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DISCONJUGACY CRITERIA FOR NONSELFADJOINT 
DIFFERENTIAL EQUATIONS OF EVEN ORDER 

K U R T K R E I T H 

1. Introduction. Disconjugacy criteria have been established for linear 
selfadjoint differential equations of order 2n by Sternberg [4] and Ahlbrandt [1]. 
Such differential equations can be written in the form 

(i.i) è (-i)ft(p4(x>w)w = o 

where it is assumed that the coefficients are real and that Pn(x) ^ 0. We shall 
be interested in nontrivial solutions v(x) of (1.1), which satisfy 

(1.2) v(a) = v'{a) = . . . = »<"-» (a) = 0 = v(fi) = v'(P) = . . . = v^» (fi) 

for distinct points a and 0. The smallest fi > a such that (1.2) is satisfied 
nontrivially by a solution of (1.1), is denoted by ni(a) and called the first 
conjugate point of x = a with respect to (1.1). If no such conjugate point 
exists we write MI(«) = °o, and say that (1.1) is disconjugate on [a, oo ). 

The principal purpose of this paper is to generalize these disconjugacy 
criteria to the general linear nons elf adjoint differential equation of the form 

(1.3) Ê (-D*(At(*)« t t )) t t ) + £ {-l)\qk{x)uik+1))ik) = 0. 
£ = 0 A;=0 

The smallest y > a such that 

(1.4) u(a) = . . . = «<*-«(«) = 0 = u(y) = . . . = u<*~»(y) 

is satisfied nontrivially by a solution of (1.3) is denoted by rji(a) and called 
the first conjugate point of a with respect to (1.3). Our disconjugacy criteria 
for (1.3) will follow from a comparison theorem for conjugate points which 
establishes conditions on the coefficients of (1.1) and (1.3) assuring that 
ViM è Mi(<*)• 

In order to establish such a comparison theorem for conjugate points, it 
is necessary to transform (1.1) and (1.3) into first order vector systems of 
the type studied extensively by W. T. Reid. Such systems are considered in 
§ 2 where a nonoscillation criterion of Reid [6] is generalized to nonself ad joint 
vector systems. This nonoscillation theorem is the basis for the disconjugacy 
criteria established in § 3. 

Received October 9,1970 and in revised form, February 1,1971. This research was supported 
by a grant of the National Science Foundation, NSF GP-11219. 

644 

https://doi.org/10.4153/CJM-1971-071-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-071-7


DIFFERENTIAL EQUATIONS 645 

2. First order vector and matrix systems. Reid [6] has established 
necessary and sufficient conditions for the nonoscillation of differential systems 
of the form 

(2.1) v' = A(x)\ + B(x)z 
z' = C(x)v + D(x)z 

under the selfadjointness conditions 

(2.2) B(x) = B*(x),C(x) s C*(x),A(x) = -D*(x). 

Here v(x) and z(x) are w-dimensional vector functions and A (x), B(x), C(x) 
and D(x) are to be real integrable n X n matrices (i.e., with real integrable 
elements) defined on some interval X of the real line. Two distinct points 
a and j3 on X are said to be mutually conjugate with respect to (2.1) if there 
exists a solution (v(x), z(x)) of (2.1) with v(a) = v(/3) = 0 and v(x) ^ 0 on 
(a, 0). The system (1.1) is said to be nono s dilatory on a subinterval X0 if 
no two distinct points of Xo are mutually conjugate. 

The principal result of this section is a comparison theorem for conjugate 
points which allows one to generalize Reid's nonoscillation criteria to vector 
systems of the form 

(2.3) u ' = a(x)u + b(x)w 
w' = c(x)u + d(x)w 

where a(x)} b(x)1 c(x), and d(x) are to be real integrable n X n matrices which 
need not satisfy selfadjointness conditions such as (2.2). 

In addition to (2.1) and (2.3), we shall make reference to self ad joint matrix 
systems of the form 

(2.4) V = A(x)V+B(x)Z, 

Z' = C(x)V - A*(x)Z, 

whose coefficients satisfy the selfadjointness conditions (2.2). Here V(x) 
and Z(x) are to be n X n matrices for x £ l . Letting v<(x) and zt(x) denote 
the ith columns of V(x) and Z(x), respectively, it follows that (V(x), Z(x)) 
is a solution of (2.4) if and only if (v*(x), zt(x)) is a solution of (2.1) for 
i ~ 1, . . . , n. The following well known results for (2.4) will also be required. 

2.1 LEMMA. If the coefficients of (2.4) satisfy (2.2) on X, then for any solution 
(V(x),Z(x)) of (2.4), V*(x)Z(x) - Z*(x)V(x) is constant on X. 

If V*(pc)Z(x) = Z*(x)V(x), then the solution (V(x),Z(x)) of (2.4) is 
said to be conjoined. Under the hypotheses of Lemma 2.1, a solution is con­
joined if V*(x0)Z(xo) = Z*(XQ)V(X0) for some XQ 6 X. 

2.2. LEMMA. If (V(x), Z(x)) is a conjoined solution of (2.4) for which V(x) 
is nonsingular, then 

(2.5) zv-1 = v~i*z*. 
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In studying selfadjoint vector and matrix systems, most authors use a 
transformation due to Sternberg [7] to reduce a system such as (2.1) to the 
form 

v' = £ z ; z' = ^v, 

where v(x) and z(x) axe again w-dimensional vectors, and E(x) and F(x) are 
n X n matrices. However, in [5] the author established a matrix analogue of 
the classical Picone identity for selfadjoint systems of the form (2.3) and 
(2.4). This identity made it possible to circumvent the transformation of 
Sternberg and to establish comparison theorems for general selfadjoint systems 
in a substantially more direct manner. In order to establish an appropriate 
generalization of the Picone identity to the case where (2.3) need not be self­
adjoint, we shall consider a generalized notion of matrix inversion. Consider 
a symmetric nonnegative definite matrix B whose null space is orthogonal to 
the range of b. Then the range of b is contained in the range of B, and there 
exists a matrix k such that b = Bk. If s is in the range of b and t is such that 
s = bt, then we shall define Blb by Blbt = kt. If B is singular, then k is only 
defined modulo a matrix whose columns are a basis for the null space of J5, 
and Bl is not unique. If B is nonsingular, then Bl — B~l. 

Consider now the following ordering among matrices. 

2.3. Definition. Given a symmetric nonnegative definite matrix B, we shall 
write b < B in case 

(i) the range of b is orthogonal to the null space of B, and 
(ii) B has an integrable generalized inverse Bl for which the symmetric part 

of b* — b*B*b is nonnegative definite. 

2.4. THEOREM. Suppose B is nonnegative definite and that the coefficients of 
(2.1) satisfy (2.2). If b < B, (u, w) is a solution of (2.3), and (V(x), Z(x)) 
is a solution of (2.4) for which V(x) is nonsingular, then 

(2.6) ~~x t
u * w ~ i^ZT-Hi] = u*(c - C)u + u*[a* + d + (a* - A*)B%]w 

+ w*tB'&)*(i4 - a)u + w*(6* - b*B%)w + u*(a* - ^*)y 

+ y*(a - A)u + y*By, 
where y = B*bw — ZV~lu. 

Proof. Expanding the left side of (2.6) yields 

4~ [u*w - u*ZF - 1 u] = u*w' - u * Z ' F - 1 u + u*'w 
dx 

- VL*'ZV~\X - u * Z r ' u ' + ^ZV'V'V-'u. 

Using the differential equations (2.3), (2.4) and "completing the square-' by 
adding and subtracting the following expressions: 

u* (a* - A*)B*bw, w* (B*b)* (a - A)u, w*6*B'6w 

yields the desired result. 
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Theorem 2.4 can be used to establish nonoscillation criteria for the non-
selfadjoint system (2.3). By [6, Theorem 5.2], (2.1) is nonoscillatory on X0 

if and only if (2.4) has a conjoined solution (V(x),Z(x)) with V(x) non-
singular on X0l in which case (2.6) is valid for any solution (u(x), w(x)) of 
(2.3). If (2.3) is oscillatory on X0 and (u(x) ,w(x)) is a solution of (2.3) 
satisfying u(a) = u(/3) = 0 for distinct points a < f$ on X0, then we can 
integrate (2.6) from a to /?, and the integral of the left side will vanish. There­
fore any hypotheses which assure that the integral of the right side of (2.6) 
is positive will lead to a contradiction and assure that (2.3) is nonoscillatory 
o n l . 

Suppose now that we choose the coefficients of (2.4) to satisfy the following 
relations: 

A = a 

(2.7) b* - b*Blb = Rx 

C = c - R2 

where Ri and R2 are n X n matrices to be specified later. Then (2.6) becomes 

(2.8) j - [u*w - u*ZF _ 1u] = u*R2u + u*(a* + d)w + xv*b*RJ?w + y*By. 

The above discussion leads to the following nonoscillation criterion for (2.3). 

2.5. THEOREM. Suppose there exist matrices Ri and R2 such that the matrices 
A, B, and C of (2.7) satisfy the hypotheses of Theorem 2.4, and that in addition 
the symmetric part of matrix 

(R2 (a* + d)\ 

is nonnegative definite on X0. If (2.1) is nonoscillatory on XQ then (2.3) is also 
nonoscillatory on XQ. 

Proof. Suppose (2.3) is oscillatory on X0 and that (u (x), w(x)) is a solution 
of (2.3) for which U(a) = u(p) = 0, bu tu (x ) ^ 0 on (a, /5). Let (V(x), Z{x)) 
be the conjoined solution of (2.4) whose existence is assured by [6, Theorem 5.2]. 
Upon integrating both sides of (2.6) from a to /3, the left side vanishes while 
the integral of each of the terms of the right side is nonnegative. Therefore 
we must have y*By = 0, or 

(2.9) V^bw - V&BZV^u = 0. 

Since Bl is nonsingular on the range of &, (2.9) is satisfied if and only if 

bw - BZV-'u = 0, 

(u' - au) - (V -AV)V-lu = 0, 

u ' - V'V-iu = 0, 

or finally, if and only if 
( 7 - i u ) ' = 0. 
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This last equation implies that U = Vk. for some nonzero constant vector k 
and that V(x) is singular at a and p. This is a contradiction and shows that 
(2.3) is nonoscillatory on XQ. 

3. Differential equations of even order. The general linear homogeneous 
differential equation of even order (1.3) can also be defined recursively by 

Un = PnU{n\ 

(3.1) Un-* = - « ' » - * + ! + qn-ku(n-k+» + pn-kU<n-k\ k = 1, 2, . . . , * - 1, 

Ui — qou' — poU = 0. 

While the form (1.3) requires the coefficients pk(x) and qk(x) to be &-times 
differentiable, the recursive definition (3.1) allows one to consider the case 
where the coefficients are merely integrable functions. The form (3.1) also 
leads to the vector system formulation 

(2.3) u ' = a(x)u + b(x)w 

w' = c(x)u + d(x)w, 

where u(x) and w (x) are column vectors defined by 

u(x) = col(u(x), u' (x), . . . , ^ ( w - 1 )(#)), w(x) = col(ui(x), . . . , un{x)) 

1 if j = i + 1 
and a = (a*,) where atj = ,_ . 

J (0 otherwise, 
6 = diag(0, . . . , 0 , l/pn), 

Î
pi-x iij = i 
qi-i if j = i + 1 
0 otherwise, 

( - 1 i f j = * - l 
rf = (<*<*) where dtJ = <gw_i/£n if j = i = » 

(O otherwise. 

Equation (1.1) also allows a recursive formulation 

(3.2) *;„_* = -v'n-k+l + P „ _ ^ - * \ * = 1, 2, . . . , n - 1, 

Î,/ - PQV = 0, 
which leads to the vector system 

(2.1) v' = A(x)\ + B(x)z 

z' = C(x)v - i4*(*)z, 
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where 

\(x) = col(y(x), v'{x), . . . , y(w-1)(x)), z(x) = col(z>i(x), . . . ,vn(x)) 

and A = (A tJ) where 4̂ tj = < . * / { ~~ . 
y 7 (0 otherwise, 

B = diag(0, . . . , 0 , 1/PW), 

C = diag(P0 ,Pi , . . . , P n - i ) . 

There is an important relation between the oscillatory behaviour of (3.2) 
and a particular solution of the selfadjoint matrix system 

(2.4) V = A(x)V+ B(x)Z 

Z' = C(x)V - A*(x)Z, 

(see [2; 3]). For if V\(x)y . . . , vn(x) is a fundamental system of solutions of 
(3.2) satisfying 

v<<*-i>(X) = 0, ij = 1, . . . , » , 

2>i,(A) = $<>, i , i = 1, . . . ,n, 

then every solution v(x) of (3.2) satisfying 

v(X) = z>'(X) = . . . = ^—«(X) = 0 

is a linear combination of Vi(pc), . . . ,vn(x). Therefore, if we consider the 
matrices V(x) and Z(x) whose ith columns are given by col(^i, v/ , . . . , v^v) 
and col(ya, . . . , vin)y respectively, then (V(x), Z(x)) is a solution of (2.4). 
It follows readily that a necessary and sufficient condition for the existence 
of a nontrivial solution of (3.2) satisfying 

v(\) = . . . = !><—i>(X) = 0 = »(/*) = . . . = ^—"0*) 

for some ix T* X is that V(ii) be singular. Since F(X) = 0 and (2.4) is self-
adjoint, (V(x),Z(x)) is a conjoined solution of (2.4) and Theorem 2.5 can 
be applied. 

Writing the coefficients of the comparison equation (3.2) in the form 

Pk(x) = pk(x) - rk(x), 

it will be possible to formulate disconjugacy criteria for (3.1) in terms of the 
coefficients of (3.1) and the rk(x). In order to make use of Theorem 2.5 we 
note that 

b* -b^B'b = diag(0, . . . , ( W £ w
2 ) , 

0 otherwise, 

a* + d = diag(0, . . . , 0, qn-i/pn). 

These observations make it possible to formulate our principal result. 
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3.1. THEOREM. If MI(«) is the first conjugate point of a with respect to (3.2), 
and if for a ^ x ^ Mi (a) 

(i) rn(x) ss pn(x) — Pn(x) â 0 and rn(x) > 0 on {x\qn-i(x) 9e 0}, and 
(ii) c — C — diag(0, . . . , 0, q2

n-i/4:(fin — Pn)) has a nonnegative definite 
symmetric part, 

then 771(a) è Mi(«)-

Proof. Suppose that 771(a) < MI (a), so that (3.2) is disconjugate on [a, 171(a)]. 
Then the particular solution (V(x), Z(x)) of (2.4) constructed above satisfies 
V(a) = 0 and det V(x) 9e 0 for a < x < 771(a). By continuity, it is possible 
to choose X < a such that V(\) = 0, but det V(x) 9* 0 for a ^ x g 771(a). 
Given this particular solution (V(x), Z(x)) of (2.4), we shall apply Theorem 2.5 
to obtain the necessary contradiction. 

If u(x) is a nontrivial solution of (3.1) with nth. order zeros at 
a < jg s= 771(a), then the vectors ll(x) = col(w(#), u'(x), . . . , ^ (w_1)(^)) and 
w(x) = (wi(#), . . . , un(x)) satisfy (1.3) and u(a) = u(j8) = 0. According to 
Theorem 2.5, we obtain the necessary contradiction if it can be shown that 
the symmetric part of the matrix 

(3.3) (c- C a* + d \ 
\ 0 6* - b*Bib) 

is nonnegative definite on [a, £]. Specific criteria for the nonnegative définite-
ness of (3.3) can be derived by considering two cases. 

If qn-i(x) = 0, then (3.3) is nonnegative definite if rn(x) ^ 0 and c — C is 
nonnegative definite. The latter clearly requires that rk(x) à 0 for 
* = 0, . . . , n - 1. 

If qn(x) 9* 0, then we consider a matrix K = diag(0, . . . , 0, k) and require 
that 

(i) c — C — K have a nonnegative definite symmetric part, and 
(ii) the matrix 

(K a* + d \ 
\0 b^-b^B'b) 

have a nonnegative definite symmetric part. 
The latter condition requires that rn(pc) > 0, and in this case the most pro­
pitious choice of k is 

2 2 
L = ° n~l = g n-l 

4rn ±(pn - PB) • 
This completes the proof. 

Since specific criteria are known (see [1; 4]) for the disconjugacy of (3.2), 
the above comparison theorem yields disconjugacy criteria for (3.1). 

Remarks. As in the self adjoint case [5], these results are subject to a number 
of generalizations which will be sketched out below. 
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1. Hypothesis (ii) of Theorem 3.1 can be replaced by a weaker integral 
inequality which assures that the integral from a to jui(a) of the first term on 
the right side of (2.8) is nonnegative. If u(x) is the nontrivial solution of (3.1) 
which realizes the conjugate point MI(«)» this integral inequality becomes 

J'«Ml (a) [~n— 2 n— 2 

Z (/>*-p*)(«w)2 + Z<?*Att+1> 
a L A ; = 0 A;=0 

+ (Pn - P» » q2n-l/Hpn - P»)) (^"YJ *C ^ 0. 

Hypothesis (i) can also be replaced by an integral inequality. 
2. In the proof of Theorem 2.4, no assumptions need be made regarding the 

linearity of the matrix functions appearing in (2.1) and (2.3). Accordingly, 
the coefficients of (3.1) and (3.2) may take the form 

pk(x, U, . . . , 1l(n-l\ Mi, . . . , Un), Pk(x, » , . . . , V{n~l\ VU . . . , V„), e t c . , 

as long as the hypotheses of Theorem 3.1 hold for a S oc rg MifcO» and for all 
values of the other arguments of the coefficients. 

3. In case (2.3) is replaced by the system 

u ' = au + 6w, 
u*w' è u*cu + u*dw, 

Theorem 2.4 yields an inequality in place of (2.6) which suffices to prove 
Theorem 3.1. As a result, we may replace the equation 

u\ — q0u' — pou — 0 

in (3.1) by the inequality 

uui — qoiiu' — pou2 ^ 0. 

4. In case the matrix C(x) constructed in Theorem 2.5 is nonnegative 
definite and symmetric, we can interchange the roles of u and w and of V 
and Z. This makes it possible to establish a comparison theorem for generalized 
focal points defined by 

u(a) = u'(a) = . . . = u^-l){pt) = 0 = Mi(7) = . . . = un(y). 

Such a theorem constitutes a generalization of [2, Theorem 4.1]. 
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