of level 3 and signature (n,2) where
n =4, 6, 8 or 10.

Let L be a lattice of genus 1119 2(3%™) and F' a reflective form on L. Suppose Fy has constant
coefficient [Fp](0) = 8. Then ¢; =1 (see Proposition 6.1) and the Eisenstein condition gives the
following value for c¢3 (see Proposition 6.2).

| 11102(37%) | IT102(3™) | IT102(37°) | I10,2(37®)
o =1 ‘ —2074/9 ‘ —616/3 ~130 ‘ 96

| 11102(37") | I102(37"%)
a=1 ‘ 774 2808

Since c3 should be a non-negative integer, this already excludes the first three cases.

The space Sg(I'(3)) has dimension 3 and is spanned by the functions n180?42, 180 4,00+ A,
and 7;636. The liftings of these functions generate the obstruction space S5 6.

Pairing F' with the lift F}, ; ;o of the n-product 7636 (7) = n(7)%n(37)% we obtain

1— 1 . C3
377,3/2 3(77,3-1—4)/2

=0.

PROPOSITION 6.6. There are no reflective modular forms with constant coefficient 8 on lattices
of genus 1119 2(3%"3).

Next, we consider the case n = 8. Let L be a lattice of genus IIg2(3%"3) and F' a reflective
modular form on L with [Fp](0) = 6. Then we obtain the following for cs.

‘ IIS,Z(3+1) ‘ 118,2(3_3) ‘ 118,2(3+5) ‘ I[872(3_7) ‘ 118,2(3+9)
2 6 18 54 162
—78 72 —54 0 162

61:0
61:1

The discriminant form of type 3*! contains no elements ~ of norm ¢() = 1/3 mod 1. Hence,
this case can be excluded.

The space S5(I'(3)) has dimension 2 and is spanned by the functions 7804, and 186, 4,.
The liftings of these functions generate the obstruction space S5 5.

The lattice Ay has genus II50(37!) and is isomorphic to its rescaled dual A5(3). The theta
functions of A, can be written as

M3 + 913
O, = ———,
N31

Ovta, = %(914’2 - ‘9142)'

They transform under S = ((1) 51) as

Ls = 6“;;;4)<9A2+—2eu+A2):= 601254)9A;»

1= A 00, 0,

04,

0V+A2
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Let v € D be of norm ¢(vy) = 1/3 mod 1. Then the lift of 7504, with respect to the dual
WEeil representation pp on 7 is given by

Fy 504, = F13+ Fip

with
Fij3 =ms0a,(e” +e77)
and )
Fiph= REIEE Z e((v, 1)) gj, (e +e"),
neD
where

ms(0a, +20,44,) = go+ g1+ g2

and g;|s7 = e(j/3)g;. Note that go = 0. We obtain an analogous result for the lift of 7;56, 4,
with respect to pp on an element v € D of norm ¢(y) = 2/3 mod 1.
Let
M ={ve€ D|q(y) =1/3mod 1 and F, singular}.

We assume now that M is non-empty. Then |M| = ¢z = 2 - 3(3~1/2 and M = —M because

F, = F_,. The crucial result to determine the structure of M is the following proposition.

PROPOSITION 6.7. Let v € D be of norm q(vy) # 0 mod 1. Then

2| M if M
‘M ﬂ’yJ‘\ — ’ ‘/3 iy € ‘ ’
|M|/3  otherwise.

Proof. Let v € D be of norm ¢(v) = 1/3 mod 1. Suppose v € M. Then pairing F' with Fy s04,
gives

2 3 (el ) + e~ ) =0

pneM
so that

> (el(v, ) + e(—(v, ) = [M].

neM

This implies
M vyt = 2/M] /3.

If v ¢ M the same argument shows |M N~*| = |M|/3. In case q(y) = 2/3 mod 1 the statement

follows from pairing F' with F, g, . AgV O

The proposition implies that M- is an isotropic subgroup of D. Let v € M and u € M*.
Then M Nyt = M N (v + p)t. Hence, the group M=+ acts on M by translations.

PROPOSITION 6.8. Let v, u € M such that (v, ) =2/3mod 1. Then v+ p € M.

Proof. The sets M N~+ and M N pu* are both subsets of M\{+~}. Hence,
(M Oy )N (M pt)| = 4IM|/3 — (M| - 2) = [M]/3+2.

Since (M N~yY) N (M N pt) € (M N (y+ p)t) this implies |[M N (y + p)*| = 2|M|/3 and
y+peM. |
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PROPOSITION 6.9. Let v, u € M such that (v, ) = 0 mod 1. Then
(MAyh )N (Moph)=Mn0(y+p)'t
Proof. We have |M N~*| = |M N pt| = 2|M|/3 so that
(M Ay ™) 0 (M N pt)| = 4M|/3 — [M] = |M|/3.
On the other hand, (M N~y1) N (M Npt) € (M N (y+ p)t) and |M N (v + p)t| = |M|/3
because g(y + 1) = 2/3 mod 1. This implies the statement. O
ProprosITION 6.10. Let v, u,v € M such that

(v,p) = (p,v) =2/3 mod 1.
Then
(v,v) =2/3 mod 1.

Proof. First suppose (y,v) = 0 mod 1. Define ¢ = v — v. Then (o,u) = 0. However, this
contradicts (M NyL)N (M Nvt) = M Not. Next we assume (7,v) = 1/3 mod 1. Here we define
0 =7+ pu+v. Note that v+ g is in M and (v + p,v) = 0 mod 1. Then (o, #) = 0 mod 1. This
contradicts (M N (y+ p)Y) N (M Nvt) = M Not. Hence, (y,v) = 2/3 mod 1. O

A consequence of this result is the following proposition.
PROPOSITION 6.11. Let v, u € M such that (v, ) # 0 mod 1. Then
Mnyt=Mn ,ul.
PROPOSITION 6.12. Let ~,n € M such that (v, ) = 2/3 mod 1. Then v — € M*.

Proof. Define 0 = v — p. Then M Nyt = M Npt implies (M N~y+) € (MNot). Let v € M such
that (y,v) = 2/3 mod 1. Then (v,u) = (1, v) = (7,v) = 2/3 mod 1 by the above transitivity
result. Hence, (0,v) = 0 mod 1. Similarly, if v € M such that (y,v) = 1/3 mod 1, then
(0,v) = 0 mod 1. Hence, all elements in M are orthogonal to o. O

PROPOSITION 6.13. The group M is an isotropic subgroup of D order 3("3=3)/2,

Proof. Let v € M. Then the elements p € M with (v, ) # 0 mod 1 are in +v + M~*. Hence, M
decomposes as
M=(y+MYHU(—y+MHUMNyh)

so that
|M| = 2|M*| + 2|M|/3.

This implies the statement. o

PROPOSITION 6.14. The set M is of the form

3 3
M= Jtvi+ MY U (=i + MY
=1 =1

with v; € M and (7;,7v;) = 0mod 1 for i # j.
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Let H be an isotropic subgroup of D of order |H| = 3("=3)/2_ Then the lift of 97,033, with
respect to pp on H, is given by

F97]17933,H - F1/3 + Fl/l

with
F1/3 = Z 97]1—93367
yeEH
and

Fipy= Z g5, €’

yeHL

where 17y33-9(7/3) = go(7) + g1(7) + g2(7) and g;|-37 = e(j/3)g;. Note that

go = —311-933,
g1 = 0.

The function Fy, ,_, # has O-component Fp = 67;-933 and is reflective. The singular components
are the F, with v € H and ¢(y) = 1/3 mod 1. The discriminant form HL/H is of type 373.
It is generated by elements {7y1,72,73} with ¢(7;) =1/3 mod 1 and (~y;,7;) = 0 mod 1 for i # j.
We obtain the following result (see Theorem 2.1 and Proposition 2.2).

PROPOSITION 6.15. Let L be a lattice of genus IIg2(3%"3) carrying a reflective modular form.
Suppose Fy is holomorphic at oo and has constant coefficient 6. Then ng > 3 and F' = an1_933,H
for some isotropic subgroup H of D of order |H| = 3(n3=3)/2 I this case, the overlattice Ly
of L corresponding to H has genus 11872(3_3) and the function F' can also be induced from the
symmetric form F9771—93370 on Ly.

We can decompose L = K @ II11(3), where K has genus II71(37%(~2) and assume
that H is a maximal isotropic subgroup of the discriminant form of K. Then the embedding
K C Kpg gives an embedding L C Ly and identifies the corresponding domains Hy, and Hr,.
Proposition 3.4 implies the following proposition.

PROPOSITION 6.16. The theta lifts of F' and Foy .40 coincide as functions under this
identification.

We calculate the product expansions of the automorphic product ¥ corresponding to
Foy _g,5,0 on L of genus ITg2(377).

First, we decompose L = K @ I11,1(3). Then K = Eg & II,,;. We choose a primitive norm 0
vector z in I 1(3).

PROPOSITION 6.17. The expansion of ¥ at the cusp corresponding to z is given by

(e | N ()

acKt a€(BK’)*
=14+ c(Ne(( 2))

where c()\) is the coefficient at ¢" in 1y95-3 if X is n times a primitive norm 0 vector in K+ and
0 otherwise.
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Proof. The product expansion of ¥ at the cusp corresponding to z is

IT @ el Z))FH(1 — e 3)e((, 2))) Fosersl /2
acK't

x (1 —e(2/3)e((a, Z)))Farzz/sl(=0?/2)

By the above formulas for the components of Foy, _g45,0, this product is equal to

H (1= e((a, Z)))Om-os8)(~0?/2) H (1= e((a, Z)))l-3m-ossl(=0?/6)

acKt a€(BK")T

Since ¥ has singular weight, the Fourier expansion of ¥, is supported only on norm 0 vectors of
K'. Hence, ¥, has the stated sum expansion. O

This is the twisted denominator identity of the fake monster superalgebra [Sch00]
corresponding to an element of class 34 in O(FEg) (see [Sch01, Proposition 6.1]).

Now, we decompose L = K @ II;; with K = Eg @ I111(3) and choose a primitive norm 0
vector z in ITq;. Then we have the following result.

ProproSITION 6.18. The expansion of U at the cusp corresponding to z is given by

e((p.2)) T (1= e(er, 2y)fmea-slC/D TT (1= e((a, 2)))moeatle2)

acK't acKT+

= Z det(w)n1—339((wpa Z))’

weW

where W is the reflection group of K' generated by the roots of norm o = 2/3.

This is the twisted denominator identity of the fake monster algebra corresponding to an
element of class 3C' in Coq (see [Sch04, Proposition 10.7]).

Again, let L be a lattice of genus IIg2(3"3) carrying a reflective modular form F.

The lift of 7y35-0(7) = n(7)3n(37)~? with respect to pp on 0 is given by

Fys,00="F13+Fipn
with
Fi3 = mysz-oe’

and

Fip= 3(11-n3)/2 Z g5 €,
ye€D

where 7;-933(7/3) = go(7) + g1(7) + g2(7) and g;|-37 = e(j/3)g;. The modular form £, , 0 is
reflective and has 0-component

Fo(r)=q '+ (3012 _3) ...
PROPOSITION 6.19. Let L be a lattice of genus IIg2(3%"3) and let F' be a reflective modular

form on L with ¢; =1 and [Fp](0) = 6. Then, n3 =7 and F' = Iy, 40 or ng =9 and F' =
Fy 5490 + Fon,_o 5,1 for some isotropic subgroup H of order 27.
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Suppose L has genus IIs2(377). Then the level 1 expansion of the theta lift of Fyss 0.0
on L is the twisted denominator identity of the fake monster superalgebra corresponding to an
element in O(Eg) of class 34 and the level 3 expansion gives the twisted denominator identity
of the fake monster algebra corresponding to an element in Coqg of class 3C.

The case ng = 9 has already been described above because we have the following result.

PROPOSITION 6.20. Let L be of genus 15 5(3%?). Then the theta Iift of Fyy 5, 4,0 01 L is constant.

Proof. We decompose L = K @ II11(3), where K has genus II71(377) and choose a primitive
norm 0 vector z in [71,1(3). Then the product expansion of the theta lift W of F, ;. 40 at the
cusp corresponding to z is given by

e((p.2)) T (1 —el(a, 2))meslCe2 T (1 = ef(a, 2)))Pm-oaell=e?/O),
acKt a€(3K")*

The Fourier coefficients [1);33-9](n) vanish for n = 1 mod 3 and K = E§(3) & II; 1(3) contains no
elements o of norm —a?/2 = 2 mod 3. This implies that the first product extends only over the
elements o € K satisfying a?/2 = 0 mod 3, i.e., a € 3K’. Now, [1);33-9](3n) = —[311-933](n) so
that the product is constant. This finishes the proof. |

Now we consider the case n = 6. Let L be a lattice of genus II¢2(3%™) and F a reflective
form on L with [Fp](0) = 4. We find the following value for cs.

‘ 116,2(3+2) ‘ I[6,2(374) ‘ 116,2(3+6)
4/3 4
—80/3 26

12
—24

01:0
01:1

Hence, we can assume that Fy is holomorphic at co and n3 = 4 or 6.
The space S4(I'(3)) has dimension 1 and is spanned by the function 7;s. The liftings of this
function generate the obstruction space S5, 4.
Let v € D be of norm ¢(y) = 1/3 mod 1. Then the lift of n;s(7) = n(7)® with respect to the
dual Weil representation pp on v is given by
Fy s~y =F13+Fip
with
Fiz=ms(e” +e7)
and

1 _
Fipn= T30 2)/2 Z e((p,7))ms (e +e™ ).
neD
q(pn)=1/3 mod 1

As above, we define
M ={ye€ D]|q(y)=1/3mod 1 and F, singular}.
Then |M| = 4-3M~4/2 and M = —M. Pairing F with F s~ we obtain the following result.

PROPOSITION 6.21. Let v € D be of norm ¢q(v) = 1/3 mod 1. Then

5|M|/6 ifye M
M~y = ’
| 7 {|M |/3  otherwise.
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This excludes the case n3 = 4. We assume now that n3 = 6. Then the proposition shows that
M must be of the form

M = {Ev,..., £}

with (7;,7j) = 0mod 1 for i # j. In particular, M+ = {y1,...,76} is a basis of D. Let v € D be
of norm ¢(y) =1/3 mod 1 with v ¢ M. Then ~ is a linear combination of four of the 7; so that
|M N ~4t| = 4. Hence, the principal part of F satisfies all obstructions coming from S5,,,4- This
implies that a reflective modular form with constant coefficient 4 on II¢2(37%) exists.

We give an explicit construction. Let v € D be of norm ¢(vy) = 1/3 mod 1. Then the lift of
91242 /mis on vy with respect to pp is given by

Foz sy =F1s+Fip

with
Fl 3 = 01242 (67 —|— 6_’7)
/ T8
and

Fipy = 33 Z =7, 1)) gj, (e +e7)
neD

where 9124/2/7718 = g0+ g1+ g2 and gj| o7 = e(j/3)g;. Note that go = 65, /ms.

The function 7 /3)-3123-3(7) = N1-3329-3(7/3) is a modular form for I'(3) of weight —2. If
we decompose 1)1 /3)-3123-3 = ho + h1 + ha with hj| o7 = e(j/3)h;, then g2 = ha, g1 = 4h; and
go = 4hg. It follows

F6’,242/?718ﬁ =3

Now let Mt = {y1,...,7} C D such that q(y;) = 1/3 mod 1, (vi,;) = 0 mod 1 for i # j

and M = M+ U (—MT). Define

Fn(l/g)—3123—3»7'

F39?42/4’7187M+ 4 Z F9,242/77137%'
i=1
The components of F3p2 /Ans, M+ €2 be described as follows. Write p € D as pu = Z?:l c¢i7yi and
let wt(u) denote the number of non-zero ¢;. Then
Fu(1) = ga(7) = ¢7V/* + 20¢* + 1766/ + 102043 + 4794¢"/3 +

if p € M and
Fy = 15(4 —wt(u))gj,

with j,/3 = —q(p) mod 1 otherwise. In particular,
Fo(7) = 2g0(1) = 4 + 60g + 432¢* + 2328¢” + 10320¢" + 40068¢° + - - -

and F,, = 0 if ¢(u) = 1/3 mod 1 and p ¢ M. Hence, F is reflective. Conversely, we have the
following proposition.

PROPOSITION 6.22. Let L be a lattice of genus Il 2(3%") and F a reflective form on L with
[Fo](0) = 4. Then n3 = 6 and F = Fyp y,  py+ for some M* C D as above.
2 I’
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Let L be a lattice of genus I1g2(37%). We can decompose L as L = K @ II11(3) with
K = Ay & Ay & II1 1(3). Then K has genus H571(3_4). We choose an orthogonal basis {71, 72,
V3, pa} of the discriminant form of K satisfying ¢(71) = ¢(v2) = ¢(v3) = —¢q(pa) = 1/3 mod 1
and an orthogonal basis {5, 76} of the discriminant form of I7; ;(3) satisfying —q(us) = ¢(76) =
1/3 mod 1. We define v4 = pig + pi5, 5 = pta — pt5 and M+ = {v1,...,7}. Let ¥ be the theta lift
of F = F39i2/47718,M+ on L. We choose a primitive norm 0 vector z in II71(3). Then z has level

3 and wt(z/3) = 3.
PROPOSITION 6.23. The expansion of ¥ at the cusp corresponding to z is given by

6((p, Z)) H (1 — 6((0{, Z)))[90/4}(—a2/2)(1 - 6((30&, Z)))[go/12}(_a2/2)

aeK't
wt(a)=0

H (1— e((3a, Z)))loo/1A(=0?/2)
acK't
wt(a)=3
wt(atz/3)=3

< I (=elle,2)le/ 21 - e((3a, 2)))Foo/6e/2)
aEK'T

wt(a)=3
wt(atz/3)=6

v H (1—e((3a, Z)))lor/6l(=?/2)
acK't
wt(a)=2
wt(atz/3)=2

< I @ el )R e((3a, 2)) o/ D
aeK't
wt(a)=2
wt(atz/3)=5
X H (1—e((v, Z)))[—91/12](—a2/2)

acK't
wt(a)=5

H (1—e((a, Z)))[92](—oc2/2)

aeK't
wt(a)=1

= Z det(w)n33-293((wp, 2)),
weW

X

X

where p is a primitive norm 0 vector in K’ with wt(p) = 3 and wt(p &+ z/3) = 6 and W is the
reflection group of K’ generated by the roots o € K' of norm o = 2/3 and weight wt(a) = 1.

This identity is a new infinite product identity. One can show that it can also be obtained
by twisting the denominator identity of the fake monster algebra by an element of class 9C' in
CO().

Finally, we consider the case n = 4. Let L be a lattice of genus II42(3%") and F a reflective
form on L with [Fp](0) = 2. Then, the Eisenstein condition gives the following value for cs.

‘ 4237 ‘ IT45(373) ‘ IT42(37°)
2/9 2/3 2
~88/9 | —34/3 | 16

01:0
01:1
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Since S3(I'(3)) is trivial, the obstruction space S5, 3 vanishes. Hence, L carries a reflective
form with constant coefficient 2 if and only if it has genus I142(37°).

Let D be a discriminant form of type 37° and v € D of norm ¢(y) = 1/3 mod 1. Then, the
lift of 1my13-3 on ~ with respect to the Weil representation pp is given by

Fyyosy = Frys + Fipn
with
Fi3=npz-s(e’ +e77)

and

Fiu=> e(=(v,n)gj.(e" +eH),
pneD
where 1;-331(7/3) = go(7) + g1(7) + g2(7) and g;|-1,7 = e(j/3)g;. Note that F), ,__, , is reflective
and Fpy has constant coefficient 2.

PROPOSITION 6.24. Let L be a lattice of genus I1I42(3%"™) and F a reflective form on L with
[Fo](0) = 2. Then L has genus I1,2(37°) and F = Fy 1, s~ for some element v € D of norm
q(y) =1/3 mod 1.

Let L be a lattice of genus I142(37°). We choose an element v € D of norm ¢(y) = 1/3 mod 1.
Let W be the automorphic product corresponding to Fy ;. , , on L.

We decompose L = K @ II; 1(3) such that + is in the discriminant form of 17, ;(3) and choose
a primitive norm 0 vector z in I7;1(3). Then (v, 2/3) # 0 mod 1. Note that K = Ay & I 1(3).

PROPOSITION 6.25. The expansion of ¥ at the cusp corresponding to z is given by
[T (- el 2))Prsstl %2 (1 e (3ar, 2)))h-satl730%/2) = 1437 e(N)e((A, 2)
aEK't
where c()\) is the coefficient at ¢" in ny33-1 if X is n times a primitive norm 0 vector in K'* and

0 otherwise.

This is the twisted denominator identity of the fake monster superalgebra corresponding to
an element of class 9A.

We can also decompose L = K & II; 1(3) such that v is in the discriminant form of K. Again
we choose a primitive norm 0 vector z in IT; 1(3). Then we have the following result.

PROPOSITION 6.26. The expansion of ¥ at the cusp corresponding to z is given by
e((p.2)) T (- e((3a, 2)))ere)tel-0romm ssl(-30%/2)

aEK't
< I - ella,z))missle®
acK't
a=+7v mod K
= Z det(w)nz-19s ((wp, 2)),
weW

where W is the reflection group of K’ generated by the vectors o € K' of norm o? = 2/3 satisfying
a=tvmod K.

This is the twisted denominator identity of the fake monster algebra corresponding to an
element in Cog of class 9B.
The automorphic product ¥ was first described in [DHS15].
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6.5 Classification
In this section, we formulate the classification theorems for reflective forms.

First, we list the reflective modular forms on lattices of prime level.

THEOREM 6.27. Let L be a lattice of prime level and signature (n,2) with n > 2 carrying a
reflective modular form F. Suppose Fy has constant coefficient n — 2. Then L and F are given

in the following table.

N. R. SCHEITHAUER

P L F Remarks
2 1118,2(2;?10) Fn1_82_8,0 symmetric
IT102(217) Fi6n, 16,30 symmetric
IT102(25™), Fion, 108, H |H| = 202-2)/2
no =4,6,...,12
11102(25) Frsy-16,0 symmetric
1110,2(2}_112) F7I182—1610 + F16771—16287H |H‘ =2°
11672(2;1'6) F77142—87'Y
3 IT142(37®) Fy 6,260 symmetric
II55(37%) Fon, _g43,0 symmetric
IIg 5(373) F977179337H |H| = 3(n3—3)/2
ng =5,7,9
II5(377) Fy3,-0.0 symmetric
I55(3%7) Fy5a-0.0 + Foy, oyl |H| = 33
s(3*°) Fayayn, g)-3,24-3.M+ M*={n,.... 7%}
(7i,vj) = 0mod 1
11472(3_5) Fyssn
5 1110,2(5%) Fn1,45,4,0 symmetric
116,2(5+3) F5n1_551,0 symmetric
116,2(5+n5) F5,7175517H |H| = 5(n5—3)/2
ny = 5, 7
Is5(5%7) Foi. 50 symmetric
116,2(5+7) Fﬂ1157570 + F57717551 H |H| =57
7 I3 5(777) Fy 5. 30 symmetric
11 g o(117%) Fy 5, 20 symmetric
23 145(2377) Fy 110 symmetric

Conversely each of the functions F' is a reflective modular form on L with constant coefficient
[Fb](0) =n — 2.

We have seen that many of these forms give the same function under the singular theta

correspondence.

THEOREM 6.28. Let L be a lattice of prime level and signature (n,2) with n > 2 and let ¥ be a
reflective automorphic product of singular weight on L. Then, as a function on the corresponding
Hermitian symmetric domain, the automorphic product ¥ is the theta lift of one of the following

modular forms.
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L F COO

2 | IIs2(25") Fy s, 5.0 1828
1110’2(2}_[2) F1677171628,0 178216
10223 Fy sy 16,0 17821

T 2(2;) Fyay sy 2448

3 | II142(378) Fy 6y 6.0 1636
118,2(3_3) an1793370 17337
118,2(3_7) F771337970 17339
116,2(3_"6) F(1/4)77(1/3)—3123—3»M+ 1337293
I14(379) Fyyosa 37197

5 | II02(570) Fy e a0 1454
IIG,Q(5+3) F5,,71755170 17155
I1672(5+5) F7I115—570 17155

7| Hga(77°) Fy 550 1373
11| Hga(117%) Fy 500 12112
23 | I142(2373) Fy 1y 10 11231

Hence, with three exceptions, all these functions come from symmetric modular forms. Moreover,
at a suitable cusp V¥ is the twisted denominator identity of the fake monster algebra by the
indicated element in Conway’s group.

Conversely all the given modular forms lift to reflective automorphic products of singular
weight on the corresponding lattices.
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