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Abstract. The unstable-unstable pair bifurcation is a bifurcation in which two
unstable fixed points or periodic orbits of the same period coalesce and disappear
as a system paremeter is raised. For parameter values just above that at which
unstable orbits are destroyed there can be chaotic transients. Then, as the bifurcation
is approached from above, the average length of a chaotic transient diverges, and,
below the bifurcation point, the chaotic transient may be regarded as having been
converted into a chaotic attractor. It is argued that unstable-unstable pair bifurcations
should be expected to occur commonly in dynamical systems. This bifurcation is
an example of the crisis route to chaos. The most striking fact about unstable-unstable
pair bifurcation crises is that long chaotic transients persist even for parameter
values relatively far from the bifurcation point. These long-lived chaotic transients
may prevent the time asymptotic state from being reached during experiments. An
expression giving a lower bound for the average lifetime of a chaotic transient is
derived and shown to agree well with numerical experiments. In particular, this
bound on the average lifetime, (7), satisfies
(ry= ky exp [ko(a — ay) ™’

for a near a,, where k, and k, are constants and a, is the value of the parameter
a at which the crisis occurs. Thus, as a approaches a, from above, (7) increases
more rapidly than any power of (a —a,) . Finally, we discuss the effect of adding
bounded noise (small random perturbations) on these phenomena and argue that
the chaotic transients should be lengthened by noise.

1. Introduction

Recently, the subject of chaotic motions of dynamical systems has generated a great
deal of interest. This interest has been stimulated both by recent fundamental
advances in theory and by clear and striking applications to the interpretation of
experiments in many fields of science [8]. Much current interest in the field has
been concerned with identifying typical bifurcations associated with chaotic attrac-
tors [1]-[5]), [9] (e.g. period doubling cascades and intermittency.) In this paper we
discuss a new type of dynamical bifurcation phenomenon leading to chaos, and we
describe the basin boundaries and chaotic transients associated with it. We call this
bifurcation the unstable-unstable pair bifurcation [4].
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(A) The unstable-unstable pair bifurcation and its associated chaotic dynamics—
summary of phenomena. In an unstable-unstable pair bifurcation two unstable orbits
are destroyed. The process occurs as follows. We imagine that as a parameter of
the system is raised, approaching its bifurcation value, the two unstable orbits move
toward each other, coalesce at the bifurcation value and disappear above it.

For parameter values just after the destruction of the unstable pair of orbits there
is a chaotic transient. (If there is a chaotic transient, then the motion initially appears
to be chaotic, but only lasts a finite time, after which it suddenly approaches some
distant attractor. The duration 7 of chaotic transients depends quite sensitively on
the initial conditions and, with even very small uncertainty in the initial conditions,
this duration may be thought of as being randomly distributed with an exponential
distribution ~exp (—7/(7)), where (7) denotes the average value of 7.) However,
we note that these chaotic transients exist only for initial conditions in a restricted
region of the phase space. For initial conditions outside this region, the generated
orbit appears to immediately move away from this region, generally approaching a
distant attractor. For convenience, in the examples in this paper, the distant attractor
is the point at infinity. We note, however, that changes in the dynamics of our
examples can be introduced which convert the attractor at infinity to an ordinary
attractor (e.g. a periodic orbit). The most striking aspect of this type of event is the
extraordinary persistence of the chaotic transients that are observed. In particular,
they are very long even when system parameters deviate substantially from their
values at the unstable-unstable pair bifurcation.

Now imagine that a parameter of the system is decreased. As it approaches its
value at the unstable-unstable pair bifurcation the average length of a chaotic
transient diverges. Below the bifurcation there is a chaotic attractor, which can be
regarded as having arisen by conversion from the chaotic transient. In addition, the
distant attractor which existed after the bifurcation (for our examples, the point at
infinity) is still present. Each of these attractors has its own basin of attraction (a
basin of attraction is the closure of the set of initial conditions which yield orbits
that approach the attractor asymptotically with time; a point is in the basin boundary
if it is in the closure of two or more basins). For the examples we present here, the
basin boundaries are curves or surfaces which appear to be nowhere differentiable
and have non-integer (fractal) dimension.

At the unstable-unstable pair bifurcation point the two unstable orbits coincide.
As the system parameter is decreased below its bifurcation value, the two unstable
orbits separate in phase space. For our examples, we find that one of the unstable
orbits lies in the chaotic attractor and that the chaotic attractor is the closure of the
unstable manifold emanating from that orbit. In addition, the other unstable orbit
lies on the basin boundary.

Now imagine that the chaotic attractor exists and vary the system parameter in
the other direction (i.e. so that the bifurcation is again approached). Viewing the
situation in phase space, one would observe that the chaotic attractor and basin
boundary approach each other and first touch at the point of bifurcation where the
two unstable orbits coalesce. Past this point, the unstable orbit pair no longer exists,
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and the chaotic attractor is destroyed and replaced by the chaotic transient. However,
in a sense, the chaotic transient is a remnant of the chaotic attractor. In particular,
the initial conditions which yield chaotic transients lie in the region of the former
basin of attraction of the chaotic attractor, and the orbit in the chaotic transient
phase appears to be similar (although only for the finite time of the transient) to
that of the chaotic attractor. In addition, trajectories with initial conditions in the
region of the old basin of attraction of the other attractor are unaffected and do
not experience chaotic transients.

(B) Remarks. (1) In [3] and [5] it was conjectured that in some sense ‘almost all’
sudden deaths of chaotic attractors that occur as a system parameter is varied result
from a collision of the attractor with an unstable periodic or quasiperiodic orbit on
the basin boundary, and this type of occurrence was called a boundary crisis. (Whether
or not the conjecture is true, this kind of event is extremely common.) The destruction
of the chaotic attractor in the case of an unstable-unstable pair bifurcation is a
boundary crisis, since the attractor hits the basin boundary at the coalescence of
the two unstable orbits, one of which is on the basin boundary. Note that this is a
fundamentally different kind of boundary crisis from the boundary crises of the
Lorenz attractor and Henon map [5]. In numerical studies of these latter cases, the
crisis is seen to occur when there is a homoclinic tangency of a saddle-periodic
orbit on the basin boundary.

(2) There appear to be basically two kinds of routes to chaos (i.e. mechanisms
by which chaotic attractors can come about). In the first kind, called scenarios by
Eckmann, [1], a non-chaotic attractor evolves into a chaotic attractor. Examples of
scenarios include period doubling cascades [2], and intermittency [9]. In the second
kind, called crises by us [3], [5], a chaotic attractor appears by conversion of a
chaotic transient. The appearance of a chaotic attractor in an unstable-unstable pair
bifurcation is an example of the crisis route to chaos.

(3) Perhaps the most interesting aspect of the unstable-unstable pair bifurcation
crisis is the extreme persistence of long chaotic transients with variation of system
parameters. This is in contrast with the chaotic transients associated with other types
of crises [3], [5§]. To get an idea of the numbers involved, we note that, for the
mapping considered in § 3, the average duration of a chaotic transient is still >10’
when the system parameter deviates from its value at the crisis by 12%.

(4) It follows from remark 3 that an experimenter might need to carry out an
experiment for a very long time to be able to distinguish a real chaotic attractor
from a chaotic transient; chaos can persist for a long time, and telling the difference
may in some circumstances be impractical or irrelevant.

(C) Outline of the rest of this paper. In § 2 we demonstrate the unstable-unstable
pair bifurcation crisis using a two-dimensional non-invertible map. We observe, for
this map, that the basin boundary appears to be a fractal curve. For a value of the
parameter below the crisis value there are two attractors, one chaotic and one
non-chaotic (for this case the non-chaotic attractor is the point at infinity). As the
parameter is raised, a crisis occurs in which arepeller fixed point on the basin boundary
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and a saddle fixed point on the chaotic attractor collide. We derive a formula for the
average lifetime of this chaotic transient and compare it with numerical results.

In § 3, we study a three-dimensional map displaying similar phenomena. For this
map the chaotic attractor appears to be a nowhere differentiable torus. The basin
boundary is another fractal toroidal surface surrounding the attractor. As a parameter
of the system is raised a crisis occurs in which unstable fixed points on the two tori
coalesce. The unstable point on the attractor has a one-dimensional unstable mani-
fold and two-dimensional stable manifold, while the unstable point on its basin
boundary has a one-dimensional stable manifold and a two-dimensional unstable
manifold. Evidently, the closure of the unstable manifold of the first point is the
fractal torus chaotic attractor, while the closure of the stable manifold of the second
point is a fractal torus repeller which is the basin boundary for the attractor. Each
one of these fractal toroidal surfaces has one smooth direction, that of the unstable
manifold for the attractor and that of the stable manifold for the basin boundary.
Above the crisis value of the parameter, almost all initial conditions eventually
asymptote to infinity - although there are chaotic transients. The average length of
the chaotic transient is also very long, as in the two-dimensional case (see § 2).

In § 4 we provide a rigorous mathematical argument showing that the unstable-
unstable pair bifurcation and the associated long-lived chaotic transients are not
particular to the examples presented here, but represent a common behaviour in
non-linear dynamics.

In § 5 we discuss the effect of bounded noise on the long-lived chaotic transients.
The significant result is that the super long chaotic transients persist in the presence
of bounded noise. In fact, we argue that, in a suitable sense, the effect of noise is
to increase the duration of the chaotic transient.

2. Long-lived chaotic transients in a two-dimensional non-invertible map
To illustrate the unstable-unstable pair bifurcation to chaos and the associated long
chaotic transients, we start with the non-invertible two-dimensional map given by

6,.,=20,  mod2m, (1a)
Zne1 = @z, + 22+ B COS 0, (1b)

There are two fixed points, namely, (0, z,) and (0, z.) on the basin boundary and
chaotic attractor, respectively, as shown in figure 1, z,=(1—a-r)/2 and z =
(1—a+r)/2, where r=[(1-a)*—4B}. Equation (1a) is the two-shift map defined
in [0,27). In (1b), B is the strength of the coupling between 6 and z evolutions,
and « is the parameter which we wish to vary. Figure 1 shows a picture obtained
by iterating equations (1) for @ =0.5 and B =0.04. For these parameters there are
apparently two attractors, one which is chaotic and the other at z = +00. The basins
of attraction are determined by choosing a grid of 260 000 points in the frame of
the picture and iterating each of them up to 150 times. If a given orbit goes to large
positive z values, we plot a black dot for the initial condition of that orbit. If an
orbit remains bounded (z <0.6) we leave the grid point blank. We shall argue that
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FIGURE 1. A chaotic trajectory and the attractor’s basin of attraction for a =0.50 and 8 = 0.04. Trajec-
tories initialized in the dark region asymptote to z = +c0, while trajectories initialized in the blank region
are attracted to the chaotic attractor. In order to more clearly display the collision of the chaotic attractor
and its basin boundary, which occurs at 6 =0, we have plotted 8 on (—=, m) rather than on (0, 27).

the boundary between the black and the blank regions is a fractal curve. The chaotic
attractor is added to this picture by choosing a single initial condition in the blank
region. For that initial condition we preiterate the map 5000 times (to eliminate the
initial transient effect), and then we plot the next 10 000 iterates, as shown in figure
1.

To see that z=+00 is an attractor, we note from (1b) that for large |z|, z,,,> z3.
Thus, points with sufficiently large |z| have trajectories that asymptote to z = +c0.
It is useful to regard z =+0c0 as representing a general attractor, since other terms
could be added to the map, equation (1b), to prevent the orbit from going to z =+
but which would leave unchanged the phenomena associated with the chaotic
attractor and its basin boundary.

To understand why there is a chaotic attractor in figure 1, we note that 8 =0,
z.=0.1 is a fixed point, and the band |z|=0.1 = z. is mapped onto itself. Since the
dynamics in 6 is chaotic, there is a chaotic attractor located in the region ~0.1 <z =
0.1. The Lyapunov numbers for this attractor can be estimated by utilizing the
following approximation to the dynamics. We linearize equation (1b) about z=0
and by setting z = 85. We obtain

6,,,=20,, mod 27, (2a)
8n41=A8,tcos 6, (2b)

with A =0.5 yielding the Lyapunov numbers 2 and A. The map (2) has been
investigated in [4] and [7].

The same crude argument can be used to make plausible the presence of the
upper fractal basin boundary for equations (1) located in the region i<z=
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(1—a+r)/2=0.64, where r=[(1—a)’+48]. The upper basin boundary must be
located in this region since every initial point chosen above that band has z, strictly
monotonically increasing with z,->, and z,,,= Az, +z2—B. Each vertical line
segment in this band is mapped to a longer vertical line segment that stretches across
the band. Since in this band the map is expansive in the z direction [i.e. (8/dz,) X
(az,+ 22+ B cos 8,) > 1], there will be a unique point z(8) on each of these segments
that remain in the band for all time. This surface [(6, z(8))] (topologically a circle)
is invariant by definition, and it separates the basins of c© and the bounded attractor
below it. We now give a heuristic argument that z(6) is a nowhere differentiable
curve. Linearization of the z map about z=0.5 by setting z=85+0.5 yields the
map (2) with A =1.5. In this case (1 <A <2), we have shown [4] that the map (2)
has a nowhere differentiable invariant curve

s=0(8)=—% A~ cos (2%9), 3)
k=1

Since A > 1, the sum converges absolutely and uniformly. Initial points (6, ) above
the curve (3) tend to 8 =+o0 while points below tend to —oo. It is thus plausible
that the upper basin boundary of equations (1) is also a nowhere differentiable
curve. The lower basin boundary in the vicinity of z=—1.0 would also be a fractal
curve, being essentially a pre-image of the upper basin boundary. Each point in the
lower black region is mapped in one iterate into the upper black region after which
it remains positive. Figure 2 shows a magnification of the state space containing
the upper basin boundary. Figure 3 shows a magnification of the boxed region
indicated in figure 2 illustrating the fractal structure of the upper basin boundary.

0.44

0.38
z
0.32
0.26 L
0.0 0.2 0.4 0.6 0.8 1.0
8 —

FIGURE 2. Magnification of a small portion of the state space showing the fractal basin boundary.

Now we consider what happens as we increase the parameter a from a =0.5. As
we increase a the chaotic attractor reaches a crisis [4] at @ =0.6. As seen in figure
1, the smallest z value on the upper basin boundary occurs at § =0 and z = z,, and
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FIGURE 3. Further magnification of the boxed region in figure 2 illustrating the fractal structure of the
basin boundary.

the largest z value on the chaotic attractor occurs at § =0 and z =z. The reason
for this is that the cos 8 term in equation (1b) is maximum for 6 =0 which is a fixed
point of equation (1a). Linearization of the map (1) about these two fixed points
shows that they are unstable. As shown schematically in figure 4, (0, z,) is a repeller
having two unstable directions, while (0, z.) is a saddle having one direction
attracting and another repelling. As « increases the two points (0, z,) and (0, z.)
move close together until at some critical value a = a,, they first touch. From (1b)

we have

a,=1-2p%

(0,2p)

Y©.z.)
4

(4)

FIGURE 4. Illustration of the unstable pair. (0, z,) is unstable in two directions. (0, z.) is stable in one
direction and unstable in the other direction. The chaotic attractor apparently is the closure of the
unstable manifold emanating from (0, z.).
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Hence, a,=0.6 for B =0.04. For a> a, the chaotic attractor and its basin of
attraction, as well as the two fixed points, no longer exist. Conversely, as a decreases
through a = a,, the unstable fixed point pair and the strange attractor and its basin
are born via the unstable-unstable pair bifurcation.

We now claim that for almost every initial 8, (independent of the choice of the
initial z,), we have z, >0 for a > a,. For ¢ =0 and any initial z,, we have z,,,=
az,+z5+ B>z, and z must go to . It is not hard to see that there is a value ny
such that z, >2 for every initial value z, with 6 =0. Now let (68,, z,) be any initial
condition for which the values 6, are dense in [0, 27]. It follows that there is some
e such that when |6,|<e, after n, iterates we have z,,, >2, and then z,->o
monotonically. In particular, the set of points going to z =+ is open and dense.

Although our example, equations (1), exhibits the phenomenon of unstable-
unstable pair bifurcation to chaos for the case in which the pair is a pair of fixed
points, we emphasize that the same considerations apply when the pair is a pair of
‘periodic orbits. For instance, for B =—0.08 we apparently obtain a crisis with
annihilation of orbits of period 2 at @ = a, = 0.6, with 6 = £277/3 as shown in figure
5. Unlike the previous case, we have no rigorous argument that the basin boundary

06
04
o2¢f

z 00

_0_2 -

-04t

-0 —
-30 -20 -0 00O 10 20 30
6 —_—
FIGURE 5. Picture of the chaotic attractor and its basin of attraction (blank region) for a =0.6 and

B =-0.08 showing a period 2 crisis. Observe that the smallest z value in the upper basin boundary
occurs at 8 = +27/3. See caption of figure 1 for the definition of the abscissa 6.

first touches the attractor at these two 6 values. The period two orbit occurs at
0=21x/3,47/3,since 27/3>47/3 > 2a/3. Here we have cos 8 = —3. Then, the two
coordinates of the period two repeller orbit are (—27/3, z) and (27/3, z§¥) while
the period two saddle orbit is at (=27/3, z*) and (27/3, z{¥). Both z!* and z§?
satisfy z = az+z°— B/2. At the crisis there would be a single period two orbit. We
set the discriminant equal to zero and obtain a, = 1+ (=2B). (Then, at the crisis
2P =2:9=02)
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We consider now what happens when the parameter « just exceeds the crisis
value a,. We observe that the chaotic attractor becomes a chaotic transient. Orbits
with initial points in the region which was formerly the basin of attraction for the
chaotic attractor will typically approach what looks like the old chaotic attractor.
The orbit then bounces around in this remnant in an apparently chaotic fashion as
it did for « < a,. However, after some time the orbit lands sufficiently near the
region where (0, z.) and (0, z,) coalesce, and then rapidly leaves the chaotic attractor
remnant, accelerating to large positive z values. Hence, the chaotic attractor which
exists for a <a, is replaced by a chaotic transient for a > a,. Figure 6 shows a
chaotic transient for 8 =0.04 and a = 0.65> a, = 0.60. The black region represents

0.6
03

0.0

-1.2 .
-30 -20 -0 00 10 20 30

g—
FIGURE 6. Picture of the chaotic transient for 8 =0.04 and a =0.65> a, =0.60. See caption of figure
1 for the definition of the horizontal axis 6. All spikes at 8 =27m/2* extend all the way through.

initial points which rapidly acquire large z values in 150 iterates of the map. This
picture does not depend strongly on that number since the average length of the
chaotic transient appears to be very long (~2x 10’ iterates) for these parameters.
Also shown in the picture are the first 10* iterates of a chaotic transient generated
from a single initial condition in the blank region. We note the apparent penetration
of the black region into the region of the attractor at =0, the 8 value at which
the unstable-unstable pair coalesces. In fact, the penetrations of the upper and lower
black regions join each other but it was not possible to detect them numerically
even though we used more than a quarter of a million initial conditions in the
picture. The reason is that the black region spike that pierces the attractor is very
narrow, which expains the very long transients. Indeed all the spikes at 8 =27m/2,
for integers m and k, go from top to bottom.

As we have mentioned in the introduction, an important statistical quantity for
an experimentalist studying chaotic transients is their average lifetime. Figure 7
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FIGURE 7. (7) versus @ — a,. Dots denote numerical results while solid line denotes theoretical result
i given by equation (15).

shows numerical (dots) and theoretical results for the average lifetime of chaotic
transients for the map given by equations (1) as a function of the parameter a. The
numerical results are obtained by averaging over 100 initial conditions in the former
basin of attraction. The initial conditions were chosen randomly in 6, [0, 27) with
2=0.0011. The solid curve is obtained from the theoretical prediction, given by

(ry=nL7'". (5)
for a slightly larger than a,, where
_ 2
a=pha-ap+(222), ®)

L, is 2, (7) is the average lifetime of a chaotic transient, and « is a constant which
is chosen to yield a good fit to the data. We note that the theoretical and numerical
results agree very well.

A rigorous derivation of the right hand side of (5) is given in § 4. In fact we show
the right-hand side is a lower bound for {7). This is appropriate since the dynamics
elsewhere could increase the average lifetime further. Here it suffices to give an
intuitive introduction to the ideas. To justify equation (5) we observe that for a > a,,
the two fixed points have already coalesced and, hence, there is an aperture around
6 =0 through which the orbit can escape. Figure 8(a) shows the aperture of width
I about 6 =0 in which the orbit must enter to be ejected. The orbit needs to stay in
the aperture long enough, say T iterates, to march up through the opening and exit
the region z <2. The orbit might fail to stay close to 8 =0 because the 8 direction
is unstable with eigenvalue L, =2, pulling the orbit back into the chaotic remnant.
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FIGURE 8. (a) State space (8, z) showing the interval / about 8 =0 inside which the orbit must fall to

leave the chaotic attractor. (b) Local picture of z,., versus z, of the z map for 6 =0 and a < a,. z, and

2 are the unstable and stable fixed points, respectively. (c) Same as (b) but @ > a,. z, is the z value at
which z, and z, coalesce.

Thus, after T iterates the trajectory is within L]! of 0, and we need L]I<1 since
otherwise cos 8 is not near +1. We estimate [ as

K1
T
L,

1<

where «, is a constant of the same order of magnitude as one. Almost any initial
condition in 6 will generate an orbit which yields a time asymptotic uniform
distribution in 6. Thus the probability of 6,,, falling in the interval (—1/2m, 1/27)
if 8, is not in that interval is //2s. Thus

2
(N="T=kLi=ke ", %

where k =27/ k, is a constant.

Now, we need to evaluate T, the time it takes for the orbit to exit once it has
fallen in the aperture. For a slightly greater than «,, the aperture width is very
small and we can then approximate 6 by 0 and cos # by 1. In this case equation
(1a) becomes

Zyp1 = @z, + 22+ B. (8)

This is a quadratic equation with two fixed points z. and z,, for a <, as shown
in figure 8(b). For a > a, =1-2B!, the fixed points do not exist. Figure 8(c) shows
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the mapping (8) for a = a,. Writing
Zos1—Zn=(a—1)z,+ 22+,
the minimum of the right-hand side occurs at
1-a
=— 9
=l ©)
We rewrite equation (8) letting 6 =z —z,,
81 =8,+8:+a, (10)
where in this expression a is given by
1-a\?
a=3—-\——] . 11
o-(129) an

At this point, we approximate the local quadratic map (10) by the following
differential equation [9] for o near a,,

dé
—=8+a
i a (12)
The solution of equation (12) gives
1 [{® d
T ~— J‘ _2_{_
a*)_o°+1

This assumes { = 8/ a ranges from very negative values to very large positive values,
which in turn means that the largest and smallest (most negative) values of & have
absolute value many times greater than a®. Hence, the time for the orbit to exit the
remnant once it has fallen in the aperture can be estimated as

T~ (13)
aZ
Substituting (13) into (7) we obtain
(r)y=~ kLI’ (14)

Using equation (4), the expression for a as given by equation (11) can be put in
the form given by equation (6). Specializing to our parameters, 8 =0.04 and a, = 0.6,
we obtain

2.178

oe(=5)+ (55 ]

where we have chosen In k = —3.653 to give a good fit.

The coincidence of formula (15) with the numerical results shown in figure 7 is
striking. As a approaches a, = 0.6, the width I decreases and it is more difficult for
this trajectory to escape. In general, we expect to obtain lower bounds on how
(1)> 0 as a > a,. The extraordinary aspect of figure 7 is that the long chaotic
transients associated with the unstable-unstable pair bifurcation can be extremely
persistent as the parameter is varied. For instance, even at values of a ~20% above
ay,, i.e. (a—a,)/a=02, the transient is of the order of 10* iterates, while for

In{7r)=

1 —3.653, (15)
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(@ —a,)/ a,~0.1 we have (1) > 10°. Thus fine tuning of the experimental parameters
is not required to encounter situations with long-lived chaotic transients. Another
description of this persistence of long-lived chaotic transients for large values of
(a —a,)/ a, can be seen in the theoretical prediction for (7) given by equation (5).
The decay rate, 1/(7), can be thought of as the probability of being ejected from
the region of the attractor remnant on a given iterate. Then the decay rate is zero
at a,, as it should be; but in addition, all derivatives (d"/ da™)Y({(#)™") are also zero
at @ = a,. This means that 1/(7) increases very slowly from zero as (« — a,, ) increases.

These results for the unstable-unstable pair bifurcation are to be contrasted with
other known types of chaotic transients which also arise at a crisis. For instance,
for the logistic map and for the Henon map, a typical result is (7)~(a—a,)”7,
where 0 <y <1 (cf. [5]), and long decay times only exist for (@ — )/ a, extremely
small. For the Lorenz system using typical parameters where (1)~ (a —a,)~~ with
v approximately 4.0 (cf. [10]), so this transient is more persistent. The exponents y
and v are called the order of the crises. The crisis we have been describing, which
results in super persistent chaotic transient, has order oco.

In this example, it might seem our result occur because the @ equation is
non-invertible. In the next section, the @ equation is replaced by an invertible process
on a torus. While the map in the next section is still not invertible, minor changes
could be made that would make the map invertible. We prefer, however, to deal
with examples for which computations are easy.

3. Long-lived chaotic transients in a three-dimensional invertible map

In this example we find that the chaotic attractor and the basin boundary are
apparently fractal tori embedded in a three-dimensional space R x T2, Before
introducing the example, we wish to show how the unstable-unstable pair bifurcation
occurs in a three-dimensional map. Figure 9 illustrates schematically how the two
unstable fixed points, a repeller R and a saddle A, are created as a parameter §
decreases through one. The map in figure 9 may be written as

un+1 = Luum (163)
Sp1 = Lssn, (l6b)
§n+l=£n+§3l+a, (160)

where 0< L, <1< L,. The two fixed points of this map have £=x(—a)’. At a =0,
the Jacobian of the equation (16) at the unique fixed point has an eigenvalue +1,
as is true whenever fixed points coincide. For maps with such bifurcations, a chaotic
attractor can lie in the closure of the unstable manifold of the saddle corresponding
to A. Similarly, time reversal changes the role of R and A, and the closure of the
stable manifold of R can be a chaotic repeller which forms the basin boundary of
the chaotic attractor. This appears to be the case in our example. When this is in
fact true and the point A is in the chaotic attractor, then when A coalesces with R
we expect a crisis which will destroy the chaotic attractor and its basin of attraction.
By varying the parameter in the opposite direction, a chaotic attractor is born as in
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FIGURE 9. Schematic illustration of an unstable pair bifurcation in a three dimensional map. R is a
repeller and A is a saddle.

the two-dimensional non-invertible map which we have discussed in the previous

section.
The example [5] that we choose is a modification of the map given by equations
(1):
0,.1=0,+ o, mod 1, (17a)
Gni1= 0,120, mod 1, (17b)
Zpe1 = @Z, + 22+ B cos (276,). (17¢)

We may think of # and ¢ as angle coordinates and z as a radial coordinate,
meaning that we are dealing with a toroidal coordinate system.
The map (17) has two unstable fixed points at 8 = ¢ =0,

z= z&A=%{(1—a)i[(l _a)2—4ﬁ]i}’

corresponding to R and A of figure 9. The crisis occurs at « = a, =1 —2pB%. Figure
10 shows a ¢ =0 cross-section of the attractor (inner curve). We use a polar
coordinate representation for 6, z choosing z—0.1 as the distance from the origin
and 270 as the angle from the vertical. The origin of the polar system is indicated
by a dot. This figure is constructed by iterating the map (17), with 8 =0.04 and
a =0.58 < a, = 0.60, and plotting points whose ¢ values lie between ¢ = +£107>. The
basin boundary is the curve encircling the attractor. It is obtained similarly by
iterating the inverse map (choosing the plus sign when inverting the quadratic z
equation). The cross-section of both the chaotic attractor and the repeller appear
to be fractal. Orbits with initial points at radial positions falling within the region
bounded by the repeller are attracted to the chaotic attractor, while those starting
outside this region asymptote to z = +00 as n -> c0. Thus the repeller toroidal surface
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FIGURE 10. ¢ =0 cross-section of the toroidal attractor (inner curve) and its basin boundary (outer
curve) for @ =0.58 < a, and & =0.04. The dot in the centre is the origin of the polar coordinate system
of angle 276 and radius z—0.1.

is the boundary of the basin of attraction for the toroidal chaotic attractor that lies
inside.

As the parameter « is raised, the z coordinates at 8 = ¢ = 0 of the chaotic attractor
and basin boundary move towards each other (as in the previous example) until
they touch for a = a, =0.60. After the crisis occurs, the attractor and repeller
remnants are still visible in our plots because the chaotic transients can be very
long. Figure 11 shows a plot of the chaotic transient for 8 =0.04 and « =0.68 > a.
We observe the apparent joining of the transient attractor and repeller at § = 0. For
the parameters of figure 11, the length of the chaotic transient, averaged over the

0.6 T T T T T

0.2

-02r

1

1 { { 1
-06 -04 -02 00 02 04 06

FIGURE 11. Picture of the remnants of the chaotic attractor and repeller obtained by iterating the map
(17) for £ =0.04 and a = 0.68 > a, =0.60. It is plotted 276 and z —~0.1.
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initial conditions, is approximately 10’ even though a substantially exceeds a, since
(o —ay)/a, =0.12. The connection joining the toroidal attractor and repeller in
figure 11 is very thin. Thus we may think of the attractor as developing a hole. If
the hole is small it takes a long time for an orbit to fall into it. This hole reflects
the fact that trajectories can go to o only after having cos  nearly 1 for several
iterates in a row. This is possible only if @ and ¢ are near the origin.

To facilitate the evaluation of the average lifetime of the long-lived chaotic
transient we change coordinates in the plane 6, ¢ by rotating the axes about the
origin to an (7, £) system as shown in figure 12, where the 7 axis is the unstable

FIGURE 12. New system of coordinates (7, £) for the 6, ¢ part of the map (17). 7 is along the unstable
direction and ¢ along the stable. Trajectories about to diverge with z->o0 must lie in a narrow band
about the ¢ axis.

direction and the ¢ axis is the stable direction in T°. The unstable eigenvalue of
equations (17a) and (17b) is

3445

T2

and the stable eigenvalue is L, =1/L,. Now an initial point (7, &) near (0, 0)
becomes (noL;, &L.7) after a time 7. Then, the probability of ejection per iterate
of the map, i.e. the decay rate, of the transiént is proportional to the area of the
region near the origin where the hole is formed. Actually the hole is a tapered band
about the ¢ axis; the thickest part is near (0,0). Hence, the average lifetime is
inversely proportional to the decay rate, or,

(18)

(ry=~«kLI, (19)

where T is the time it takes for the orbit to exit after it has reached the hole. Now,
to estimate T, the calculation is the same as in the two-dimensional case since
equation (1b) is the same as equation (17¢). Equation (13) is now again valid with
a in equation (6) or (11) unchanged, where for 8 =0.04, o, =1 -2B4=0.60and L,
is given in equation (18). Hence equation (14) again applies. Figure 13 shows a
plot of (7) versus a — a, for B =0.04 obtained from numerical iterations (dots) and
from equations (14) and (18) (solid curve) with the parameter « chosen to give a
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F1GURE 13. Chaotic transient average lifetime versus a — a, for equations (17) with £ =0.04. The dots
are experimental results while the solid line denotes result from equations (14) and (18) or In(1)=
3.024/[0.2(a — 0.6) + (a — 0.6)?/4]t — 6.221, where we have chosen In k = —6.221 to give a good fit.
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FIGURE 14. Plot of the time it takes for the orbit to exit when 68 = ¢ =0. The dots are experimental
results while the straight line denotes result from (13),i.e. T=#/[0.2(a —0.6) + (a — 0.6)%/47! for B =0.04.

good fit. It is seen that equation (14) agrees well with the numerical experiments
giving the observed behaviour, except that (r) increases even slightly faster than
predicted as a - a,. Figure 14 shows formula (13) (solid line) and the experimental
results (dots) for an orbit initialized at € = ¢ =0. In addition, we have verified
numerically that for a random collection of initial points chosen from a uniform
distribution of initial conditions in the formerly chaotic region, the lifetimes of the
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chaotic transients are very nearly exponentially distributed, namely,

X(1) == exp (= /() (20)
=

where x(7) denotes the distribution of lifetimes, and (7} is the average lifetime.
We have also examined equations (17), but with the cos (2776) term replaced by
sin (276). Figure 15 shows a picture of the ¢ =0 cross-section of the attractor and
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04

02

00

-02
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FIGURE 15. ¢ =0 cross-section of the attractor and its basin boundary for equations (17) but with
cos (276,,) replaced by sin (278,), 8 =0.04, and a =0.71.

its basin boundary for such a case. In the sine case there is no a priori reason to
think that as « is raised the attractor will be destroyed by a crisis (i.e. by a collision
with a periodic orbit). We observe in a number of detailed numerical experiments,
however, that the attractor appears to be destroyed when it and its basin boundary
touch at the coalescence of two unstable period four orbits (one in the attractor
and one in the basin boundary). The period four orbit in question has (8, ¢)
coordinates given by (&, 15)~ (&, %) > (5, 1) > (&, 145 (4,5). For this orbit in
(6, ¢) space, the pair annihilation occurs at the value a = a, ~0.6618717.

Figure 16 is the plot of the average lifetime of the chaotic transient versus a — a,
for the map (17) where cos (278) is replaced by sin (2776). The experimental results
indicated by dots agree well with the solid curve In (7) =5.71(a — a*)_i —8.33, where
a, =0.6618717. The constants were chosen to optimize the fit.

4. The persistence of super-long transients despite perturbations

We have exhibited rather special systems that have super-long transients. We also
claim that such phenomena can be expected in nature. What we mean by this is
that the phenomena we have presented can be expected to persist under perturba-
tions. The difficulty faced in demonstrating this is that local behaviour (near the
annihilation point) interacts with large scale dynamics throughout the region where
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FIGURE 16. (r) versus a —a, for the map given by equations (17) with sin (278) instead of cos (278)

in equation (17c). The dots indicate experimental results whereas the solid curve represents the curve

In(r)=2.425/[0.2(a —a,)+(a - a*)2/4]5, where a, =0.6618717 and the constants are chosen to give a
good fit.

chaotic trajectories have been travelling. In our examples in the ‘transient’ regime,
atiny region B plays a special role, as shown in figure 17 at the instant of annihilation.
This tiny region is centred at the point p, where the unstable-unstable pair annihila-
tion bifurcation occurred. In this section we assume the pair annihilation occurs at

a=qay= 0.
W 500NDA
RY
\4

~—B

F1GURE 17. Sharp spike of the basin boundary ending in the box B at p,.

For « slightly larger than 0, a typical trajectory wanders through the region where
the attractor was and behaves just as before the annihilation. Eventually it enters
the tiny region B and with high probability it soon leaves B and again wanders as
before. After going through this process many times, it again enters B and now a
low probability event occurs; namely, the trajectory departs through an extremely
small window in a different direction, leaving the vicinity of the defunct attractor,
never to return.

The formula describing the super long persistence of the chaotic attractor is in
reality a statement that each time a typical trajectory enters B, it is extremely unlikely
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(when the parameter is near the annihilation value) that the trajectory will escape
vertically through the window. It is far more likely it will leave B through sides
that lead to the old attractor region. As in previous sections we must show that
when a trajectory exists via this window, it must typically have been in B a long
time. We now summarize the local behaviour on which the formulae depend.

Local Behaviour. For values of the parameter « less than 0 there is a pair of periodic
orbits, both of period k and both unstable. One is on the chaotic attractor and the
other is on the attractor’s basin boundary. At a =0 they collide and are destroyed.
This annihilation is essentially the same as a saddle-node bifurcation for period k
orbits except that in our case, both orbits are unstable. We assume that the basin
boundary and the attractor meet at @ =0 at only the k points where these orbits
collide. We speak of an ‘attractor’ at &« =0 even though it does not attract every
point in a neighbourhood.

Without loss of generality we can assume the period k is 1, since otherwise we
could examine the kth iterate of the map. Our proof could be adapted so that the
basin boundary points collide with the attractor at k points simultaneously instead
of just a single point.

Let p, denote the phase space point where the two orbits meet. This generalized
pair annihilation can only occur when the Jacobian of the map at p, and a =0 has
+1 as an eigenvalue, and we assume +1 is a simple eigenvalue and that the Jacobian
has no other eigenvalues on the unit circle. We also assume there is at least one
other eigenvalue outside the unit circle; see figure 18. This guarantees that neither
orbit is stable for « near 0. We let L, denote the largest absolute value of the
eigenvalues. The centre manifold theorem says that since there is a unique eigenvalue
of the map with absolute value 1, there is a two-dimensional manifold M, in p, &
space containing the annihilation point (p,, 0) and the map carries points of M, to
points of M, at least for points near p, with @ near 0. (The centre manifold theorem
is an existence theorem and, in fact, there are infinitely many ways of choosing M.
In the case where all the eigenvalues of DF(0, p,) are >0, it contains the unique
(non-constant) trajectory at a =0 that goes to p, as t goes to infinity. It must also
contain some trajectory that goes to p, as ¢t goes to —oo, but this trajectory is not
uniquely determined.) The centre manifold theorem says we can introduce a coordin-
ate z (scalar) so that the dynamics on M, are given by

zn+1=F(a’ zn) (21)

for an appropriate choice of the functions F for « near 0.

We assume the pair annihilation is generic: F,, and F, are not 0 at (0, p,). See
[6] for the genericity equations for the case of general coordinates. Without loss of
generality we can assume the coordinates are oriented so that at (0, p,),

BO=F22>0’ (22)
and
ag= Fa > 0. (23)
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FIGURE 18. The two graphs show phase space at a =0. The vertical axis is the z axis, the points in the
centre manifold having a = 0. In (a) the trajectories shown are all in the centre-stable plane while in (b)
they are in the centre-unstable plane.

When the system is perturbed slightly, that is, when the perturbation and all its first
and second partial derivatives are sufficiently small, our ‘local’ hypotheses remain
valid; there will still be an annihilation of a pair of periodic orbits (though the
value a =0 at which it occurs may be changed slightly) and the bifurcation will be
generic as described above. Furthermore, as we will argue below, the collision
between the orbits still occurs at a point that is on the boundary of the basin.
Therefore to prove that super-long transients can be expected in nature, it is sufficient
to prove that they occur whenever the hypotheses under discussion are satisfied.
There is, however, a difficulty: there are no very general hypotheses that guarantee
the existence of chaotic attractors. It is therefore necessary that we state our results
as local results, estimating how many times a trajectory can be expected to re-enter B'
before finally escaping through the top.

Let B denote a small box centred at p,, as shown in figures 19(a) and 19(b). Let
C be a curve in phase space that runs through the box and while in the box it is
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FIGURE 19. The curves in figure 18(a) that tend to p, at a =0 constitute what we call the ‘stable half
plane’ and it is redrawn in (a). The basin boundary is the wedge cutting into B from above. Imagine a
curve in B that is about to leave B on the next iterate. As it then is mapped for many iterates its image
is stretched greatly and then finally part of the image of the n’th iterate of the curve re-enters the box,
and that n’th image is called C,C,. In (b) the curve C,C, enters the box B at C, and exits at C,. (c)
shows the same picture where there is no stable direction. For a« slightly greater than 0 we ask how
much of the segment T(T', leaves B through the boundary of B at the top of the wedge since such points
will never return to B, That is, how long is the segment DyD, shown in (d). Notice that when a>0 the
wedge immediately slices all the way to the bottom of B and the walls of the wedge should be considered
much closer together than it is possible to show here.
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FIGURE 19 (cont.) -

in the basin when a =0. It does not touch the basin boundary. We require that C
is chosen so as to pass once through M, the stable half manifold of p,, and we
assume it is not tangent to M, at the point where they touch. For a point p chosen
atrandom on C and in B, the trajectory will eventually leave the box (with probability
1). Let P, be the probability that the trajectory escapes some neighbourhood of the
old attractor and never returns to the box. Such points will be called wayward,
assuming the point is chosen at random from the curve with the probability of
choosing it in a given segment being proportional to the segment’s length. Of course,
P, =0 for a <0. We claim:

THEOREM. Let Q = aayB,. Then
P.L7?50  asa-0". (24)

When the unstable manifold has dimension greater than 1, L, can then be replaced
by the absolute value of the product of the ‘expanding’ eigenvalues; that is, of the
eigenvalues having absolute value greater than one. The theorem implies that P, is
bounded above by a function L™ that has derivatives of all order equal to 0
at @ =0. The average length (7) of the transient, 1/P,, may then be said to be
‘super-long’ since for any k>0, 1/P,>1/a* for a > 0 sufficiently small. Equation
(24) differs from (5) and (14) in that we now obtain a lower bound for (7), that is,
(ry= kL7’? and this is valid for any x provided a is small enough.

In the remainder of this section we will first prove this result in the two dimensional
case appropriate for non-invertible maps (figures 19(c) and 19(d)) as in the example
in § 2. Then the required changes are discussed to make the proof general, allowing
the unstable manifold at the annihilation pair to be multidimensional and permitting
the annihilation pair to have a stable manifold.

To coordinatize the space we introduce a coordinate u which is 0 on M,. Then
for an appropriately chosen function G and an appropriate definition of F off M,
the dynamics are given by

Zn+1 = F(a, u,, z,), (25a)
Uney = Gla, u,, z,). (25b)

F was already defined on M, (i.e. where u is 0) so the old function F (a, z) is now
F(a,0,z). G is chosen so that it is 0 on M,, i.e. G(a,0, z)=0. From now on we
can denote p, by (0,0) in u, z coordinates. The z coordinate can be chosen so that
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the curve where a@ =0 and z=0 is the unstable manifold M, of p,. Of course, M,
is invariant under the map. This may be restated as follows:

F(0, u,0)=0.

Our assumption that the pair annihilation is generic now permits a conclusion about
the shape of the boundary near p, for a =0.

ProPOSITION 1. At a =0 the basin boundary is an exponentially sharp spike ending
at p,. (See figure 17.)

The precise formulation of sharpness will become clear with the proof.

The proof of the main result depends on the dynamics near the pair annihilation.
Thus we now restrict attention to a box B ={(e, 4, z)} such that 0= « < ap, |u| = us,
lzls zp, where these bounding constants ag, ug, and zg must be chosen sufficiently
small. To begin with, they must be chosen small enough that there is a constant
Lg>1 such that in B,

|G(a, u, z)| = Lg|ul.
By choosing the box small enough, Ly can be made as close to L, as we wish.

Imagine a set W in u, z space that is a neighbourhood of the closure of the

attractor’s basin when a =0, and assume that for a =0, some trajectories starting
arbitrarily close to (0, 0) can escape from this neighbourhood. See figure 20. We

TRAJECTORY OF
*~"A WAYWARD POINT

\ BASIN

,——_  BOUNDARY

__ATTRACTOR

FIGURE 20. When a =0, W is a neighbourhood of the closure of the basin of the attractor.

are especially interested in trajectories for a > 0 that leave B and never return. A
point (a, u, z) of B is then wayward if the trajectory starting there leaves B and
then leaves this neighbourhood W without ever returning to B. Our estimates work
for any choice of W.

Assume the trajectory through (e, u,, z,) € B eventually leaves B. We say the
trajectory exits through the top of B if

lunl=up and zy=2zg (26)
for the first N for which (a, uy, zn) is not in the interior of B.

Claim. There is a choice of up, zg, ag (>0) such that every wayward point in B exits
through the top of B.
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The box is constructed by choosing points p, and p, in M, at a =0, one on each
side of 0, as shown in figure 21. We let S be the two segments of M, (one on each
side of 0) that have p,, p, and their image points (g;, g,) as their end points. We
may assume |q,| =|q,|. Let V be a neighbourhood of these segments with the closure
of V lying in the interior of the basin of the attractor. We choose up =|q,|=|q,|-

VAN
S

FIGURE 21. Points p, and p, in M, at a =0 have points g, and g,, respectively, as their images.

Then for zg sufficiently small, the claim will hold since the basin boundary will
then only meet B as shown in figure 17. We now require inequalities for proving
both the proposition and the theorem.

Dynamic inequalities in B. For any choice of
ag>a=(3/8a)F at (0, 0,0),
Bs>Bo=0>F/3z>  at (0,0,0),
v8> Yo=0"F/ou az| at (0,0, 0),
we have

F(a, u, z) < z+ age + yp|uz| + Bz?, 2n

when (a, u, z) € B, provided B is small enough; that is, provided ag, ug, zz are small
enough. This is true since F(0, u,0)=0and at (0, 0, 0) we have 9 F/dz = 1. Similarly,
if Ly < L,=|3F/u| at (0,0,0) we have, for B small enough,

|G(a, u, z)| = Lpu in B. (28)
For any choice of B, we can assume ag, B, ¥s, Lp are values for which (27) and
(28) hold (and Lg>1). They can be chosen as functions of B so that ag > a and
Bs—> B and yg—> v, and Lg~> L as ap, ug, zg—> 0.

Equivalently, we may write (27) and (28) as

zn+l_znSaBa+YB|unan+.BBz%u (29)
|t1| = Lt (30)

for any trajectory as long as (a, u,, z,) € B.
To prove proposition 1, let (a, uy, z5) € B be a trajectory that exits through the

top of B at n= N with a =0. Notice z,> 0. Then, inequalities (29) and (30) are
satisfied and

Uy,

un

=L¥™  for0=n<N. (31)
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For a =0 it follows that for a small box |z|« zg, we have |z,11/ 2, < |4p+1/ u,|. Since
|zn/ un|= 25/ up, the same must be true for earlier iterates. Therefore, z,/u, = zn/un
for n< N, and y|u,z,| < yz2, where ¥ = ygug/ 2z In (29) we set a =0 and obtain
Zn41 — Z, =< const. z2 for trajectories that exit through the top of B. For simplicity we
take const.=1. We convert the inequality to a differential inequality with n a
continuous variable (see remark below) so that

dz

2
4z _ 2
in=? (32)

ZNd
=>J z—fsN—n

Zn

-1 -1
=z, ~zy=N-n

= | e sLj,;‘l‘zBl [from (31)]
Un
=>|u0’S “BL(I;El_zal) [from (26)]. (33)

—z 1

The region bounded below by u(z) = upL'Zs' might be called exponentially sharp,
and all wayward points u, z lie in it since wayward points exit through the top of
B. The proposition is proved.

We have cavalierly replaced a differential inequality by (32) even though they
are not equivalent. However, they can be made close by choosing zg small. In order
to keep arguments intuitive, we will leave it to the reader to make fine tuning
adjustments between difference and differential inequalities. Hence the correct form
of (33), based on arguments that the two types of inequalities are close, is

|uo| < const. L5" %,
where the constant can be made as close to upL} *® as desired by choosing zz small.
In our case, however, (33) is actually correct since this differential inequality has
solutions that increase slightly faster than any solutions of the difference equation
(a result analogous to the benefits of instantaneous compounding of interest).

To see what can be achieved when no yg term is present in (27), we establish
the following result. Assume a,> 0, 8,>0, and

Zns1— Zn =< Qo + BoZ3 for0=n=N-1, (34)

Also assume £ >0 is sufficiently small and R > 0 is sufficiently large that

. )
tan"'(R) > 7(—25) for z;>Rr, and z,<—Rr, where ro=(a[‘;a°>. (39)

0

We then have the following.

LEmMMA 1. For a sufficiently small (a < ay for some a,} the number of iterates T
required using (34) for z to go from —Rr, to + Rr, satisfies

T=n(1-¢)/Q}, where Qy = ayayfBo.
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Proof. Since aa + Bz% is small compared with Rr, (or rather aa +(Rry)? is small),
when a is small, we convert to a differential inequality:

d.
£ apap+ Boz>. (36)
dn

While (34) and (35) are not equivalent, the difference between them is small and
decreases as a decreases. We now have

r dz
[ e
20 apaot Boz
Letting s = z/ry, So= 2o/ T0o<—R and s = zr/ry> R, we obtain

R

d

J- lrl :25 apaoT=>m(1-¢)<tan"' (R)—tan"' (—-R) < TQj},
-R

and the result is established.

By making B small, this can be made as close to L, as desired. To make this precise
and allow yz # 0, it is necessary to introduce a small box § within B.
A small box S within the big box B. Next we examine a small rectangle S in B defined
by 0= a = ag, |u|<us, |z| = zs with 0< as < ap, 0<ug<up, 0< zg < z5. We require
the rectangle to be chosen so that trajectories that exit through the top of B will
exit through the top of S (assuming z,=< z5). At a =0, it is sufficient to have
ug > uBLzB‘?_z;l, 37

and then there will be an as such that our requirement is met. In our discussions
from now on, this will be assumed to be true.

We will place a number of additional requirements on S. First we assume

(S,) S contains none of the points of I'y[;.
See figures 19(c) and 19(d).

Just as we chose ag, vs, Bg, and Lz we now choose ag, s, Bs as small as possible
and Lg as large as possible so that

F(a, u, z) = z+ asa + ys|uz|+ Bs2?, (38)
Gla, u,2)= Lslul, (39)
for (a, u, z) e S.

LeMMA 2. For any small €,> 0, the box S may be chosen so that when a = ag, any
trajectory exiting through the top of B also exits through the top of box S, and while
the trajectory is in S,

z,,+,—z,,S(l+£0)(aoa+Bozf,). (40)
In other words the ys term may be replaced by introducing &,, which also permits

the use of a, and B, instead of ag and Bs To prove this result we require S small
enough that

(Sy) as=(1+¢g¢/3)a, and Bs<(1+&/3)Bo;
(S;) 3Bszs=<log Ls (i.e. zg is small);

(S4) %EoBsZs>2‘ySuS (i.e. Us is Small).
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From (38) we have
Zn+1“znsasa+’)’slunzn""BsZ%.- (41)

At the top of S where z, = z5, we can assume that «g is small enough that the last
term on the right side of (41) is the dominant term in that

Bsz? = asa, for a < ag, (42)
3€0Bsz, > Yslun| (from (S,)) (43)

and (42) remains true so long as
zs =z, = (asa/Bs)*. (44)

We convert (41) to a differential inequality and invoke (42) and (43)
d
2 < 2+ £0/3)Bs 7, (45)
dn

which holds as long as (42) and (43) are true. Rewriting (42) yields
ZSZZZ(aSa/BS)i- (46)
We claim (43) holds for z in the range (46). Suppose equality holds in (43) at z = z,.
This means that z/|u| is larger than at z, for z> z, so log (z) is growing at least as
fast as log (u) at z,. Then writing (42) and (43) in differential inequality form
(evaluating at z = z,)
d

1d
Zlog (u)=—L=log(Ls)=3Bszs  (from (S;))
dn u dn

1d d
3Bszs> (2+ £0/3)Bsz =~ —=—log (2),
zdn dn

using (S,), and then (45). This contradicts our prior conclusion on growth rates z,.
Hence no such z, exists in the range (42) and the claim is proved.
Below this range we claim asa dominates yuz. Applying (43) to (41) in the range
(44) gives
Zys1— 2, < asa +(1+ &0/3) Bsz5
=(1+&o/3)(asa + Bsz3). (47)
At the bottom of range (44), Bz% = asa so
%Soaas > ‘Y|unlzn = ‘)’lu,,Z,,|. (48)
Using arguments as above this can be seen to be true while
(asa/Bs)=z,= —zs, (49)
since log |u,| increases faster than log |z,| as n increases so y|u,z,| increases with n.
In other words, |u,z,| assumes its largest value in range (49) at the top of that range.

Hence in range (49)
Znr— 2, =< (1+ £/3) asa + Bsz,

which implies (47). Hence (47) is true as long as z, is in S. Now using (S,) and
(47) yields
Zp+1 7 ZIn = (1 + 80/3)2(‘10(1 + ﬂszf.),

which in turn implies (40) and lemma 2 is proved.
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ProPOSITION 2. For any € >0 there is an ag>0 such that if (uy, 2,) is a wayward
point on the curve I'\I'y, with 0 < a < ag, then the trajectory (u,, z,) will remain in B
for at least (1—¢)mw/ Q! iterates during which

|tpir| = (1 —€)L,|u,|.

To prove proposition 2 we require that S is chosen so that
(Ss) arctan (zs/rs)>7 (1~21),

where rs=(asas/Bs)5, g, is a small number that we will discuss later. In other
words, z3 » ag Converting (40) to an integral inequality
s dz
———=<(1+¢,)T,
J‘—zs asa +Bszz ( e T,
where T is the minimum number of iterates that are needed for z, to traverse the
box S from bottom to top. Then as in lemma 1, letting Qs = asas/Bs,
m(1—-¢g,) 1
_(—i_]<"_é [arctan (zs/rs) —arctan (—zg/rs)]=(1—go) T

Qs Q

T l—¢ =
@ 2+ ¢, - E
where g5 = Qg/Q — 1. Of course, £5 can be chosen as small as desired by making S

—_
S 0

as small as desired, so proposition 2 is valid.

=>T= (1—-¢),

To prove the theorem. Let P, denote the fraction of the points on I',I', that are
wayward. Then P, is no greater than the fraction that remains in B for (1—¢)#/Q
iterates. The u coordinate of every wayward point on I'I', satisfies

|uo| < us[ L (1~ €)1~/ (50)
Notice that £ and us can be made as small as desired by choosing a small, and
that (1—-¢)""9<1. For a>0, let L(a) be the largest value of L,(1—¢)""° for
which (50) is true and S can be chosen as we have required above. The slope of
I',I', is finite when it crosses u =0 (since it is transverse to M, at « =0), so P, is
at most a constant times the right-hand side of (50). Since ug—»> 0 as a - 0 there is
a function «(a) with x(a) >0 as a - 0 such that

P, <k(a)L(a) ™,

Hence, P,L(a)™ 2 >0 as a > 0. The theorem has now been proved in the case where
there is no stable manifold.

When there is a stable manifold, we introduce an additional coordinate v so that
(i) at @ =0, v =0 for points of the unstable manifold of (0, 0, 0), (ii) u =0 for points
of the stable manifold, and (iii) z=0 on both manifolds. We may choose these
coordinates so that for any « small u=0 (and v=0) are invariant surfaces. The
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dynamics satisfy a more general version of inequalities (29), (30)

Zpir =< 2, + Aga + Yg|Unz,| + V5| Vaza| + V5 Un0.] + Baz?,
|un+l| = LBlunL

|vn+l‘ = L,B|vn|,

where Ly > 1 and L3 < 1. Notice, however, that we need a new term Y% since there
is no obvious way to choose coordinates so that « =0 and z, =0 imply z,,,<0. We
can guarantee this only when u, =0 or v, =0.

Proving the theorem is now essentially equivalent to extending lemma 2 to this
more general case. The proof that yg is small (in the sense of lemma 2) needs
essentially no change from the arguments above. That y' is small is argued
analogously except that 8gz2 dominates ys|vz| in S when z is near —zg instead of
+zs. The term vy however introduces new aspects. The new term 'y’l’;lu,,v,,| is always
small and so it poses only a small problem for appropriate choice of S. Choose
Ls>1 so that

|un+1|2LS|un| and 'vn+llslvn|/LS'

If a trajectory is in S for T iterates, say for n=0,..., T, we have |ur|= us so that
at an earlier time n, the rapid growth of u implies

[up|=us/LE™"

Furthermore, letting vs denote the maximum of |v| in S, |vy|=<vs so the rapid
shrinking of v implies |v,| =< vs/ L3. These inequalities taken together imply

|u,,u,,| < ugvs/ LY for all n.

For a small, it is clear that T is large. (Our difficulty has not been to show that T
is large but rather that T satisfies specific inequalities). Hence, lu,.v,,| can be made
uniformly small for all wayward trajectories by choosing « small and is dominated
by

asa + Bsz>.

The proof then proceeds as before.

5. Effect of noise on long-lived chaotic transients

It might be objected that the phenomena described in this paper may not occur in
experiments because noise would be present in real systems. For the examples
discussed in §§ 2, 3, we have numerically determined, however, that the addition of
noise exacerbates the situation, making the transients even longer (in the sense to
be defined below).

The following heuristic argument suggests why the chaotic transients are longer
in the presence of noise. We expect that the effect of adding noise (a random
perturbation added on each step of the map) to the two-shift map equation (1a) or
the map equations (17a) and (17b) makes it a bit more difficult for a trajectory to
remain near 6 = ¢ =0 (where cos is large). Of course, for improbable choices of
the random 6 and ¢ perturbations, it is still possible for the trajectory to escape.
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By contrast, the effect of noise in the z map, either in equation (1b) or in equation
(17¢) is very significant. These equations in the presence of noise can be written as
Zps = az,+ 25+ B cos 6+ yr,, (51)
where y>0 measures the noise level and {r,} is a random sequence with some
probability distribution, with {r,} assuming values in[—1, 1]. Thus, we are consider-
ing bounded noise (i.e. |yr,| < y). With bounded noise we define a, to be that value
of a below which almost all initial conditions do not generate orbits which go to
z=+00, To obtain a, we set r,=+1 in (51) and solve for the coalescence of the
fixed points. We obtain
a*=1—2(B+y)5 (52)
instead of equation (4). For a > a, trajectories will eventually escape to z = +c0 for
almost every initial point and almost every sequence {r,}. In order to make a
comparison with the noiseless case of § 2 we keep the crisis value of the parameter
a, =06 fixed, i.e. B+y=(1—a,)*/4, or, B+y=0.04. Figure 22 shows a plot of
the average lifetime (7) versus a — a, for 8 =0.02 and y =0.02. We should contrast

T T
Lol

T
1

/\
~
A4
T T
cnl

T T

te il

T

103 ; | |
0.00 005 0.10 Q.15 0.20

a—a*

FIGURE 22. Plot of the average lifetime (7) versus a —a,. The dots denote numerical results from
equations (1a) and (51) for 8 =0.02 and y =0.02. Contrast with figure 7.

these numerical results with the noiseless case shown in figure 7. The average escape
time {7) is indeed much longer in the presence of noise. To understand this numerical
observation we note that for a > a,, in order for the orbit to leave, the term
B cos @+ yr must be very close to its maximum, i.e. 8 + y = 0.04 for many consecutive
iterates. For that to happen, cos # and r must be close to +1. The cos 6 term has
the same behaviour as in the noiseless case. But here we need in addition the
randomly chosen noise to be close to +1 during the same sequence of iterates and
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for many consecutive iterates. A formula analogous to (14) would depend on the
probability distribution for r.
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