
BULL. AUSTRAL. MATH. SOC. 6 5 J 1 5 , 65H10

VOL. 43 (1991) [51-61]

ON TIME DEPENDENT MULTISTEP DYNAMIC PROCESSES

FERENC SZIDAROVSZKY AND IOANNIS K. ARGYROS

The discrete time scale Liapunov theory is extended to time dependent, higher
order, nonlinear difference equations in a partially ordered topological space. The
monotone convergence of the solution is examined and the speed of convergence is
estimated.

1. INTRODUCTION

Iteration processes are extremely important in solving optimisation problems, linear
and nonlinear equations, and in general, they are used in all fields of applied mathe-
matics.

In the context of nonlinear programming Zangwill [15] presented a general theory
on convergence of iteration processes based on point-to-set mappings. He investigated
only one-step stationary iterations, and he proved that the process either terminates
after a finite number of steps or the limit of any convergent subsequence is a solu-
tion. Special but practically useful criteria were derived for example by Brock and
Scheinkman [1], Fujimoto [4], [5], Szidarovszky and Okuguchi [10] based on special
selections of the Liapunov function.

In this paper the convergence theorem of Zangwill is generalised and extended to
nonstationary multistep iteration processes in partially ordered topological spaces. In
addition, monotone convergence and the speed of the convergence of the processes are
examined.

Before presenting our convergence results, a brief summary of the concepts of spe-
cial topological spaces is presented.

Let X be a linear space. A subset K of X is called a cone if K + K C K and
aK C K for all a > 0. The cone K is proper if K D {-K} = 0. The relation "^"
defined by

x ^ y if and only if y — x G K

is a partial ordering on K which is compatible with the linear structure of this space.
Two elements x and y of X are called comparable if either x ^ y or y ^ x holds.
The space X endowed with the above relation is called a partially ordered linear space
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(POL-space). If X has a topology compatible with its linear structure and if the
cone K is closed in that topology then X is called a partially ordered topological space

(POTL-space).

We remark that in a POTL-space the intervals [a, b] = {x; a ^ x ^ 6} are closed
sets. A lot of examples show that the closedness of the nonnegative cone is not, in
general, a strong enough connection between the ordering and the topology (see for
example Vandergraft, [13]).

DEFINITION 1: A POTL-space is called normal if, given a local base U for the
topology, there exists a positive number TJ such that 0 ̂  z G U implies [0, z] C rjU.

DEFINITION 2: A POTL-space is called regular if every order bounded increasing
sequence has a limit.

If the topology of a POTL-space is given by a norm then this space is called a
partially ordered normed space (PON-space). If a PON-space is complete with respect
to its topology then it is called a partially ordered Banach jpace(POB-space). According
to Definition 1 a PON-space is normal if and only if there exists a positive number a
such that

||x|| < a ||y|| for all x, y G X with 0 < x ^ y.

Note that any regular POB-space is normal. The reverse is not true. For example,
the space C[0, 1] of all continuous real functions defined on [0, 1], ordered by the cone
of nonnegative functions, is normal but is not regular. All finite dimensional spaces are
both normal and regular.

2. CONVERGENCE THEOREMS

Let 5 C X be a set such that u* £ S, and for k Js 0 the point-to-set mappings
f{k; •) are defined on

St = SxSxS---xS,

a n d fo r a l l t^\ ••• , *<*> e S and k ^ l - l , / ( A ; ; ^ 1 ) , ••• , t&) is n o n e m p t y in 5 .

D e f i n e t h e i t e r a t i o n s e q u e n c e

(1) Xk+i £ /(fcjt_*+i, Xk-i+2, • • • , a:*)

where k ^ £ — 1, Xf,, X\, • • • , z/_i G S, and an arbitrary element from the set can be

selected as the successor of a;*.

DEFINITION 3: A function V: Sl —» iL|_ is called the Liapunov function of process
(1), if for arbitrary * « G 5 (i = 1, 2, • • . , / , *W £ u*) and y G f(k; *<*), •• • ,
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DEFINITION 4: The Liapunov-function V is called closed, if it is defined on 5 =

~Sxl§ x • • • x 5 , furthermore, if k{ -* oo, t\i] -> W

} eS for i ^ O and j = l,2, ••

!K € /(*<; *i°, • • • , <i°) (• > 0) and t,< -» y* , then

REMARK. Assume that f(k; •) = /(•) for all k, S = S, and mapping /(•) is closed
(for the definition of closed mappings see for example Zangwill, [15], p.88), then any
Liapunov-function is also closed.

Our main convergence result can be formulated as follows:

THEOREM 1 . Assume that X is a topological space and

(A) for all k > I - I , f(k; t (1 ) , ••• , f(/), u*) = {u*} with arbitrary
tM, ...,*(/-1) £S,ifu* eSCX;

(B) the iteration process (1) has a continuous, closed Liapunov function;

(C) there exists a compact set C in X and that for all k ^ £ — 1, Xk € C.

Then xk —» u* as k —> oo.

PROOF: Condition (A) implies that if for k ^ £ — 1, xk = u*, then all successors
of Xk are also equal to u*. Hence we may assume that Xk ^ u* (fc ^ £ — 1). Assume
that Xk •/* u*; then since the sequence is in a compact set there is a subsequence xki

which tends to x* ^ u*. The construction of the iteration sequence and the definition
of the Liapunov function imply that for all i ^ 0,

( 2 ) V(xki+l_l+1, ••• , x * . + l ) ^V(xki-t+2, ••• , x k i , x k i + 1 )

^ V ( x k i - t + i , ••• , x k i ) .

Without loss of generality assume that all sequences {x^-i+i}, {xi_i+2}, ••• > {zJt,}>
and {xkf+i} are also convergent, otherwise take further subsequences of {xk{}• Let
xj_j , • • • , x j and y* denote the limits of the above subsequences; then the continuity
of the Liapunov-function and relation (2) imply that

V { x * t _ 2 , ••• , x \ , x \ y * ) - V ( x } _ l t . . . , x * , x ' ) .

Since the Liapunov-function is closed, strict inequality must hold in the above relation.

This contradiction completes the proof. D
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REMARK 1. Assumption u* E 5 is needed in order to obtain u* as the limit of se-
quences from 5 . Assumption (A) guarantees that if at any iteration step the solution
u* is obtained, then the process remains at the solution. We may also show that the
existence of a Liapunov function is not a too strong assumption. Consider the special
case when X is a normed space and / is point-to-point from 5 to 5 , and assume that
starting from arbitrary initial sulution x0 g S the process converges to the solution
u* of equation x = f(x). Let V: S —* R+ be constructed as follows. With selecting
xo = x consider sequence xjb+i = f{xk) {k ^ 0), and define

( 0 if x = u*
V(x) = <

1 max ||zjt — 11*11 otherwise.

Obviously V(f(x)) ^ V{x) f°r all x € 5. The continuity-type assumptions in (B)
are also natural, since without certain continuity conditions no convergence can be
established. Assumption (C) is necessarily satisfied, for example, if x = -Rn, and either
S is bounded or if for every B > 0 there exists a Q > 0 such that t(1), • • • , t^ 6 5
and | | t ^ | | > Q (for at least one index j) imply relation

In the case of one-step processes (that is, if I = 1) this last condition can be reformulated

as
lim V(x) = oo.

*11

REMARK 2. Iteration processes in this general form have real practical importance.
Note first that one of the most popular solvers of nonlinear equations is the secant
method, which is actually a two-step process. Many dynamic economic processes are
based on the selection of optimal strategies by the participants at each time period. If
the optimal solution is not unique, then the strategy for the next period can be selected
from the set of optimal solutions. Hence the iteration is based on a set-valued mapping.
In addition, if the participants' decisions are based on extrapolative expectations on the
other's behaviour, then the process becomes multistep. Time dependency of the process
follows from price changes, technological development, et cetera. For the description of
such models in the oliopoly theory see Okuguchi and Szidarovszky [7].

Assume next that the iteration process is stationary, that is, in recursion (1) func-
tion / does not depend on k. In this case Theorem 1 reduces to the following.

THEOREM 2 . Assume that X is a topologiced space, S C X; furthermore

(i) S=S;
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(ii) f o r a / n w , . . . . i ^ - ^ e s ,

(iii) function / is closed on S;
(iv) tie iteration process has a continuous Liapunov function;
(v) tiere exists a compact set C C X such that lor all k ^ t— 1, Xk £ C.

Then xt —> it* as fc —» oo.

REMARK. This result in the special case of £ = 1 can be considered as the discrete-
time-scale counterpart of the famous stability result of Uzawa [12].

3. MONOTONE CONVERGENCE

In this section sufficient conditions will be given for the monotone convergence of
the iteration scheme (1). Assume now that X is a partially ordered topological space,
and 5 C X.

DEFINITION 5: The sequence of point-to-set mappings /(fc; •) from 5 to 5 is called
increasingly isotone on S if for arbitrary k > I — 1, t^ G S (i = 1, 2, • • • , I +1)
such tha t t(*+ 1) ^ <O > ••• > t™ > tW and for any Vl £ f(k; f^, • •• , *(*>) and

2/2 G/(fc + 1; t<2), • • • , t < ' + 1 ) ) , y 1 ^ 2 / 2 .

DEFINITION 6: Point-to-set mapping f(k; •) : S* —> 5 , for a fixed k (k ^ £ - 1) ,

is called increasingly isotone if f(t) £ S (i = 1, 2, • • • , I + 1) such that t^+ 1> ^ *(*> ^

••• > t(2> > f(J) and yi 6 /(fc; f(1), ••• , < W ) and y2 e / ( * ; t™, •••, i « + D ) i m p l y

that i/j < j/2 •

REMARK 1. Note that if f(k; •) does not depend on fc, then Definitions 5 and 6 are
equivalent.

REMARK 2. In the literature a point-to-set mapping f(k; •) is called isotone if for
all t& 6 5 , s ( i ) € 5 such that *<•'> < a w (t = 1, 2, • •• , I), Vl < t/2 for all yx G
/(fc; t^1), • • • , t^^) , j/2 G /(fc; •s^1\ • • • , a*'®) • It is obvious that an isotone mapping
is increasingly isotone, but the reverse is not necessarily true, as the example of set
5 = [0, 1] C R1 and function

r ( f <»>*<*>) =
if

illustrates. Let the partial order < be denned as (s^\ s^) < (t^, f(2)) if and
only if s^ < t^ and s^ < t̂ 2 .̂ First we show that g is increasingly monotone.
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Select tW ^ «(*> < t<3>. Note first that g(tW, t™) < t<2>. If t^ > 2t™ - 1, then

W W = t&; and if iW < 2i<2> - 1, then

Note next that g(tW, t&) > tW. If *(2) > 2<(3) - 1, then g(t^2\ t&) = t(3)
and if t(2) < 2 * ^ - 1, then

Hence 5 ( f ( 1 ) , i(2)) < t™ < g(t™, t™).

We can also verify that the mapping g is not isotone on 5 . Consider points (t, 1) and
(t, 1 - e) (t, e > 0; < + 2e < 1). Then g(t, 1) = t and g(t, 1 - e) = f - (1 - e) + 1 =
< + e > </(<, 1). Hence g is not isotone.

THEOREM 3 . Assume that in iteration (1) the sequence of mappings f(k; •) is
increasingly isotone; furthermore x,- £ 5 (0 ^ i < £ — 1) and xo < xj < • • • ^ x<_i ^
x / . Then for all k ^ 0, xjt+i ^ xj,.

PROOF: By induction, assume that for i (t < k), XJ+I ^ x^. Then relations
xk G /(fc - 1, z*_/, •• • , xjb-i), Xk+i e f(k, xt_/+i , • •• , Xfc) and the definition of
increasingly monotone family of mappings imply that x^ < xjt+1. Since this inequality
holds for k — 0, 1, •••,£ — 1, the proof is completed. D

Consider next the modified iteration scheme

(3) Vk+i 6 f(k; y k , V k - i , ••• , V

Using finite induction, similarly to Theorem 3, we may prove the following:

THEOREM 4 . Assume that the sequence of mappings f(k; •) is increasingly iso-

tone, furthermore yi € S(0 ^ i < £ — 1) and

2/o ^ 3/1 > ••• > yi-i ^ y<-

Then for all k ^ 0, yjt+i ^ y t .

COROLLARY. Assume that X — Rn and for k —• oo, the sequences {xjt} and
{yic} have the same limit it*, and < is (he usual partial order of vectors. (That is,

o = a(i) ^ 6 = 6(i) if and only if a(i) «C 6(i) for alii.) Under the conditions of

Theorems 3 and 4, for all k ^ 0,

xjb ^ u* ^ yk.
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This relation is very useful in the error analysis of the iteration methods (1) and
(3), since for all coordinates xk(i), 2/fc(*) and u*(i) of vectors xk, yk, u*, respectively,

0 < u*(i) - xk{i) < yk(i) - xk(i)

and 0 < yk(i) - «'(t) ^ yk(i) - xk(i).

Furthermore, we can show:

THEOREM 5 . Assume that X is a regular POB-space, S C X and

(A) the sequence of mappings /(Jb; •) is increasingly isotone in iteration (1)

with n G 5 (0 < i < I - 1) and

(B) there exists a set Hi defined by Hi — {x £ 5 ; x ^ XQ} with the property

that if for any points t ( 1 ) , t^2\ ••, t ( / ) in Hi with

then

xk+i ^ x0 for any xk+i e f(k; t™, t™, • • • , i ^ ) , k > I - 1.

Tien the sequence {xn}, n Js 0 generated by the iteration (1) process (1) is mono-

tonically increasing, remains in Hi and converges to some u* £ Hi.

PROOF: From (A) and Theorem 3 it follows that the sequence {xn}, n ^ 0 is
monotonically increasing, whereas from (B) we get that the sequence is bounded above
by a;0. Since X is a regular POB-space the sequence {xn}, n > 0, converges to some
u* with u* < xo • Hence u* 6 Hi.

That completes the proof of the theorem. D

These monotonic properties of the iteration processes are very useful, but in cases
where the convergence is very slow the above methods have only very limited practical
importance. In the next section of this paper the convergence speed of the above
iteration schemes is estimated and practical error estimates are derived.

4. ESTIMATES ON THE SPEED OF CONVERGENCE

We can now formulate the following theorem.

THEOREM 6 . Assume that X is a normal POB-space, S C X and

(A) the sequence of mappings f(k; •) is increasing isotone in iteration (1) with
Xi 6 5 (0 ^ i; ^ £ — 1) and x0 ^ xi ^ • • • ^ xt_i ^ xf,

(B) There exists a constant b with 0 ^ b < 1 such that

(4) xn+2 - xn+1 < b(xn+1 - xn), for all n ^ 0.
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Then the sequence {x n } , n ^ 0, generated by the iteration process (1) is monotonically
increasing and converges to some u* with

PROOF: From (A) and Theorem 3 it follows that the sequence {xn} is monotoni-
cally increasing and inequality (4) can be rewritten as

0 < xn+2 - xn+i ^ b(xn+i - xn), n ^ 0.

Using the above inequality we get

p-i _

0 < Xn+p - Xn = ^ (X * ) < ^ "

Since X is normal we deduce

i = 0

- 6

It nor follows that the sequence {zn}> n ^ 0, is a Cauchy sequence in a Banach
space and as such it converges to some u*. By letting p —» oo we obtain (5).

That completes the proof of the theorem. D

Note that an identical theorem can be proved if the assumptions (A) and (B) in
the above theorem are replaced with the condition

0 ^ Xn+2 - 3n+l ^ b{xn+1 - Xn),

for all n ^ 0 and some 6, 0 < b < 1. Let us define the set Hi by H2 = {x £ S; x0 <

x, \\x — xo || ^ h} for some h > 0.

Then we can show the following theorem.

THEOREM 7 . Let X be a normal POB-space, S C X and assume that the

following conditions are satisfied:

(6) a t l ^ l < h>
1 - c2

(7) ci(xn - a;n_i) < xn+1 - xn < c2{xn - xn_i), n ^ 1, 0 ^ Cj ^ c2 < 1,

(8) x0 ^ xn,

(9) \\xn-x0\\Zh
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and

(10) 0 ̂  x n + i - xn < c^x j - x0) for all n = 0, I, 2, •••,£- I.

Then the sequence { x n } , n ^ 0, generated by the iteration process (1) is mono-

tonically increasing and converges to some u* with

(11) ||xn - u'll < a"*1 ~X°"c% for all n^O.
1 - c2

PROOF: We will show that the estimates (8), (9) and (10) are true for all n ^ 0.
For n — 0, 1, 2, •••,£ — 1, they hold by hypothesis. Let us suppose that they are true
for n = 0, 1, 2, • • • , k with k ^ £ - 1. From (8) and (10) for n = k it follows that

XQ ^ Xk ^ Xk-\-\

and thus (8) is true for n = k + 1.

Using (10), the above inequality, and the properties of the partial order <, we have

successively:

0 < x f c + 1 - x o = ^ ' ~ - * - " - - ^ - i " I l " r

<=o t=i °2

where from (6) we deduce that (9) is true for n = k + 1.

From (7), (10) and the induction hypothesis we get

0 ^ xjt+2 - x*+i < c2c*(xi - x0) = cj+1(xi - x0)-

It now follows that (10) is true for n = k + 1. Moreover for p ^ 0 we get

p-i _

0 < xn+p -xn = ^2 (xn + ,+i - xn+i) < ^ _ ° C2
i=0 2

from which we obtain

(12) | |xn+p - xn|| < a11*1"*"11^ < AcJ.
i. — C2

The above inequality shows that the sequence { x n } , n ^ 0 is Cauchy in a POB-space
and as such it converges to some u*. By letting p —» oo in (12) we obtain (11).

That completes the proof of the theorem. D
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REMARK 1. Note that a similar theorem can be proved if the condition (7) is replaced

by the relation

0 s* xn+l - xn ^ c2{xn - zn_i), n > 1, 0 < c2 < 1.

REMARK 2. Assume that there exists a sequence c ^ , n ^ 0, such that more generally

0 ^ xn+1 - x n ^ 4n)(xn - ! „ . ! ) , n > 1, 0 < c(
2
n) ^ q < 1.

Then similarly to (12) we have that

P - 1

Xn+p - xn =
i=0

-X0)(vn+Vn+1

(1) (2) (n

= c\ c2 • • • c2

Hence xn+p - xn < (ajj - »o)"n(l + 9 + ?2 H )

, (1) (2) (n)
where vn = c\ c2 • • • c2 .

1 - 9

and therefore (11) is modified as

In the special case when c2™ is a decreasing sequence we may select q = c2 •
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