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Abstract

We prove that the higher direct images of the structure sheaf under a birational and
projective morphism between excellent and regular schemes vanish.

1. Introduction

In this article we prove the following theorem.

Theorem 1.1. Let f : X → Y be a projective and birational morphism between excellent and
regular schemes. Then the higher direct images of OX under f vanish, i.e.,

Rif∗OX = 0 for all i > 1.

In the case where Y is of finite type over a characteristic zero field, this theorem was proved by
Hironaka as a corollary of his work on the existence of resolutions of singularities, see [Hir64, (2),
p. 144]. In a similar way, one can prove Theorem 1.1 for dimY = 2, see [Lip69, Proposition 1.2].
If Y is of finite type over a perfect field, then the theorem holds by [CR11, Corollary 3.2.10].
The proof in [CR11, Corollary 3.2.10] uses the action of correspondences on Hodge cohomology.
These methods do not seem to generalize to an arithmetic setup. Instead, in this article, we give
a more direct proof, which relies on Grothendieck–Serre duality.

In view of [Lip94] and [San84], we obtain the following application in commutative algebra.

Theorem 1.2. Let R be an excellent regular local ring, and let I ⊂ R be an ideal such that the
blow up X = Proj

⊕
n>0 I

n is regular. The following statements hold.

(i) There is e > 0 such that the Rees algebra
⊕

n>0 I
en is Cohen–Macaulay.

(ii) There is e > 0 such that the associated graded algebra
⊕

n>0 I
en/Ie(n+1) is Cohen–Macaulay.

It is worth noting that assertion (i), or equivalently assertion (ii), implies the vanishing
H i(X,OX) = 0, for all i > 0, and hence Theorem 1.1 after an easy reduction to the local case.

By using the main result of [BBE07], we obtain the following application, which was known
for X and Y defined over a finite field [FR05, Theorem 1.1].

Theorem 1.3. Let f : X→ Y be as in Theorem 1.1. Let k be a finite field and let s : Spec k→ Y
be a morphism. Denote by Xs = X ×Y Spec k the base change of f along s. Then the number of
k-rational points of Xs is congruent to 1 modulo the cardinality of k, i.e.,

|Xs(k)| ≡ 1 mod |k|.
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See § 5 for a proof of this theorem. Theorem 1.1 is a consequence of Theorem 1.4 below. We
have to introduce some notation to state it. From now on, all schemes in this introduction will be
assumed to be separated, noetherian and excellent (see [EGAIV, 7.8]) and will admit a dualizing
complex (see [Har66, V]). Let f : X → Y be a finite type morphism between integral schemes
that is dominant and generically finite and has a regular target Y . Then we define a morphism
(see Proposition 2.6)

cf : OX → f !OY in D(Y ).

It is a version of the fundamental class constructed for flat morphisms in [ElZ78], [AE78]
and [AJL14]. If f is a proper complete intersection morphism of virtual dimension 0, the
morphism cf corresponds by adjunction to the trace morphism τf : Rf∗OX → OY constructed
in [BER12, Theorem 3.1].

Furthermore, let σA be a commutative square

V

f
��

A

fA
��

gAoo

σA

Y Zg
oo

in which f is a morphism of finite type and g, gA are proper. From duality theory, we obtain a
natural transformation of functors Db

c(Z)→ D+
c (V ),

ξσA : RgA∗f
!
A→ f !Rg∗.

Theorem 1.4. Consider the following diagram

V

f
��
Y Zg
oo

where we assume that the following conditions are satisfied:

(i) V, Y, Z are integral schemes and Y,Z are regular;

(ii) f is of finite type, dominant and generically finite, and the base change V ×Y Z −→ Z is
generically finite;

(iii) g is projective.

Then the following equality holds in HomD(V )(OV , f !Rg∗OZ):[
OV

cf−→ f !OY
f !(g∗)
−−−→ f !Rg∗OZ

]
=

∑
A

`A ·
[
OV

g∗A−→ RgA∗OA
RgA∗(cfA )
−−−−−−→ RgA∗f

!
AOZ

ξσA−−→ f !Rg∗OZ
]
,

where the sum runs over all irreducible components A of V ×Y Z that dominate Z, `A is the
multiplicity of A in the generic fiber over Z, and σA is a commutative diagram as above, where
gA and fA are induced by the composition of the closed immersion A ↪→ V ×Y Z followed by
the projection to V and Z, respectively.
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Vanishing of higher direct images

The formulation of this theorem is reminiscent of intersection theory. Indeed, methods from
intersection theory are used implicitly in the proof, which occupies most of the paper. In § 2
we define the map cf and establish its main properties; in § 3 we give the definition and main
properties for the map ξσ; in § 4 we give the main reduction steps for the proof of Theorem 1.4;
in § 5 we prove the above theorems.

Let us conclude with a list of open questions to which we hope to come back in the future:

(i) Is Theorem 1.1 or Theorem 1.4 still true if one replaces ‘projective’ by ‘proper’?

(ii) Let S be an excellent scheme and let f : X → S and g : Y → S be regular S-schemes.
Assume X and Y are properly birational over S, i.e., there exist birational and proper S-
morphisms V → X, V → Y . Do we have an isomorphism Rf∗OX ∼= Rg∗OY ? (If S is separated
and of finite type over a perfect field this holds by [CR11, Theorem 1].)

(iii) What kind of singularities can we allow for Y in order that the vanishing of Theorem 1.1
still holds?

Conventions
All schemes in §§ 2–4 are assumed to be separated and noetherian and to admit a dualizing
complex. We say a morphism f : X → Y is projective if it can be factored as a closed immersion
X ↪→ PnY followed by the projection PnY → Y . For a scheme X, we use the notation D∗(X) and
D∗c(X), with ∗ ∈ {−,+, b}, as in [Har66], [Con00].

2. Fundamental class

Let f : X −→ Y be a map of finite type. By [Con00, § 3.3] we have

f ! : D+
c (Y ) −→ D+

c (X)

at our disposal. Whenever f is proper, the trace Trf : Rf∗ ◦ f ! −→ 1 induces an isomorphism

HomD(X)(F, f
!G) ∼= HomD(Y )(Rf∗F,G), (2.0.1)

provided that F ∈ D−c (X) and G ∈ D+
c (Y ). In particular, we obtain a natural transformation

Tr∨f : 1 −→ f ! ◦Rf∗ of functors Db
c(X) −→ D+

c (X) satisfying

idRf∗(F ) = Trf (Rf∗F ) ◦Rf∗(Tr∨f (F )), (2.0.2)

idf !(G) = f !Trf (G) ◦ Tr∨f (f !G), (2.0.3)

for F ∈ Db
c(X) and G ∈ Db

c(Y ) such that f !G ∈ Db
c(X).

For a closed immersion f the functor f ! is right adjoint to Rf∗ when considered as functors
on D+

c .

2.1 Fundamental class
Recall from [SGA6, VIII] that a morphism f : X→ Y is a complete intersection of virtual relative
dimension 0 (ci0 for short) if any point x ∈ X has an open neighborhood U ⊂ X such that the
restriction of f to U factors as

f|U = π ◦ i, (2.1.1)

where i : U ↪→ P is a regular closed immersion of codimension codimP (U) =: n and π : P → Y is a
smooth morphism of relative dimension codimP (U). We collect the following facts from [BER12].
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Let f : X→ Y be a ci0 morphism. There exists an invertible sheaf on X, called the canonical
dualizing sheaf and denoted by ωX/Y , which on any open subset U ⊂ X on which f factors as
in (2.1.1) is isomorphic to

(ωX/Y )|U ∼=
n∧

(I/I2)∨ ⊗OX i
∗Ωn

P/Y , (2.1.2)

where I is the ideal sheaf of the regular closed immersion U ↪→ P [BER12, A.2]. If g : Z → X
is another ci0 morphism, then there is a canonical isomorphism (see [BER12, A.5])

ζ ′g,f : ωZ/Y
'−→ ωZ/X ⊗OZ g

∗ωX/Y .

There is a canonical isomorphism

λf : ωX/Y
'−→ f !OY

in D(X) (see [BER12, B1]), and a global section

δf ∈ H0(X,ωX/Y )

with the following property. For any open subset U ⊂X on which f factors as in (2.1.1) and such
that the ideal sheaf I of i : U ↪→ P is generated by a regular sequence t1, . . . , tn, δf is mapped
to the following element under the isomorphism (2.1.2):

δf |U = (t̄∨1 ∧ · · · ∧ t̄∨n )⊗ i∗(dtn ∧ · · · ∧ dt1), (2.1.3)

where (t̄∨j )j is the dual of the basis (i∗(tj))j of I/I2 [BER12, A.7]. (If I is the zero ideal, this
means that δf |U = 1 ∈ OU .)

Definition 2.2. Let f : X → Y be a ci0 morphism. Then we define the morphism

cf : OX → f !OY

to be the composition λf ◦ δf .

Proposition 2.3. Assume f : X → Y is a ci0 morphism.

(i) Let u : U → X be an étale morphism. Then f ◦ u : U → Y is ci0 and

cf◦u = u∗cf ,

where u∗ is the morphism

u∗ : H0(X, f !OY )→ H0(X,Ru∗u
∗f !OY ) = H0(U, (f ◦ u)!OY ).

(ii) Assume g : Z → X is another ci0 morphism. Then cf◦g is equal to the composition

OZ
cg−→ g!OX

g!(cf )
−−−→ g!f !OY = (f ◦ g)!OY .

(iii) Assume f is finite and flat. Then the composition

f∗OX
f∗(cf )
−−−→ f∗f

!OY
Trf−−→ OY

equals the classical trace morphism traceX/Y : f∗OX → OY .

(iv) Suppose X is integral. If f is not dominant then cf = 0.
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Proof. (ii) follows from [BER12, Proposition A.8(i) and Proposition B.2]. Now (i) follows from
(ii) and the fact that the composition

OU
cu−→ u!OX ∼= u∗OX ∼= OU

is equal to the identity, which follows directly from (2.1.3), taking the factorization i = id and
π = u. The composition in (iii) equals by its very definition the morphism τf constructed in
[BER12, (B.7.3)] and hence the statement of (iii) follows from [BER12, Theorem 3.1(iii)].

Finally, for (iv) we can assume that f factors as f = π ◦ i with i : X ↪→ P a regular closed
immersion of codimension n and π : P → Y a smooth morphism of relative dimension n. Let
x ∈ P be the generic point of X, and set y := π(x) ∈ Y . Since X is regular at x, so is P , and
thus Y is regular at y. By assumption, c := dimOY,y > 1. Let t1, . . . , tc be a regular system of
parameters which generates the maximal ideal in OY,y. Further, OP,x ⊗OY,y κ(y) = Oπ−1(y),x is
a regular local ring of dimension n− c, and hence we find elements sc+1, . . . , sn in the maximal
ideal mx of OP,x lifting a regular sequence of parameters of OP,x ⊗OY,y κ(y). We see that the
sequence

π∗(t1), . . . , π∗(tc), sc+1, . . . sn

generates mx and is thus a regular sequence of parameters for the regular and n-dimensional ring
OP,x. Therefore, after shrinking X and Y further we may assume that the ideal sheaf I of i is
generated by a sequence as above. Since dπ∗(t1) = 0 in i∗Ω1

P/Y , it follows immediately from the

description of δf in (2.1.3) that cf vanishes. 2

Proposition 2.4. Let Y be a regular scheme and f : X −→ Y a morphism of finite type with
the following property:

dimOY,f(η) = trdeg(k(η)/k(f(η))) for any generic point η ∈ X. (2.4.1)

For every closed subscheme Z ⊂ X of codimension > c we have

Hi(RΓZf
!OY ) = 0 for all i < c.

In particular, f !OY = τ>0f
!OY and the restriction morphism

Hom(OX , f !OY ) −→ Hom(OU , f !
|UOY )

is injective for all dense open subsets U ⊂ X and is an isomorphism if codimX(X\U) > 2.

Proof. Since f !OY is a dualizing complex, it is a CM complex for a shifted codimension filtration
(see [Har66, IV, § 3]). By assumption (2.4.1), [Con00, (3.2.4), p. 129] and [Con00, (3.3.36), p. 145],
this shift is 0. 2

Remark 2.5. (i) Let f :X→Y be a morphism of finite type between irreducible schemes which
is dominant and generically finite. Then f satisfies condition (2.4.1).

(ii) If f : X → Y is a finite-type morphism between regular schemes that satisfies condition
(2.4.1), then it is a ci0 morphism. (It is clear that f is a complete intersection morphism and it
follows from [EGAIV, Proposition (5.6.4)] that its virtual relative dimension is 0.)

Proposition 2.6. Let f : X −→ Y be a finite type morphism between integral and excellent
schemes satisfying condition (2.4.1). Assume that Y is regular. There is a unique morphism in
D(X),

cf : OX −→ f !OY ,

2135

https://doi.org/10.1112/S0010437X15007435 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007435


A. Chatzistamatiou and K. Rülling

such that the restriction to the open subset of regular points Xreg is the class from Definition 2.2
for the ci0 morphism f|Xreg

. Furthermore, cf satisfies the analog of the properties (i)–(iv) of
Proposition 2.3.

Proof. Uniqueness follows from Proposition 2.4. For the construction, let ν : X̃ −→ X be
the normalization. We may construct cf◦ν by restricting to the regular locus and applying
Proposition 2.4. We set

cf =
[
OX

ν∗−→ ν∗OX̃
ν∗(cf◦ν)
−−−−−→ ν∗(f ◦ ν)!OY = ν∗ν

!f !OY
Trν−−→ f !OY

]
. (2.6.1)

The second statement follows from Proposition 2.4. 2

Lemma 2.7. Let the assumptions be as in Proposition 2.6. Let g : Z −→ X be a proper morphism
between integral schemes. Assume that f ◦ g : Z → Y satisfies condition (2.4.1). Then

deg(Z/X) · cf =
[
OX

g∗−→ Rg∗OZ
Rg∗(cf◦g)
−−−−−−→ Rg∗g

!f !OY
Trg−−→ f !OY

]
.

Proof. We may assume that f and g are dominant and hence generically finite, because both
sides vanish otherwise. In view of Proposition 2.4 it suffices to prove the assertion after restricting
to a dense open subset of X. We can therefore assume that X,Z are regular and g is finite and
flat. Then the statement follows from Proposition 2.3(ii), (iii). 2

3. The twisted base change map

Definition 3.1. Let σ be a commutative diagram

X

f
��

A
g1oo

f1

��
σ

Y Zg
oo

(3.1.1)

of finite type morphisms. We call σ an admissible square if g and g1 are proper. We define the
natural transformation of functors Db

c(Z)→ D+
c (X)

ξσ : Rg1∗f
!
1→ f !Rg∗

to be the composition

ξσ : Rg1∗f
!
1

Tr∨g−−→ Rg1∗f
!
1g

!Rg∗
=−→ Rg1∗g

!
1f

!Rg∗
Trg1−−→ f !Rg∗.

Lemma 3.2. Let σ be an admissible square as in (3.1.1).

(i) Let

X

f
��

A
g1oo

f1

��
σ

B
h1oo

f2

��
σ1

Y Zg
oo V

h
oo

be two admissible squares and denote by σ2 their composition. We have

ξσ2(F ) = ξσ(Rh∗(F )) ◦Rg1∗(ξσ1(F )) F ∈ Db
c(V ).
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(ii) Let

W

e
��

B
g2oo

e1
��

σ1

X

f
��

Ag1oo

f1

��
σ

Y Zg
oo

be two admissible squares and denote by σ2 their composition.
If G ∈ Db

c(Z) and f !
1G, f

!
1g

!Rg∗G ∈ Db(A), then we have

ξσ2(G) = e!(ξσ(G)) ◦ ξσ1(f !
1(G)).

(iii) Assume the morphisms f, f1 are proper. If G ∈ Db
c(Z) and f !

1G ∈ Db(A), then ξσ equals
the composition

Rg1∗f
!
1(G)

Tr∨f−−→ f !Rf∗Rg1∗f
!
1(G)

=−→ f !Rg∗Rf1∗f
!
1(G)

f !Rg∗(Trf1 )
−−−−−−−→ f !Rg∗(G). (3.2.1)

(iv) Assume σ is cartesian and f is étale. Then ξσ equals the base change isomorphism

Rg1∗f
∗
1
'−→ f∗Rg∗.

(v) Assume the morphisms f, f1 are closed immersions. Then f∗(ξσ) is the morphism

Rg∗RHomZ(f1∗OA,−)→ Rg∗RHom(Lg∗f∗OX ,−) ∼= RHomY (f∗OX , Rg∗(−)),

where the first map is induced by the natural map Lg∗f∗OX → f1∗OA.

(vi) Assume that the square σ is tor-independent. If G ∈ Db
c(Z) satisfies g!Rg∗(G) ∈ Db(Z)

then ξσ(G) is an isomorphism.

(vii) Suppose j : U −→ Y is an open immersion. Denote by σU the commutative square

f−1(U)

f̄

��

(f ◦ g1)−1(U)
ḡ1oo

f̄1

��
σU

U g−1(U)
ḡ

oo

induced by σ. Then ξσU = j∗ξσ, where we use the natural transformations j∗Rg1∗f
!
1 = Rḡ1∗f̄

!
1j
∗

and j∗f !Rg∗ = f̄ !Rḡ∗j
∗.

Proof. Claim (i) follows directly from [Con00, Lemma 3.4.3 (TRA1)]. Claim (ii) follows from the
definition and (2.0.3) by a straightforward computation.

Assume f and f1 are proper. In order to prove Claim (iii), note that (3.2.1) is adjoint to
Rg∗(Trf1(G)). It follows easily from [Con00, Lemma 3.4.3 (TRA1)] and (2.0.2) that ξσ(G) has
the same property.

Claims (iv) and (vii) follow from [Con00, Lemma 3.4.3 (TRA4)] and (2.0.2). Claim (v) follows
in the same way as (iii) by using the fact that Trf1 on the left-hand side of the composition in
(v) is given by precomposition with OZ → f1∗OA and Trf on the right-hand side is given by
precomposition with OY → f∗OX .
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Let us prove (vi). The question is local on X; thus we can assume that f factors as X
i−→ U

j−→
P := PnY

π−→ Y , where i is a closed immersion, j is an open immersion and π is the projection.
We can factor σ into three admissible cartesian squares, as in the following diagram.

X

i
��

A

iA
��

g1oo

σi

U

j
��

UZ

jA
��

gUoo

σj

P

π
��

PZḡ1oo

π1

��
σ̄

Y Zg
oo

The square σi is tor-independent and hence ξσi is an isomorphism by (v). It follows from (iv)
that ξσj is an isomorphism. Since π1 and π1 ◦ jA are smooth (and hence bounded complexes are
mapped to bounded complexes via (·)!), we may use (ii) and prove that ξσ̄(G) is an isomorphism.
Set ωπ := Ωn

P/Y ; we define the isomorphism ξ′σ̄ : Rḡ1∗π
!
1→ π!Rg∗ as the composition

Rḡ1∗π
!
1
∼= Rḡ1∗(ωπ1 [n]⊗ π∗1(−)) ∼= Rḡ1∗(ḡ

∗
1ωπ[n]⊗ π∗1(−))

∼= ωπ[n]⊗Rḡ1∗π
∗
1
∼= ωπ[n]⊗ π∗Rg∗ ∼= π!Rg∗.

It suffices to show ξ′σ̄ = ξσ̄, which by (iii) is equivalent to

Trπ(Rg∗G) ◦Rπ∗(ξ′σ̄(G)) = Rg∗(Trπ1(G)) G ∈ Db
c(Z).

This follows directly from the definition of the projective trace (see [Con00, 2.3]) and [Con00,
(2.4.1)]. 2

4. Reductions

4.1 Setup
We consider the diagram

V

f
��
Y Zg
oo

from Theorem 1.4. Recall that:

(i) V, Y, Z are integral noetherian excellent schemes and Y,Z are regular;

(ii) f is of finite type and is dominant and generically finite, and the base change V ×Y Z −→ Z
is generically finite;

(iii) g is projective.

For an irreducible component A of V ×Y Z, we denote by `A the multiplicity of A in the generic
fiber over Z; if A does not dominate Z then `A = 0. We denote by gA and fA the composition
of the closed immersion A ↪→ V ×Y Z with the projection to V and Z, respectively, and by σA
the corresponding admissible square.
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Notation 4.2. With the above notation and assumptions, we say E(V −→ Y ←− Z) holds if the
following equality holds in HomD(V )(OV , f !Rg∗OZ):[

OV
cf−→ f !OY

f !(g∗)
−−−→ f !Rg∗OZ

]
=

∑
A

`A ·
[
OV

g∗A−→ RgA∗OA
RgA∗(cfA )
−−−−−−→ RgA∗f

!
AOZ

ξσA−−→ f !Rg∗OZ
]
,

where the sum runs over all irreducible components of A with `A 6= 0. (Notice that by conditions
(i) and (ii) above, cf and cfA are defined.)

Lemma 4.3. If f is finite and flat, then E(V
f−→ Y

g
←− Z) holds.

Proof. The cartesian square

V

f
��

V ×Y Z
g1oo

f1

��
Y Zg
oo

is tor-independent, and g! preserves bounded complexes (since Y,Z are regular). Therefore we
can use Lemma 3.2(vi) and Proposition 2.4 to obtain an injective map

Hom(OV , f !Rg∗OZ) = Γ(V, g1∗H0(f !
1OZ)) ↪→ Γ(f−1(U)×U g−1(U), g1∗H0(f !

1OZ))

for every open U ⊂ Y such that g−1(U) 6= ∅. Therefore we may replace Y by any such U . In
particular, we may suppose that for every irreducible component A of V ×Y Z the induced map
fA is flat.

By Proposition 2.6(iii), the maps cf and cfA are adjoint to the trace maps. By Lemma 3.2(iii)
we have to show[

f∗OV
Trace−−−→ OY −→ g∗OZ

]
=

∑
A

`A ·
[
f∗OV

f∗(g∗A)
−−−−→ g∗fA∗OA

g∗(Trace)
−−−−−→ g∗OZ

]
,

which is a straightforward computation. 2

Proposition 4.4. If OY
g∗−→ Rg∗OZ is an isomorphism in Db

c(Y ), then E(V −→ Y ←− Z) holds.

Proof. For every non-empty open U ⊂ Y , the map

HomDbc(V )(OV , f !OY ) −→ HomDbc(f
−1(U))(Of−1(U), f

!OU )

is injective (Proposition 2.4). Hence, we may assume that f is finite and flat and the statement
follows from Lemma 4.3. 2

Lemma 4.5. Consider a commutative diagram

V

��

PVoo

��
Y Poo Zoo

where P −→ Y is projective and surjective, P is regular, PV is integral, PV −→ V ×Y P is a
closed immersion and PV is the only irreducible component of V ×Y P dominating P . Assume
E(V −→ Y ←− P ) and E(PV −→ P ←− Z) hold. Then E(V −→ Y ←− Z) holds.
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Proof. Note that the irreducible components of V ×Y Z dominating Z are exactly the irreducible
components of PV ×P Z dominating Z. Thus the statement follows via a direct computation from
Lemma 3.2(i). 2

Corollary 4.6. Assume E(V
f−→ Y

g
←− Z) holds for all closed immersions g. Then E(V

f−→ Y
g
←−

Z) also holds for all projective morphisms g.

Proof. This follows directly from Proposition 4.4, Lemma 4.5 and the equality Rπ∗OPnY = OY ,
where π : PnY → Y is the projection. 2

Proposition 4.7. Assume E(V
f−→ Y

g
←− Z) holds for any closed immersion g of codimension 1.

Then E(V
f−→ Y

g
←− Z) holds for any closed immersion g.

Proof. Assume g : Z ↪→ Y is a closed immersion. Since Y and Z are regular, g is a regular closed
immersion. Let Ỹ and Ṽ denote the blow up of Y in Z and V in V ×Y Z, respectively. We form
the commutative diagram

V

f

��

Ṽ

��

oo

Y Ỹπ
oo Eoo

where E is the exceptional divisor. Denote by πE : E → Z the base change of π along g. As
is well known we have Rπ∗OỸ = OY . Thus by Proposition 4.4 E(V −→ Y ←− Ỹ ) holds and by

assumption E(Ṽ −→ Ỹ ←− E) also holds. Hence E(V
f−→ Y

g◦πE
←−−− E) holds by Lemma 4.5.

As πE : E→ Z is a projective bundle we have RπE∗OE ∼=OZ and the irreducible components
of V ×Y Z correspond via A 7→ A ×Z E to the irreducible components of V ×Y E; further,
`A = `A×ZE . Set EA := A×Z E and form the admissible squares shown in the following diagram.

V

f
��

A

fA
��

gAoo

σA

EA
πEAoo

fEA
��

σEA

Y Zg
oo EπE

oo

We denote the big outer admissible square by σV,EA . Let A be an irreducible component of

V ×Y Z dominating Z. Proposition 4.4 implies that E(A
fA−→ Z

πE
←− E) holds, i.e.,

cfA =
[
OA = RπEA∗OEA

RπEA∗(cfEA
)

−−−−−−−−→ RπEA∗f
!
EA
OE

ξσEA−−−→ f !
ARπE∗OE = f !

AOZ
]
. (4.7.1)

We obtain[
OV −→ gA∗RπEA∗OEA

gA∗RπEA∗(cfEA
)

−−−−−−−−−−−→ gA∗RπEA∗f
!
EA
OE

ξσV,EA−−−−→ f !g∗OZ
]

=
[
OV −→ gA∗RπEA∗OEA −→ gA∗RπEA∗f

!
EA
OE

gA∗ξσEA−−−−−→ gA∗f
!
AOZ

ξσA−−→ f !g∗OZ
]

=
[
OV −→ gA∗OA

cfA−−→ gA∗f
!
AOZ

ξσA−−→ f !g∗OZ
]
.

Here, the first equality follows from Lemma 3.2(i) and the second equality follows from (4.7.1).

Thus E(V
f−→ Y

g
←− Z) holds if and only if E(V

f−→ Y
g◦πE
←−−− E) holds, which proves the

proposition. 2
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5. Proofs

Proof of Theorem 1.4. By Corollary 4.6 and Proposition 4.7 we can assume that g : Z ↪→ Y is

a closed immersion of codimension 1.

Step 1: Reduction to V being normal. Let ν : Ṽ −→ V be the normalization. We claim that via

the map

Hom(OṼ , (f ◦ ν)!Rg∗OZ) −→ Hom(OV , f !Rg∗OZ) a 7→ Trν(ν∗(a) ◦ ν∗),

both sides of E(Ṽ
f◦ν−−→ Y

g
←− Z) are mapped to the corresponding side of E(V

f−→ Y
g
←− Z). For

the left-hand side this follows from the construction of cf , see (2.6.1). For the right-hand side

first observe that if B
νB−→ A is a finite surjective morphism between integral schemes, then by

Lemma 2.7,

TrνB (νB∗(cfA◦νB ) ◦ ν∗B) = deg(B/A) · cfA .

Thus the claim follows from

`A =
∑
B

`B · deg(B/A),

where A is an irreducible component of V ×Y Z, and the sum runs over all irreducible components

of Ṽ ×Y Z mapping to A, see [Ful98, Example A.3.1].

Step 2: Reduction to V being regular. By our assumption on g, the following diagram is tor-

independent.

V

f
��

V ×Y Z
g1oo

f1

��
σ

Y Zg
oo

Hence ξσ(OZ) : g1∗f
!
1OZ −→ f !g∗OZ is an isomorphism, by Lemma 3.2(vi). Further, f1 satisfies

condition (2.4.1), by [EGAIV, Proposition 5.6.5]. Since we have to prove an equality in Hom(OV ,
f !g∗OZ) = Hom(OV , g1∗f

!
1OZ) we can use Proposition 2.4 to remove a codimension > 2 subset of

V . Thus we can assume that V is regular and the irreducible components of V ×Y Z are disjoint.

Step 3: End of proof. Let us write V ×Y Z =
∐r
i=1Ai for the decomposition into connected

components. Let s ∈ Hom(OV , f !g∗OZ) be the element corresponding to OV
cf−→ f !OY

f !(g∗)
−−−→

f !g∗OZ . We denote by (sAi)i the image of s via the map

Hom(OV , f !g∗OZ)
=−→ Γ(V,H0(f !g∗OZ))

∼=−→ Γ(V ×Y Z,H0(f !
1OZ))

=−→
⊕
i

Γ(Ai,H0(f !
AiOZ)).

We claim that sAi = 0 if Ai does not dominate Z. Indeed, V is regular, and hence fAi : Ai −→ Z

is a ci0 morphism. Using the definition of the fundamental class, Definition 2.2 and (2.1.3), one

directly checks that sAi = cfAi . Thus Proposition 2.3(iv) implies sAi = 0.

Having no contributions from the non-dominant irreducible components, we may replace Y

by any open subset U such that U ∩ Z 6= ∅, and we may assume that f−1(U) −→ U is finite and

flat. Now the statement follows from Lemma 4.3. 2
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Proof: Theorem 1.4 ⇒ Theorem 1.1. We can assume that Y is noetherian. Since f is birational,
the only irreducible component of X ×Y X which dominates X is the diagonal ∆. Let σ∆ be the
commutative square shown in the following diagram.

X

f
��

∆

'
��

'oo

σ∆

Y X
f
oo

By Lemma 3.2(iii), ξσ∆ is the natural transformation id → f !Rf∗, which by adjunction
corresponds to the identity on Rf∗. Theorem 1.4 gives f∗ ◦ cf = ξσ∆ . Thus by adjunction the

identity on Rf∗OX factors as Rf∗OX → OY
f∗−→ Rf∗OX . This proves Theorem 1.1. 2

Proof of Theorem 1.2. Assertion (i) is equivalent to H i(X,OX) = 0 for all i > 0, by [Lip94,
Theorem 4.1]. Assertion (ii) is equivalent to H i(X,ωX) = 0 for all i > 0, in view of [San84]
(see [Lip94, Theorem 4.3] and the following remark). Therefore it follows from Theorem 1.1 by
duality. 2

Proof of Theorem 1.3. Let p be the characteristic of k. Again, we may assume that Y is
noetherian. Let WnOX denote the sheaf of (p-typical) Witt vectors of length n and WOX =
lim
←−nWnOX the sheaf of (p-typical) Witt vectors. Set W := W (k) and K0 := Frac(W ) = W [1/p].

By [BBE07, Corollary 1.3, Proposition 6.3] it suffices to show

H0(Xs,WOXs)⊗W K0 = K0 and H i(Xs,WOXs)⊗W K0 = 0 i > 1.

If κ is the residue field of the image point of s in Y , then the natural inclusion W (κ) ↪→ W is
étale. Thus it suffices to prove the above equalities in the case where s is a closed immersion,
i.e., s ∈ Y is a closed point with residue field k.

Set A = H0(Xs,OXs). Then SpecA → Spec k is finite, surjective and geometrically
connected, and hence radical. Since k is perfect we obtain that A is an artinian local k-algebra
with residue field k. In particular,

H0(Xs,WOXs)⊗K0 = W (A)⊗K0 = K0,

where the second equality follows from F ◦ V = p = V ◦F on W (A), where F : W (A)→W (A),
(a0, a1, . . .) 7→ (ap0, a

p
1, . . .) is the Frobenius morphism on the Witt vectors.

Denote by fp : Xp = X ×Z Fp→ Yp the base change of f over Fp. If Xp = X then

Rifp∗OXp = 0 for all i > 1 (5.0.2)

follows immediately from Theorem 1.1. If p 6= 0 in OX then we can use the exact sequence

0→ OX
·p−→ OX → OXp → 0

to prove (5.0.2).
For all n > 1 we have an exact sequence of sheaves of abelian groups

0→Wn−1OXp
V−→WnOXp → OXp → 0,
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where V is the Verschiebung, V (a0, . . . , an−2) = (0, a0, . . . , an−2) and the map on the right is the
restriction (a0, . . . , an−1) 7→ a0. Hence Rif∗WnOXp = 0, for all n, i > 1. Further, we have exact
sequences for all i > 1

0→ R1 lim
←−
n

Ri−1f∗WnOXp → Rif∗WOXp → lim
←−
n

Rif∗WnOXp → 0.

Thus also Rif∗WOXp = 0 for all i > 1. (For the case i = 1 we use that the restriction maps
f∗WnOXp → f∗Wn−1OXp are surjective, which implies the vanishing of R1 lim

←−n f∗WnOXp .)
Now denote by I the ideal sheaf of Xs in Xp. We obtain a long exact sequence

· · ·→ (Rif∗WOXp)⊗K0→ (Rifs∗WOXs)⊗K0→ (Ri+1f∗WI)⊗K0→ · · · .

By the above the term on the left vanishes and the term on the right vanishes by [CR12,
Proposition 4.6.1], which is a slight modification of [BBE07, Theorem 2.4(i)]. (In [BBE07] there
is a general assumption that the schemes considered have to be of finite type over a perfect
field. One can check immediately that this assumption is not used in the parts we refer to.) This
proves Theorem 1.3. 2
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CR11 A. Chatzistamatiou and K. Rülling, Higher direct images of the structure sheaf in positive
characteristic, Algebra Number Theory 5 (2011), 693–775.
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