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Abstract

‘We have adapted the Spectral Transform Method, a technique commonly used in non-linear
meteorological problems, to the numerical integration of the Robinson-Trautman equation.
This approach eliminates difficulties due to the S* x R* topology of the equation. The
method is highly accurate for smooth data and is numerically robust. Under spectral
decomposition the long-time equilibrium state takes a particularly simple form: all non-
linear (I > 2) modes tend to zero. We discuss the interaction and eventual decay of these
higher order modes, as well as the evolution of the Bondi mass and other derived quantities.
A qualitative comparison between the Spectral Transform Method and two finite difference
schemes is given.

1. Introduction

The Robinson-Trautman [5] (RT) metric describes a class of vacuum spacetimes
whose evolution are governed by a single field equation. Physically an RT spacetime
describes a distorted non-rotating black hole which radiates energy in the form of
purely outgoing gravitational waves, settling down to the Schwarzschild solution in
the limit of large retarded time.

For all but the most trivial initial conditions exact solutions to the RT equation are
unavailable. Nevertheless, several strong results concerning the global behaviour of
the RT equation have been proved: Chrusciel [2] has shown that solutions exist for
quite general initial conditions; Lukécs et al. [3] established uniqueness; in the limit
of large retarded time the RT spacetime settles down to the Schwarzschild solution
[3]; a number of conserved and monotonically decreasing (Lyapunov) quantities are
known [3, 6].

Of these quantities the Bondi mass is the most readily interpretable: it gives a
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measure of the total mass-energy on a null-slice. Accordingly, we expect it to be a
Lyapunov functional and strictly positive on physical grounds.

Our approach to the problem of numerical integration works primarily in a spectral
representation, which describes the evolution of the RT equation in terms of a sum of
spherical harmonics [1]. Sp'atial derivatives are evaluated in this spectral basis, where
they are particularly simple. Non-linear operations take place in a pointwise basis,
so it is necessary to transform back and forth between the two bases. The matrices
which arise in this approach are almost full, making computations more intensive
than in finite difference methods (which work exclusively in the pointwise basis and
give rise to banded matrices) for problems of similar spatial resolution. However,
the greater accuracy and convenience (from an analytic viewpoint) of the spectral
transform method offsets this limitation making it the method of choice.

We also mention a more radical finite difference scheme, based on an (arbitrarily
fine) triangulation of the sphere [4], which is applicable to the non-axisymmetric RT
equation. We expect that this scheme will be superseded by a Spectral Transform
approach.

2. The axisymmetric Robinson-Trautman equation

The RT equation describes a quantity f defined on the two-sphere S? which settles
down to a superposition of the [ = 0 and I = 1 spherical harmonics in the limit of
large u (retarded time). f may be interpreted as a conformal factor which describes a
topological two-sphere (for fixed u).

The assumption of axisymmetry (¢ independence) reduces the 2 (space) +1 (re-
tarded time) dimensional RT equation to the 141 dimensional axisymmetric Robinson-
Trautman (ART) equation. The use of the z := cos 8 coordinate eliminates the trou-
blesome coordinate singularities at the poles of the two-sphere, induced by the use of
spherical-polar coordinates. The ART equation is given by

fu=—FAoBo+2A0)f + 3 —2Dd.f
f =f(u,z):ﬂR+x[—l,1]—-> R,
IC:f(0,) = fo(),  fo:[-1, 11> R. (1)

Here A = (1 — 2%)3,; — 220, + (1 — z2)~'8,, is the Laplacian operation on $2 and
fo is taken to be continuous.

Two important global quantities are the surface area of the topological two-sphere
(which is conserved and set to 47 by convention) and the Bondi mass (one of two
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Lyapunov quantities — see Singleton [6]):

1
1
4 =2n / dz, (2a)
-1 f (u9 Z)2

My(u) ! f l ! d (2b)

u) == .

T L ™
The Bondi mass decreases as energy is carried to null-infinity by gravitational

waves.

Our numerical schemes do not conserve surface area exactly and do not guarantee
the monotonicity of the Bondi mass. However, the computational analogues of these
quantities are extremely useful in testing the accuracy of simulations.

3. The Spectral Transform Method

3.1. Time-stepping As is usually the case for parabolic equations, explicit time-
stepping schemes are unstable except for unreasonably small time-steps. Instead we
choose to approximate the ART equation at time-step k + 1/2 by

f[k'H] _f[k] f[k+|] +f[k] - R f[k+1] +f[’f]
Au 2 =9 (f) 2

in the style of Crank and Nicolson. The terms .# and ¢ are finite-dimensional
approximations (either of spectral or finite difference type) to —(ApAp + 24,) and
(1 — z%)d,, respectively. The symbol f is short-hand for f +1/2),

Rearranging, we obtain a ‘linear’ equation for f *+11:

o) 2ol )- 2o

The idea of non-linear Crank-Nicolson is to iterate this equation with successively
better approximations to f and f *+!), We represent an evolution step (solution of (4)
with specified Au, f and f 1) by the operation

=[f 2+ /959 3)

f g (Au’f"’f[k]) = fln,

Implementing E involves computing the linearized operator 2 (f ) and solving

the system of linear equations.
A simple predictor-corrector (PC) scheme can be constructed as follows:
Predictor: f « E (42, f14, f14),

Corrector: f*+!l « E (Au,f,f"‘]).
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This type of scheme (just one Corrector step) was implemented by Singleton [6].
He used a finite difference scheme in the 6 coordinate. This led to complications at
the poles. By using the coordinate z = cos 8, these difficulties are avoided.

Rather tha~n accept the result of a single PC step, we allow M corrector steps:
Predictor: f « E (&, f¥, f9),

Corrector (1): f? < E (Au, f, f““),

Corrector (m): f; « E (Au, T2, 1), m=2,... M,
New f: fI+1  fr.

If the system fails to converge after a few iterations then the choice of Au is
probably too large. We obtained excellent results by fixing M = 2 and using a simple
(non-extrapolating) adaptive time-stepping scheme to adjust Au.

3.2. Calculation of spatial derivatives If we write f (1, z) as a superposition of

Legendre polynomials,

fu,z) = qo(u)Po(2) + 1 () Pi(2) + - -+ + gur (1) P (2), &)
we find that AgP,(z) = —I(l + 1) P(z) and consequently Z P,(z) —» —( — DI +
(I + 2)Pi(z), so in the spectral basis, where f ~ g = [q0,q1, ... » Gu-1)), &£ =

diagonal [0, 0, —24, —120, ...]. The derivative operation ¢ is given by the upper-
triangular matrix

(00 2 0 2 0
"0 0 6 0 6 O
0

-2 0 10 10
-6 0 14 0
-12 0 18
-20 O
=30

\ )

In contrast to the simplicity of the derivative operations L and G, the non-linear
operations of vector-vector (e.g. f 2) and vector-matrix (e.g. f %) multiplication appear
extremely messy in the spectral basis. The optimal approach is to transform to a
pointwise basis in order to perform these operations and then transform back to the
spectral basis.

If the nodes in the pointwise basis are chosen to be the zeroes of the nth Legendre
polynomial then the spectral to pointwise transformation & and its inverse %!
(which can be written down explicitly) are well-conditioned. Note that f = Pgq.

Given two vectors a and b defined pointwise, the vector-vector product ab is
obtained by multiplying components pointwise, for example (ab); := a;b;.
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FIGURE 1. Snapshots of the evolution

To obtain a consistent definition of vector-matrix multiplication we can invoke
associativity, which requires that (aM)b = a(Mb). Hence (aM); 1= a:M;;.
The spatial part of the RT equation in the spectral representation is

2G) = P [(PGPL + (PG PIPY]. (6)

Substituting g for f in (4), we can evolve forward in retarded time.

4. A numerical example

We consider an illustrative example: initial conditions specified by fo(z) = 1 —
0.5sin 7z, so all even modes other than / = 0 are initially zero.

A spatial resolution of 21 modes was used — higher resolutions only cause minute
changes to the results. For other initial conditions a higher spatial resolution may be
necessary.

No effort was made to scale the initial surface area to the traditional value of 47r. In
order to perform such a rescaling it would be necessary to multiply f, by a constant,
which would be equivalent to a simple rescaling of both f and u.

Figure 1 shows a sequence of snapshots of f at fixed values of u, as f evolves
from a sinusoid into a straight line, representing the steady-state. Although this is a
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FIGURE 3. Mode ! = O tends to 0.88 as u — 00
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FIGURE 5. Interaction and decay of higher order modes
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parabolic problem, no maximum principle is evident.

Equation (2a) asserts that Bondi mass is a monotonically decreasing quantity.
Figure 2 gives the decay of the numerical analogue of the Bondi mass. During the
same period the surface area, which is conserved according to (2b), remains constant
to within 2.6 x 1077, At large retarded time (u = 1.87) the surface area has still only
varied very slightly (3.5 x 10~7) from its initial value.

Further insights can be obtained by examining the evolution of the individual
harmonics. The coefficients of the modes I = 0 and [ = 1, which settle down to
constant values at large retarded time, are shown in Figures 3 and 4 respectively.
Figure 5 illustrates the type of evolution typical of higher order modes. Modes higher
than / = 5 are not shown — they decay at still faster rates.

Notice that mode two (the quadrupole moment), rapidly increases and then decays
more slowly than the higher order modes. This behaviour appears to be a general
feature of the evolution, independent of initial conditions. In each instance there is a
rapid ‘burst’ of interaction between the modes, with mode two increasing significantly,
followed by a period of decay. Mode zero experiences a kink while mode one has
a local maximum and then a local minimum in the initial phase, followed (for both
modes) by a later period of smooth monotonicity.

At a later retarded time of u = 1.9, modes two and above have orders of 10~'°
and smaller; the Bondi mass and the I = 0 and I = 1 harmonics have levelled out to
constant values: we have reached the steady-state — the Schwarzschild solution.

In the linearized RT equation the modes are decoupled, so there is no interaction,
modes zero and one are constant and the higher order modes decay independently.

Numerical integration took 35 seconds and 215 adaptive time-steps on a DEC
5000/125 workstation, using a relatively unsophisticated linear systems solver.

5. Other numerical schemes

5.1. Standard finite differences Inthe absence of analytic and asymptotic solutions
to the ART equation with which to compare our evolutions, it is extremely desirable
to have a second numerical scheme to provide some degree of confirmation of results.
For this purpose we have implemented a scheme based on standard finite differences.

It is feasible to perform all operations in a uniform pointwise basis. This approach
generates banded rather than full matrices, making solution of the resulting linear
systems much quicker than those which arise from the spectral method. However, the
results obtained are less accurate, as centred differencing is not possible at the poles.
In practice it is necessary to choose n comparatively large, completely eroding the
gains in efficiency made from the banded structure. Additionally, there is no natural
interpolant. Should higher order interpolation be based on z or 8?
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5.2. Finite differences on an icosahedral grid Both the approaches discussed thus

far should readily generalise to handle the full ‘2 + 1’ RT equation. We have partially
implemented a third approach, based on a fine triangulation of the sphere [4]. Starting
with an icosahedron, we perform an arbitrary number of barycentric subdivisions to
obtain a fine, nearly uniform, mesh. By means of integral identities it is possible
to derive finite difference expressions for the Laplacian and to thereby construct a
numerical scheme. The book-keeping involved in such a grid is significantly more
complicated than for the other approaches, but like the spectral transform method,
this method does not suffer from special problems at the poles. To date we have only
implemented an explicit time-stepping scheme, which is (not surprisingly) unstable
except for very small Au. An implicit version, although technically possible, would
be more difficult to implement and would yield matrices with a very complicated
(non-banded) structure.

6. Conclusion and acknowledgement

The Spectral Transform Method is well-suited to the integration of the ART equa-
tion. The degree of agreement with finite difference methods varies with the initial
conditions, but is generally good. It is likely that discrepancies are attributable to
the poor quality of finite difference approximations near the poles. Both approaches
should readily generalise to the case of the full ‘2 + 1’ RT equation.

The natural decomposition into modes afforded by our approach is useful in in-
terpreting numerical experiments. The most striking feature observed to date is the
behaviour of the I = 2 mode.

Further work is required to prove the convergence and stability of these methods,
to give physical meaning to the initial conditions and to tie the numerical results in
with the more conventional ‘3 4 1’ picture of spacetime.

We would like to thank Dr Leo C. Brewin for his advice and encouragement.
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