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Machine learning has emerged as a powerful tool for the analysis of mesoscopic and atomically resolved 

images and spectroscopy in electron and scanning probe microscopy. The applications ranging from 

feature extraction to information compression and elucidation of relevant order parameters to inversion of 

imaging data to reconstruct structural models have been demonstrated. However, the fundamental 

limitation of the vast majority of machine learning methods is their correlative nature, leading to extreme 

susceptibility to confounding factors. While in classical statistical methods the methodology to address 

phenomena such as Simpson paradox are established, the complex and often non-transparent nature of 

modern DL tools renders them extremely prone to misinterpretation. We argue that correlative machine 

learning provides a reliable and powerful tool in cases when the causal links are well established, and 

discuss several examples of atom finding in SPM and STEM and analysis of 4D STEM data when this 

condition is satisfied. Notably, ML applications in theory generally fall under this category sine the causal 

mechanisms are postulated. Alternatively, ML methods work well when the confounding factors are 

effectively frozen via the narrowness of experimental conditions or experimental system. However, both 

these conditions are violated for experimental studies, when causal relationships are known only partially 

(and are in fact often the target of study) and confounding factors (composition uncertainty, microscope 

tuning, contaminations) are abundant. In this presentation, I will discuss the several examples of extending 

machine learning methods towards the analysis of causative physical mechanisms. One such approach is 

based on the Bayesian methods that allow to take into consideration the prior knowledge the system and 

evaluate the changes in understanding of the behaviors given new experimental data. The second pathway 

explores the parsimony of physical laws and aims to extract these from the set of real-world observations. 

Finally, the Bayesian networks can be used to explore the causative relationships in the multimodal data 

sets. These concepts will be illustrated using several examples of causal machine learning, including 

analysis of phase transitions on a single atom level in 2D materials and interplay between physical and 

chemical effects in the ferroelectric perovskites. Ultimately, we seek to answer the questions such as 

whether electronic instability due to the average Fermi level guides the development of the local atomic 

structure, or frozen atomic disorder drives the emergence of the local structural distortions, whether the 

nucleation spot of phase transition can be predicted based on observations before the transition, and what 

is the driving forces controlling the emergence of unique functionalities of morphotropic materials and 

ferroelectric relaxors. 
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