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Abstract

Improving understanding of the pathogen-specific seasonality of enteric infections is critical
to informing policy on the timing of preventive measures and to forecast trends in the burden
of diarrhoeal disease. Data obtained from active surveillance of cohorts can capture the under-
lying infection status as transmission occurs in the community. The purpose of this study was
to characterise rotavirus seasonality in eight different locations while adjusting for age, calen-
dar time and within-subject clustering of episodes by applying an adapted Serfling model
approach to data from a multi-site cohort study. In the Bangladesh and Peru sites, within-sub-
ject clustering was high, with more than half of infants who experienced one rotavirus infec-
tion going on to experience a second and more than 20% experiencing a third. In the five sites
that are in countries that had not introduced the rotavirus vaccine, the model predicted a pri-
mary peak in prevalence during the dry season and, in three of these, a secondary peak during
the rainy season. The patterns predicted by this approach are broadly congruent with several
emerging hypotheses about rotavirus transmission and are consistent for both symptomatic
and asymptomatic rotavirus episodes. These findings have practical implications for pro-
gramme design, but caution should be exercised in deriving inferences about the underlying
pathways driving these trends, particularly when extending the approach to other pathogens.

Introduction

Diarrhoeal disease is the second leading global infectious cause of under 5 mortality and can
be caused by a variety of viral, bacterial, protozoan and macroparasitic agents [1, 2]. Most of
these enteric infectious diseases (EID) exhibit some kind of seasonality, their incidence peak-
ing at a particular point in the annual cycle and receding at others each year [3]. These pat-
terns may vary with latitude and climatic zone and, for diseases with multiple routes of
transmission, different mechanisms may come to dominate their relative contribution to over-
all burden at different points in the annual cycle [4]. Improving understanding of the
pathogen-specific seasonality of EID is methodologically challenging but critical to informing
policy on the timing of preventive measures and to forecast the impact of climate change on
future disease burden trends [5, 6].

Seasonality of health outcomes can be assessed using Serfling models, regression models
fitted to time series data with a harmonic component, wherein sinusoidal transformations
of the time metric are introduced in pairs to capture the oscillating pattern characteristic of
seasonally varying outcomes when plotted over time [7]. This approach has the advantage
of treating cyclical calendar time as a continuous predictor, rather than categorising it into
12 bins representing each month of the year [8]. Furthermore, harmonic pairs can be intro-
duced in a stepwise manner, to capture increasing complexity of a seasonal pattern [7].
This approach was first developed for use on passive surveillance or health-facility based
data sources, which tend to cover long-time periods but are, by their nature, restricted to
reportable morbidity- or mortality-related outcomes which manifest only as severe,
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symptomatic or fatal cases [9]. Often this also means that the out-
come is rare, necessitating aggregation of weekly, monthly or sea-
sonal summary statistics [10].

For EID episodes, which may be mild, self-limiting or sub-
clinical, a promising alternative source of data is active surveillance
of community-based cohorts, which can capture the underlying
infection status as transmission occurs in the community as well
as potential time-varying covariates [4, 11]. While such observa-
tional studies tend to span a shorter length of follow-up time and
are not guaranteed to detect sufficient numbers of cases, Sarkar
and colleagues have demonstrated that it is still possible to make
statistically valid inferences about pathogen-specific seasonality of
EID – namely, rotavirus diarrhoea episodes – by applying the har-
monic method to data from a small birth cohort with follow-up
spanning <5 years [4]. Such analyses must take careful account of
the interaction between age and risk of infection, loss to follow-up
and within-subject correlation, and, since a consensus has yet to
be reached on the precise methodology for doing so, results should
be interpreted cautiously and in light of prior findings.

The objective of this paper is to apply an adapted Serfling
approach to data on rotavirus infections from a multi-site cohort
study in order to characterise this EID’s seasonality in eight dif-
ferent locations. Infection with this segmented, double-stranded
RNA virus is a near-ubiquitous feature of infancy, with around
95% of children globally experiencing at least one rotavirus infec-
tion before 5 years of age prior to the introduction of the vaccine
in, as of the time of writing, 92 countries [12, 13]. Recent
meta-analyses and review articles have concluded that, while the
long-recognised pattern of sharp winter peaks receding to negli-
gible levels in the offseason holds in temperate, mid-latitude
regions, tropical regions exhibit more sustained, year-round rota-
virus transmission with discernible, but less pronounced relative
peaks [6, 14–19]. In tropical South Asia, moreover, biannual
peaks in rotavirus are observed, with a large spike in winter fol-
lowed around 6-months later by a smaller, secondary uptick coin-
ciding with the monsoon rains [4, 16, 19, 20]. Questions remain
about how consistently these patterns hold across different cli-
matic zones, about the relative contribution of environmental dri-
vers and host-related factors such as asymptomatic infections, and
whether year-round transmission in tropical regions acts as a res-
ervoir for the seasonal reintroduction of the virus to temperate
zones [21, 22]. We attempt to address these knowledge gaps
using data from the Interactions of Malnutrition & Enteric
Infections: Consequences for Child Health and Development pro-
ject (MAL-ED).

Methods

Study population

The MAL-ED project offers a unique opportunity for a
long-called-for comparative analysis that can apply the same
approach to data from multiple locations and on different patho-
gens in order to elucidate the patterns and determinants of their
seasonality [4, 5, 11]. The study was established in 2009 with the
aim of investigating the risk factors for enteric infection, diar-
rhoeal disease, undernutrition and other related adverse out-
comes. Birth cohorts were recruited and monitored in eight
communities, each in a different low- and middle-income country
(LMIC) – Bangladesh, Brazil, India, Nepal, Pakistan, Peru, South
Africa and Tanzania – across three continents. The MAL-ED
study used molecular diagnostics and standardised surveillance

protocols and assays to track data on EID incidence, nutritional
and anthropometric outcomes, cognitive development and bio-
logical markers [11, 23]. The resulting longitudinal dataset con-
tains, among other things, data on infection status for more
than 30 enteric pathogens in 40 500 stool samples collected
from 2199 infants from ages 0 to 24 months between
November 2009 and March 2014. These samples were routinely
collected as part of active surveillance on, or within 2 days of
the monthly anniversary of the child’s birth [23]. Additional, off-
monthly samples of diarrhoeal stool were collected in between the
monthly assessments on days in which the caregiver reported that
the child was having a diarrhoeal episode [11]. In this way, the
study was able to detect mild and even asymptomatic cases, a
more proximal indicator of endemic pathogen transmission and
a less rare outcome than clinical manifestations [11]. At the
time of data collection, three of the countries in which the
study sites are located – Brazil, Peru and South Africa – had intro-
duced the rotavirus vaccine into their routine childhood immun-
isation schedules.

Outcome variables

Stool samples were tested for the presence of shed rotavirus using
enzyme-linked immunosorbent assay methods that were standar-
dised across sites [23]. The outcome of interest in this analysis
was, therefore, the time-varying, stool sample-level, binary infec-
tion status variable, for which a value of 1 signifies that a stool
sample was found to be positive for rotavirus and 0, negative.
To ensure that a single episode of rotavirus infection was not
counted multiple times, rotavirus-positive stool samples were
excluded from the dataset if they were collected within 14 days
of a previous positive sample, without being separated by an inter-
mediate negative sample (this being a plausible maximum dur-
ation of viral shedding in immunocompetent persons) [24, 25].

Statistical methods

This analysis applied a Serfling model to the binary rotavirus
infection status data to test for and quantify the effects of seasonal
patterns in prevalence at each MAL-ED site. Because this is a
multi-site study, with cohorts selected from communities located
in different parts of the globe each with their own seasons and cli-
mate, the analysis was performed separately for each site to model
the rotavirus isolation rate – the proportion of positive stools –
over time [21]. This was approximated by the probability of a
stool sample being positive for rotavirus, which in turn was esti-
mated from the regression coefficient values for equation (1)
(adapted from Stolwijk et al.) [26]:

logitP(Yit = 1) = b0 + b1 × sin
2pt

365.25

( )
+ b2 × cos

2pt
365.25

( )

+ b3 × sin
4pt

365.25

( )
+ b4 × cos

4pt
365.25

( )

+
∑
j

gj × timet
( )

+
∑
k

uk × ageit
( )

(1)

where
t = the date of follow-up
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P(Yit = 1) = The probability of a stool from individual i being
positive for rotavirus on date t

β0 = the mean log odds of positivity over the entire follow-up
period

β1 and β2 = sine and cosine coefficients for the first harmonic
β3 and β4 = sine and cosine coefficients for the second har-

monic (to be included based on a comparison of the quasi-
likelihood information criteria (QIC) for the model compared
with a null model that includes only the first harmonics)

γj = a series of j cubic spline terms for calendar time in months
on date t (centred at the mid-point of follow-up)

θk = a series of k cubic spline terms for individual i’s age in
months on date t (centred at 12 months of age)

The model was fitted using generalised estimating equations
(GEE) to account for the considerable within-subject clustering
of rotavirus infections. The primary exposures of interest in this
longitudinal analysis were the four Fourier series functions (first
and second harmonic sine and cosine transformations of the
day of the year ranging from 0 to 365), which were added as
terms to the model with stepwise selection of the second harmonic
pair based on the QIC statistic [27]. The time metric was continu-
ous calendar time in days, a variable that was included in the
model as a covariate centred on the mid-point between the earliest
and latest observation in the dataset, to adjust for potential secular
trends in rotavirus transmission over the course of follow-up.
Restricted cubic spline terms for this variable were included with
degrees of freedom and knot positions determined separately for
each study site using a multivariable regression spline fitting algo-
rithm [28]. This was to account for the potential confounding
effects of isolated outbreaks, which might give the appearance of
seasonality, due to being heavily clustered over a short period
within a single year. The infants’ age in continuous months at
the time of the stool sample (centred on the first birthday) was
also included using site-specific cubic splines to account for the
non-linear association between rotavirus risk and age in this
cohort [29]. By including this smooth function for age the cumu-
lative acquisition of immunity within the study population could
also be adjusted for [30]. Infection by a given rotavirus genotype
confers only partial, homotypic immunity that diminishes the
severity of, but does not prevent, subsequent infections [31].
Repeated rotavirus episodes within the same individual are there-
fore common, but may be less likely to become clinically apparent
in older infants. Since the cumulative incidence of rotavirus infec-
tion necessarily rises steadily over the first 2 years of life, age can
be used as a proxy for acquired immunity.

The timing, amplitude and number (single or double) of the
annual peaks in the rotavirus isolation rate were estimated for
each study site from the output of the model. The primary
peak was defined as the highest probability predicted by the
model and its amplitude was calculated as the difference
between this value and the lowest predicted probability over
the year. The secondary peak was defined as the peak with
the lower maximum value and its amplitude was also calculated
relative to the lowest predicted probability (the global, as
opposed to the local minimum). The overall statistical signifi-
cance of the seasonal pattern was assessed based on the Wald
test for the combined contribution to the model of all included
harmonic terms. Finally, the seasonal pattern was visualised by
plotting the predicted probability of rotavirus positivity for each
study site against the day of the year. The shapes of these plots
were compared with those obtained from lowess smoothed
averages and restricted cubic spline models to assess their fit.

The combined significance of the age terms, the calendar time
terms and the harmonic terms were each assessed using the
Wald test while the overall model fit was assessed by calculating
QIC statistics for the final models. To compare the seasonality
patterns between symptomatic and asymptomatic infection epi-
sodes, the analysis was repeated first on only the stool samples
obtained according to the monthly schedule (by active surveil-
lance), and secondly on those collected during diarrhoeal epi-
sodes (by passive surveillance), to approximate the rate of,
respectively, symptomatic and asymptomatic transmission.
Analyses were carried out using Stata 13.1 [32].

Results

Exploratory analysis

Figure 1 shows the locations of the eight MAL-ED study sites in
relation to the Equator and Tropics of Cancer and Capricorn. Half
of the sites lie in the Southern hemisphere with three of these –
Brazil, Peru and Tanzania – situated close to the Equator and
the fourth close to the southern edge of the tropics. Of the sites
in the Northern hemisphere, one (India) is located in the tropics,
and the remaining three are within the mid-latitudes.

Table 1 summarises the number of study subjects, the number,
percentage and clustering of rotavirus-positive samples, the length
of follow-up time and the proportion of participants that were lost
to follow-up in each of the MAL-ED study sites. The largest
number of rotavirus infections (227), the highest stool positivity
rate (4.1%) and the highest proportion of study subjects who
experienced at least one rotavirus infection episode (the cumulative
probability of first infection – 57.4%) were seen in the Bangladesh
site, while the site where the corresponding statistics were all lowest
– respectively 17%, 0.6% and 7.0% – was in Brazil, The Brazil site
also had the smallest number of study participants, total number of
samples and months of follow-up. Among the sites located in
countries that have introduced the rotavirus vaccine, the Peru
site had the highest stool positivity rates and the cumulative prob-
ability of rotavirus infection, as well as the longest follow-up time
and the largest number of study subjects and stool samples col-
lected of any site. There were large differences between sites in
the percentage of stool samples in the dataset that were diarrhoeal
(off-monthly) ranging from 2.9% in Tanzania to 35.8% in
Pakistan. The level of within-subject clustering of rotavirus infec-
tions was high enough to justify the use of GEE (>10% of episodes
occurring in infants experiencing two or more episodes) at all
sites. In Bangladesh and Peru within-subject clustering was
high, with more than half of infants who experienced one rota-
virus infection going on to experience a second and more than
20% experiencing a third. In Brazil, no study subject experienced
three rotavirus infections over the course of follow-up. The loss to
follow-up was defined as the proportion of the total number of
participants for whom no observation was recorded after age
23.5 months and exceeded 10% in all sites except India and
Nepal. In the Brazil and Nepal sites, these levels of attrition
were considerable with more than a third of the initial partici-
pants lost to follow-up by 24 months of age. Exploratory analysis
of the missingness patterns (not reported) indicated that the prob-
ability that an observation was missing did not depend on the
subjects’ history of observed rotavirus episodes, suggesting an
underlying mechanism of Missingness Completely at Random
(MCAR).
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Figure 2 shows needle plots of the observed daily distribu-
tion of rotavirus infections (included positive samples) for
each site along with the overall length of follow-up time.
With the possible exception of the Peru site, infections appear
to be sparsely distributed at the beginning and end of the
follow-up period and occur with more density during the mid-
dle period suggesting a non-linear association with age. Some
clustering of infections at certain times of year are discernible
in most sites with the exception of Brazil, in which the distribu-
tion was too sparse to discern a pattern, and South Africa,
where two isolated outbreaks within a single year (2012) are
the only obvious clusters.

Model results

Table 2 summarises the Wald test chi-squared statistics for the
combined significance of the terms for each of the covariate pre-
dictors (i.e. the cubic spline terms for age and time and the har-
monic terms for seasonality) as well as the seasonality parameters
predicted by the logistic model fitted with GEE. The test statistic
for the combined contribution of the harmonic terms to the
model was highly statistically significant in all sites with the
exception of Brazil and South Africa where it was only slightly sig-
nificant. In all sites except Pakistan and South Africa, the model
that included both the first and second harmonics (4 degrees of
freedom) was a better fit for the data than an equivalent that

Fig. 1. Locations of the eight MAL-ED study sites in relation to the Equator and Tropics of Cancer and Capricorn.

Table 1. Number of study subjects, number, percentage and clustering of positive samples and follow-up time for rotavirus in each of the MAL-ED study sites

Bangladesh Brazila India Nepal Pakistan Perua
South
Africaa Tanzania

Positive samples 225 17 78 107 126 201 57 119

Total samples 5478 2679 4396 4594 6035 6853 4351 3790

% positive samples 4.1% 0.6% 1.8% 2.3% 2.1% 2.9% 1.3% 3.1%

% diarrheal samples 29.8% 4.9% 19.9% 22.0% 35.8% 32.3% 5.7% 2.9%

Total subjects 265 227 243 238 275 303 290 259

% subjects ever positive for rotavirus 57.4% 7.0% 26.7% 40.3% 38.5% 45.5% 18.3% 36.7%

Within-subject clustering ⩾2 episode 56.4% 11.8% 29.5% 19.6% 30.2% 53.2% 12.3% 37.8%

⩾3 episode 23.6% 0.0% 11.5% 2.8% 4.8% 22.4% 5.3% 7.6%

Months of follow-up 47.7 42.3 46.8 44.2 48.1 49.7 51.9 47.6

Positive samples per month 6.4 0.4 2.1 3.7 3.5 4.3 1.8 3.4

Loss to follow-up 22.6% 37.0% 9.5% 7.6% 11.3% 35.6% 20.0% 23.6%

The percentage of rotavirus episodes occurring in subjects that experienced two or more and three or more episodes.
aCountry in which the rotavirus vaccine had been introduced at the time of the study.
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only included the first harmonic according to stepwise selection
based on the QIC statistic. At the Nepal, Pakistan and South
Africa sites, the models predicted a single annual peak in trans-
mission, whereas at the other sites, both a primary and a smaller
secondary peak were predicted. The highest predicted probability
of rotavirus infection in absolute terms was the single annual peak
in Nepal (10%) followed by the primary peak in Bangladesh (8%).
The highest amplitude – the largest difference between the highest
and lowest annual values – was also seen in Nepal (9 percentage
points’ difference) followed by India (7 percentage points).

Figure 3 shows a graphic visualisation of the annual seasonal
pattern in rotavirus prevalence predicted by each of the eight site-
specific models with the approximate period of the year with the
highest precipitation shown in blue-grey. In all four of the South
Asian sites, the primary peak in rotavirus prevalence occurred
between the end of December and the very beginning of
February coinciding with the dry season. In addition, at the

Bangladesh and India sites, the models predict a smaller second-
ary peak during the second half of the year, whereas in Nepal and
Pakistan, transmission appears to recede to a very low level during
the off-season. In Brazil, for which only a very small number of
episodes were recorded in the dataset, biannual peaks were also
predicted but with very small amplitude values, wide confidence
intervals and a lower level of statistical significance. With the
data from the Peru site, the model predicted a subtle but highly
statistically significant pattern of two small peaks in early May
and October followed by slightly lower levels of transmission in
the period from December to February. While the seasonal pat-
tern in South Africa attains a slight level of statistical significance,
the small amplitude of the predicted peak and the low overall level
of transmission are not suggestive of strong evidence for variation
during the annual cycle.

Table 3 presents the equivalent seasonality and model statistics
resulting from restricting the analysis first to only the monthly

Fig. 2. Needle plots of the daily distribution of
rotavirus-positive stool samples recorded at
each MAL-ED site (rotavirus-negative samples
not shown).
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samples, and then to the diarrheal samples. In the Bangladesh and
India sites, the seasonal pattern of rotavirus prevalence in diar-
rhoeal stools exhibited more pronounced primary and secondary
peaks and attained a higher level of statistical significance than in
monthly stools and the timing of both peaks was broadly similar
across the three analyses. In Nepal too, the maximum value and
amplitude of that site’s single peak were of a larger magnitude
in the diarrhoeal samples and smaller in the monthly than in
the full dataset and both improved upon the fit of the original
model considerably according to the QIC statistic. Brazil was
the only site at which the peak prevalence of rotavirus in monthly
samples was considerably higher and the peak in diarrheal sam-
ples lower than when the two sample types were combined. The
data from the Pakistan site exhibited a summertime secondary
peak in prevalence in monthly samples that was not apparent in
the diarrhoeal samples or full data and had a more statistically sig-
nificant seasonal pattern than either. In Peru, the timing of the
primary and secondary peaks was reversed in the monthly sam-
ples compared with the other analyses. Neither of the stool sam-
ples types showed a statistically significant pattern at the South
Africa site and in Tanzania, the seasonal pattern in the monthly
stools was similar in terms of peak timing and significance to
the full model, but the pattern in diarrhoeal stools was not statis-
tically significant.

Discussion

Despitewidespread recognition of the seasonal nature of the epidemi-
ology of EID, the mechanisms underlying this phenomenon are
poorly understood compared with other disease groups [5, 33].
With some notable exceptions, most studies of the seasonality of
these diseases have been hindered by data being aggregated up to
weekly, monthly or quarterly cumulative incidence, rather than
daily estimates [16, 34]. There is also a paucity of studies on season-
ality of EID coming from developing countries – particularly Africa
and South America – and those in the tropics and the southern hemi-
sphere [14]. Because of its unique design, the MAL-ED study has the
potential to address many of these knowledge gaps and elucidate the
drivers of seasonality by comparing pathogen-specific patterns across
sites, and multiple pathogens within the same location.

In this analysis, we applied a flexible statistical approach to
characterising cyclical patterns in prevalence to data on rotavirus
infection status in the eight MAL-ED birth cohorts and obtained
results that are consistent with those reported in the prior litera-
ture, while also being suggestive of novel insights that merit fur-
ther exploration. In the four South Asian sites, our model
predicted marked primary peaks in the December to January
dry season, congruent with a hypothesised inverse relationship
with air humidity [35]. Furthermore, at the Bangladesh and
India sites (and at the Pakistan site when restricted to monthly
samples only), secondary monsoon-season peaks were predicted,
in line with similar findings documented in the literature [4]. In
two of the sites in rotavirus vaccine countries – the urban com-
munity in Brazil with relatively widespread access to improved
water and sanitation [36], and the remote, rural location in
South Africa [37] – the amplitude of the seasonality predicted
by the model was much smaller and less statistically significant
than elsewhere, in a way that was proportionate to the lower back-
ground endemicity of the virus in those locations. This is consist-
ent with the documented ‘blunting’ of the annual rotavirus peaks
following the introduction of the vaccine [38]. Low amplitude sea-
sonality was also evident in the site in Peru – the third vaccineTa
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country – however, where the pattern was nonetheless highly stat-
istically significant. While both peaks at the Peru site occurred
during the drier part of the year, this apparent correlation should
be interpreted with caution, since that location is subject to year-
round rainfall, which means that the rainy season is far less
marked than at the other sites [39]. In Tanzania, the biannual
peaks predicted by the model both had a similar amplitude
with the slightly larger of the two coinciding with the mid-year
dry winter and the smaller with the November to May rainy sea-
son [40].

Seasonal patterns of rotavirus positivity were broadly similar
when the analysis was repeated on both the monthly and the diar-
rheal stool subsets (with the exception of the diarrhoeal stools at
the Tanzania site, which may be explained by their representing
by far the smallest proportion of the overall data at any site).
The amplitude of the peaks in diarrheal stools appear to have a

greater magnitude, but this analysis did not adjust for the under-
lying seasonal variation in diarrhoeal episodes of any aetiology.
Our results suggest that symptomatic and sub-clinical rotavirus
episodes do not differ substantially in their seasonal patterns
and contribute roughly equally to the overall annual trend.

Since human rotavirus has no known animal reservoir, it has
been speculated that tropical regions with year-round endemic
transmission are the main reservoir from which the virus spreads
poleward each year at the start of the rotavirus season when con-
ditions favour its reintroduction into temperate zones [22].
Findings from Török and colleagues that the start of the annual
rotavirus season in the USA occurs earliest in the southwest
and progresses sequentially northeastward over the course of
the winter, lend weight to this theory [41]. Some of the results
presented here are consistent with this hypothesis. In the higher
latitude sites of Nepal, Pakistan and South Africa, off-season

Fig. 3. Predicted probability of rotavirus infection
by day of the year with 95% confidence intervals,
Wald test chi squared statistics and degrees of
freedom (D.F.) for harmonic terms (***p < 0.001,
**p = 0.001–0.01, *p = 0.01–0.05). Local rainy sea-
sons are shaded blue-grey.
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Table 3. Wald test chi-squared statistics for harmonic terms (with degrees of freedom) and seasonality parameters predicted by logistic model fitted with GEE by sample type

Bangladesh Brazila India Nepal Pakistan Perua South Africaa Tanzania

Monthly
samples only

Seasonality 10.51† (4) 12.41† (4) 12.21† (4) 18.00†† (4) 37.92††† (4) 14.18†† (4) 5.65 (2) 30.82††† (4)

First peak Timing December 18 May 17 January 17 January 12 January 17 October 9 April 6 June 11

Peak value 0.04 0.02 0.04 0.02 0.04 0.02 0.01 0.06

Amplitude 0.03 0.02 0.04 0.02 0.04 0.02 0.01 0.05

Second peak Timing June 29 – September 4 – July 17 May 17 – December 25

Peak value 0.01 – 0.01 – 0.01 0.02 – 0.05

Amplitude 0.00 – 0.01 – 0.00 0.02 – 0.04

QIC statistic 746.83 113.38 333.80 10 772.19 526.20 945.11 9479.01 939.72

Diarrhoeal
samples only

Seasonality 44.02††† (4) 13.68†† (4) 12.54† (4) 59.93††† (4) 19.38††† (2) 13.84†† (4) 8.81 (4) 2.54 (2)

First peak Timing December 28 September 29 February 16 January 18 December 22 April 21 February 16 April 30

Peak value 0.24 0.00 0.21 0.24 0.08 0.07 0.16 0.80

Amplitude 0.19 0.00 0.20 0.23 0.07 0.05 0.16 0.72

Second peak Timing July 15 April 27 September 19 – – September 17 August 2 –

Peak value 0.06 0.00 0.14 – – 0.04 0.16 –

Amplitude 0.01 0.00 0.13 – – 0.02 0.16 –

QIC statistic 945.58 38.68 352.75 11 038.09 9053.31 688.75 100.78 75.13

†††p < 0.001, ††p = 0.001–0.01, †p = 0.01–0.05. Numbers in parentheses indicate degrees of freedom – the number of model terms selected for that covariate.
aCountry in which the rotavirus vaccine had been introduced at the time of the study.
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transmission appears to recede to negligible levels, while the more
tropical Bangladesh, Peru and, to a lesser extent, Tanzania sites
experience more sustained low season transmission. The excep-
tions to this pattern are the Brazil site (perhaps due to the success
of the vaccine in reducing transmission there) and India, a trop-
ical location in which transmission recedes almost entirely for a
significant part of the year.

The high level of within-subject clustering detected in the sites
with the highest rates of rotavirus infection is of interest in light of
increasing evidence as to the role of histo-blood group antigen-
controlled host ranges in determining age-specific susceptibility
to rotavirus infection [42]. This was perhaps most striking in the
Peru site, which, despite being in a rotavirus vaccine country,
had levels of within-subject clustering comparable to that of the
Bangladesh site. A previously published analysis of the MAL-ED
data has shown that the high rotavirus incidence in the Peru site
is largely concentrated in the 12–24 month age range and may
be due to waning vaccine-induced protection during this period
of infancy [29]. In all eight sites, more than 50% of rotavirus infec-
tion episodes occurred in the quintile of the study subjects that
experienced the most infections. In Brazil and South Africa, all
cases occurred in this quintile due to the apparent overall low levels
of endemicity, but in Peru, this proportion was 61.2%. These statis-
tics suggest that a large proportion of the burden of rotavirus is
borne by a relatively small proportion of the study subjects and
the extent to which this clustering is attributable to host factors
(such as immunity conferred by gut microbiota composition)
and host secretor status as opposed to environmental variables
merits further investigation.

Although we have identified statistically significant seasonal
patterns, caution should be exercised in deriving inferences
about the underlying pathways driving these trends, particularly
when extending the approach to other pathogens. While these
results may seem highly suggestive of an overlapping environmen-
tal influence, such as cyclical changes in the weather constraining
the transmission and survival of the disease agent, the influence of
co-seasonal social, behavioural and immunological determinants
of transmission risk cannot be ruled out on the basis of these
findings alone [5, 10, 43]. In reality, the true mechanisms under-
lying infectious disease seasonality include multifarious environ-
mental, behavioural and immunological drivers that are specific
to particular pathogens, their human (and non-human) hosts
and their locations [5]. These can interact to produce subtle peri-
odic fluctuations in either the reproductive number or the fraction
of the population susceptible to infection at a given time of the
year [10]. For some diseases, the influence of the weather may
indeed be fairly direct, whereas, for others, they may be mediated
through changes in behaviour of the human host such as rainfall
altering patterns of contact between infected and susceptible indi-
viduals as they congregate indoors [44]. Furthermore, even for
pathogens for which weather has a direct influence on transmis-
sion, competing mechanisms may come to dominate their relative
contribution to overall burden at different points in the annual
cycle. The example of rotavirus in South Asia is illustrative of
this. The large winter peak noted here and elsewhere in the litera-
ture may be accounted for by airborne transmission on dried dust
substrates, while the smaller monsoon peak may be due to the
wider dispersal of the virus in floodwater and runoff promoting
water-borne transmission [6]. Analysis of the influence of specific
seasonally varying climate variables (beyond basic comparisons
with the timing of the site-specific rainy seasons presented
here) are beyond the scope of this paper, but have the potential

to provide further insights into rotavirus transmission dynamics
and will be explored in subsequent MAL-ED publications.

The approach presented here is sufficiently flexible to be adapted
to other pathogens or outcomes in theMAL-ED dataset or to similar
studies in other locations, to further characterise and explore sea-
sonal patterns in their occurrence. The Serfling approach may be
applied to other ways of modelling these outcomes, such as log inci-
dence [4], case counts (modelled as a Poisson distribution) [34] or a
hazard function in a survival analysis. Furthermore, the method can
be used not just to test for the statistical significance of seasonality
but also to control for it as a potential confounder of the main asso-
ciation of interest [30]. Investigations into the association between
climate and seasonally varying health outcomes may incorporate
harmonic terms to assess whether they retain their statistical signifi-
cance in the presence of specific hydro-meteorological parameters, a
sign that host factors and other non-environmental drivers may be
playing a causal role. Future research into the relative contribution of
these causal pathways may also adjust for confounding by behav-
ioural and sociodemographic factors such as access to improved
water and sanitation, socioeconomic status, dietary intake, fertility
rates and contact with animals as well as highly temporally disaggre-
gated climate data [16].

The findings presented here have practical implications for the
evaluation of programmes and interventions that aim to reduce
EID incidence. Attempts to quantify the impact of such measures
should take into account the point in the seasonal cycle at which
the outcome is ascertained in order to avoid misattributing to the
intervention trends that are in fact consistent with the normal
annual patterns. As this study demonstrates, these patterns can
vary considerably between neighbouring countries – as is evident
from comparing the results for the Tanzania and South Africa
MAL-ED sites – or show similarities across large geographic
areas – as seen in the four South Asian sites – so knowledge of
the local context is critical.
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