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Abstract

We establish a q-analogue of a supercongruence related to a supercongruence of Rodriguez-Villegas,
which extends a q-congruence of Guo and Zeng [‘Some q-analogues of supercongruences of
Rodriguez-Villegas’, J. Number Theory 145 (2014), 301–316]. The important ingredients in the proof
include Andrews’ 4φ3 terminating identity.
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1. Introduction

In 2003, Rodriguez-Villegas [5] investigated hypergeometric families of Calabi–Yau
manifolds. He observed numerically some remarkable supercongruences between the
values of the truncated hypergeometric series and expressions derived from the number
of Fp-points of the associated Calabi–Yau manifolds. For manifolds of dimension
d = 1, he conjectured four interesting supercongruences associated to certain elliptic
curves, one of which is

p−1∑
k=0

(
2k
k

)2

16k ≡ (−1)(p−1)/2 (mod p2), (1.1)

where p ≥ 5 is a prime. The conjectural supercongruence (1.1) was first proved by
Mortenson [4].

For polynomials A1(q), A2(q), P(q) ∈ Z[q], the q-congruence

A1(q)/A2(q) ≡ 0 (mod P(q))

is understood as A1(q) is divisible by P(q), and A2(q) is coprime with P(q). In general,
for rational functions A(q), B(q) ∈ Q(q) and polynomial P(q) ∈ Z[q],

A(q) ≡ B(q) (mod P(q))⇐⇒ A(q) − B(q) ≡ 0 (mod P(q)).
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Guo and Zeng [3, Corollary 2.2] established a q-analogue of (1.1) as follows:

p−1∑
k=0

(q; q2)2
k

(q2; q2)2
k

≡ (−1)(p−1)/2q(1−p2)/4 (mod [p]2).

Here and in what follows, the q-analogue of the natural number n is defined
by [n] = (1 − qn)/(1 − q), and for n ≥ 1, the q-shifted factorial is defined by
(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) with (a; q)0 = 1.

In 2011, Sun [7, Conjecture 5.5] conjectured a supercongruence related to (1.1):
modulo p2,

(p−1)/2∑
k=0

(
2k
k

)2

32k ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2x − p

2x
if p ≡ 1 (mod 4) and p = x2 + y2 with 4 | (x − 1),

0 if p ≡ 3 (mod 4),
(1.2)

which was proved by Tauraso [8] and Sun [6, Theorem 2.2].
Guo and Zeng [3, Corollary 2.7] established a partial q-analogue of (1.2):

(p−1)/2∑
k=0

(q; q2)2
k

(q2; q2)k(q4; q4)k
q2k ≡ 0 (mod [p]2) (1.3)

for all primes p ≡ 3 (mod 4).
To continue the q-story of (1.2), we recall some q-series notation. The basic

hypergeometric series is defined by

r+1φr

[a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=

∞∑
k=0

(a1, a2, . . . , ar+1; q)k

(q, b1, b2, . . . , br; q)k
zk,

where (a1, a2, . . . , am; q)k = (a1; q)k(a2; q)k · · · (am; q)k. The nth cyclotomic polynomial
is given by

Φn(q) =
∏

1≤k≤n
(n,k)=1

(q − ζk),

where ζ denotes a primitive nth root of unity.
The motivation for this paper is to extend the q-congruence (1.3) of Guo and Zeng,

and establish a complete q-analogue of (1.2).

THEOREM 1.1. Let n be an odd positive integer. Then, modulo Φn(q)2,

(n−1)/2∑
k=0

(q; q2)2
k

(q2; q2)k(q4; q4)k
q2k

≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)(n−1)/4q(n−1)(n+3)/8 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4
if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).
(1.4)
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The important ingredients in the proof of (1.4) include Andrews’ 4φ3 terminating
identity [2, (II.17), page 355]:

4φ3

[q−n, a2qn+1, c,−c

aq,−aq, c2
; q, q

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if n ≡ 1 (mod 2),
cn(q, a2q2/c2; q2)n/2

(a2q2, c2q; q2)n/2
if n ≡ 0 (mod 2).

(1.5)

The rest of the paper is organised as follows. In the next section, we shall explain
why (1.4) is a q-analogue of (1.2). The proof of Theorem 1.1 will be presented in
Section 3.

2. Why (1.4) is a q-analogue of (1.2)

Let p be an odd prime. It is clear that

Φp(q) = 1 + q + · · · + qp−1.

Setting n→ p and q→ 1 on both sides of (1.4) gives, modulo p2,

(p−1)/2∑
k=0

(
2k
k

)2

32k ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)(p−1)/4

2(p−1)/2

(
(p − 1)/2
(p − 1)/4

)
if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4).
(2.1)

By a result due to Chowla et al. [1],

(
(p − 1)/2
(p − 1)/4

)
≡ 2p−1 + 1

2

(
2x − p

2x

)
(mod p2),

where p ≡ 1 (mod 4) and p = x2 + y2 with 4 | (x − 1). It follows that

(−1)(p−1)/4

2(p−1)/2

(
(p − 1)/2
(p − 1)/4

)
≡ (−1)(p−1)/4 2p−1 + 1

2(p+1)/2

(
2x − p

2x

)

≡ 2x − p
2x

(mod p2), (2.2)

where we have used the fact [6, page 1918]:

2p−1 + 1
2(p+1)/2 ≡ (−1)(p−1)/4 (mod p2).

Combining (2.1) and (2.2), we arrive at (1.2). Thus, (1.4) is indeed a q-analogue
of (1.2).
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3. Proof of Theorem 1.1

Let n be an odd positive integer. Setting n→ (n − 1)/2, q→ q2, a→ 1 on both sides
of (1.5) gives

(n−1)/2∑
k=0

(q1−n, q1+n, c,−c; q2)k

(q2, q2,−q2, c2; q2)k
q2k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c(n−1)/2(q2, q4/c2; q4)(n−1)/4

(q4, c2q2; q4)(n−1)/4
if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).
(3.1)

Letting c→ 0 on both sides of (3.1) and noting that for n ≡ 1 (mod 4),

lim
c→0

(c,−c; q2)k = lim
c→0

(c2; q2)k = lim
c→0

(c2q2; q4)(n−1)/4 = 1

and

lim
c→0

c(n−1)/2(q4/c2; q4)(n−1)/4 = (−1)(n−1)/4q(n−1)(n+3)/8,

we obtain

(n−1)/2∑
k=0

(q1−n, q1+n; q2)k

(q2; q2)k(q4; q4)k
q2k

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)(n−1)/4q(n−1)(n+3)/8 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4
if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).
(3.2)

Since

(1 − qn−2j+1)(1 − qn+2j−1) + (1 − q2j−1)2qn−2j+1 = (1 − qn)2

and 1 − qn ≡ 0 (mod Φn(q)),

(1 − qn−2j+1)(1 − qn+2j−1) ≡ −(1 − q2j−1)2qn−2j+1 (mod Φn(q)2).

It follows that

(1 − q−n+2j−1)(1 − qn+2j−1) ≡ (1 − q2j−1)2 (mod Φn(q)2).

Thus,

(q1−n, q1+n; q2)k =

k∏
j=1

(1 − q−n+2j−1)(1 − qn+2j−1)

≡
k∏

j=1

(1 − q2j−1)2 = (q; q2)2
k (mod Φn(q)2). (3.3)
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Finally, substituting (3.3) into the left-hand side of (3.2) gives, modulo Φn(q)2,
(n−1)/2∑

k=0

(q; q2)2
k

(q2; q2)k(q4; q4)k
q2k

≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)(n−1)/4q(n−1)(n+3)/8 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4
if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

as desired.
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