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Abstract. In order to guarantee the success of the nascent cellulose-based biofuel
industry, it is crucial to identify the most economically relevant components of the
biofuel production path. To this aim, an original stochastic financial model is
developed to estimate the impact that different feedstock production and biofuel
conversion parameters have on the probability of economic success. Estimation of
the model was carried out using Monte Carlo simulation techniques along with
parametric maximum likelihood estimation procedures. Results indicate that
operational efficiency strategies should concentrate on improving feedstock yields
and extending the feedstock growing season.
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1. Introduction

The latest Renewable Fuel Standard (RFS2) mandate is both a challenge and
an opportunity for the biofuel industry. Namely, the RFS2 specifies a target of
36 billion gallons for total renewable transportation fuels by 2022, of which 16
billion gallons have to be cellulosic biofuels. Additionally, cellulosic biofuels are
required to reduce greenhouse gas emissions by at least 60% compared with the
petroleum fuels they would replace.

In order to fulfill these new environmental and production regulation goals,
there is a need for the optimal allocation of resources. Particularly, substantial
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research is needed to assess and improve the probability of economic success
of current and future biofuel investments while reaching the program goals. To
this aim, it is crucial to better understand the effects that production factors
have on the economic feasibility of a biofuel enterprise to effectively target
future improvement efforts. Special attention has to be given to developing more
efficient production systems to generate cellulose-based biofuels because they
represent approximately 45% of the RFS2 mandate.

Even though some efforts have been made to evaluate the effect of both
feedstock and biofuel production parameters on the feasibility of a biofuel
enterprise, little work has been conducted to identify and assess the impact of
production parameters on the probability of economic success. Previous studies
have focused on traditional sensitivity analysis, which consists of evaluating the
economic feasibility of a project under a reduced and discrete set of possible
production scenarios (e.g., Marvin et al., 2012; Ribera et al., 2007; Swanson
et al., 2010; Wright et al., 2011). Few of the preceding sensitivity analyses have
included a broader range of production parameters and possible values, and
little attention has been given to assess the effect that individual changes on the
production parameters have on the probability of economic success.

The main objective of this study is to extend the current literature regarding
economic feasibility of cellulosic biofuel production. Specifically, we evaluate the
impact that the different feedstock production and biofuel conversion parameters
have on the probability of economic success, where economic success is defined
in terms of the net worth of the project. An original stochastic financial model
is developed to analyze and identify the most economically relevant components
of the biofuel production path. Current and projected energy prices along with
industry and research production parameters are used to generate potential
production scenarios. Simulated data are used to evaluate the individual effects
of production parameter changes on the probability of economic success. This
study provides insights to improve production systems by better targeting future
research efforts.

2. Background and Literature Review

Currently, the most promising biofuel feedstock are dedicated energy grasses
because of their high biomass yield, high fiber content, broad genetic diversity,
and demonstrated capability to thrive on marginal lands not ideal for food, feed,
or fiber production (McCutchen, Avant, and Baltensperger, 2008; van der Weijde
et al., 2013). In terms of feedstock conversion technologies, different options
are available including hydrolysis, gasification, pyrolysis, and acetone-butanol-
ethanol. Hydrolysis is the most economically feasible conversion process in the
current state of the economy because of having lower operating and capital
expenses, less dependence on government incentives, and higher changes of
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economic success by improving feedstock and biofuel conversion yields (Monge
et al., 2014).

Different metrics have been developed and used to assess the economic
feasibility of planned investments. In terms of renewable energy projects,
suggested analytical valuation tools include the following: net present value
(NPV), benefit-cost ratio, internal rate of return, least cost planning, payback
period, and sensitivity analysis (Owens, 2002). Other authors have suggested
the use of more complex but flexible valuation approaches such as real option
analysis (Cai and Stiegert, 2014; Gonzalez,Karali, andWetzstein, 2012; Pederson
and Zou, 2009; Schmit, Luo, and Tauer, 2009). All the aforementioned valuation
tools are interrelated, and each of them explores specific features of the project
cash flow. For example, the NPV uses the time value of money to convert a
stream of annual cash flow generated through the life span of a project to a single
value for a given discount rate (Owens, 2002). Projects with positive NPVs are
considered profitable or an economic success1 (Remer and Nieto, 1995).

Normally, the technical and financial components of the project are expressed
in an NPV pro forma. This pro forma is defined at an initial valuation stage,
and then it is used in the estimation of further economic feasibility metrics (e.g.,
Monge et al., 2014; Richardson et al., 2007). Consequently, understanding the
specific sources of variation of the NPV is of vital importance because those
project parameters causing positive impacts on the NPV might also lead to
improvements on other feasibility metrics of interest.

The economic feasibility of using new dedicated energy crops or crop residues
as feedstock sources has been extensively studied (e.g., Bansal et al., 2013; Epplin
et al., 2007; Haque and Epplin, 2012; Khanna, Dhungana, and Clifton-Brown,
2008; Marvin et al., 2012; Miranowski and Rosburg, 2010; Swanson et al.,
2010; Tao et al., 2014; Wright et al., 2010). Other studies have evaluated the
economic feasibility of sugarcane as a potential feedstock for sugar-based ethanol
(e.g., Coyle, 2010; Outlaw et al., 2007; Ribera et al., 2007; Shapouri, Salassi,
and Fairbanks, 2006). However, little work has been conducted to identify and
assess the impact of both feedstock and biofuel production parameters on the
probability of economic success. The traditional approach to evaluate the effect
of production parameters on the economic feasibility is to evaluate the NPV of
a new project under a reduced and discrete set of possible production scenarios.
Namely, each scenario considered includes only a limited number of production
parameters, and the parameters of interest are set to discrete and predetermined
values (e.g., Joelsson et al., 2016; Wu, Sperow, and Wang, 2010). Recent studies
have introduced more flexibility to the sensitivity analysis by defining some
parameters in each considered scenario as stochastic variables, such as feedstock

1 Besides profitability, there are other intrinsic economic components of a project that are not
considered in the NPV such as the opportunity cost of time and money. In practice, other valuation metrics
and analyses are used as complements to NPV.
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yields and biofuel prices, and then calculating the probability of success (i.e.,
positive NPV) under the fixed parameters settings (e.g., Linton et al., 2011;
Monge et al., 2014; Palma et al., 2011; Ribera et al., 2007; Richardson, Lemmer,
and Outlaw, 2007).

This study extends the current economic feasibility literature by developing
a flexible stochastic financial model able to analyze and identify the most
economically relevant components of the biofuel production path. To the best of
our knowledge, this is the first study that quantifies the effect of each production
parameter on the probability of observing a positive NPV. Additionally, the
applications of the proposed approach can be extended to the valuation of other
projects beyond renewable energy investments.

3. Methods

TheNPV is one of the standard metrics to assess the economic feasibility of a new
project. The NPV is defined as the sum of all net cash flows of a project over a
period of time discounted to an equivalent present date (Remer and Nieto, 1995).
In our particular case, the NPV is a function of several feedstock and biofuel
production parameters such as expected feedstock yield, energy prices, biofuel
conversion rate, and feedstock and biofuel production costs. Given a specific set
of m inputs (X ), the NPV is given by the deterministic function

NPV = f (X ) . (1)

In general, a project is accepted if its NPV is positive and rejected if the NPV is
negative. If the NPV is equal to zero, then the investor is indifferent in the decision
whether to accept or reject the project (Remer and Nieto, 1995). Through the
article, a positive NPV is considered economic success, and a nonpositive NPV
is seen as economic failure.

3.1. Financial Model

The feedstock and biofuel production models and financial pro forma developed
and described in Monge et al. (2014) are used in this article. Namely, the
hydrolysis conversion technology and its corresponding production path are
used to assess the effect of feedstock and biofuel production parameters on the
probability of obtaining a positive NPV. Although the proposed analysis can be
extended to any biofuel production process, we focused on ethanol produced
from energy cane through a hydrolysis conversion process.

Particularly, the ethanol production path is divided into two production stages:
feedstock production and biofuel production. At the first stage, energy cane is
planted and harvested for a period of 5 years. On an annual basis, the number of
harvestingmonths (HarvMonth) depends on seasonal and agronomic limitations.
The overall cost to deliver energy cane as feedstock to a conversion plant
comprises the energy cane production cost (FeedPrdCost), return to producers
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(Return) expressed as percentage over the production cost, variable harvesting
and hauling cost (VarHrvCost) depending on the energy cane yield (Yield_EC),
and fixed harvesting and hauling cost (FxHrvCost).

In the subsequent production stage, the energy cane feedstock supplied to the
conversion plant is transformed into ethanol through a hydrolysis conversion
process. It is assumed that the total feedstock demand is fully met without
shortage. Moreover, the total annual feedstock demand is a function of the
conversion plant’s nameplate capacity (FuelPrd) and biofuel conversion yield
(FuelYld). It is further assumed that total investment in the conversion plant,
plant operating expenses, and fixed expenses are functions of the plant’s
nameplate capacity. Additionally, excess electricity is generated as a by-product
of transforming energy cane into ethanol. Plant revenues come from selling the
produced ethanol and excess electricity at expected energy prices (Price_Ene).
The NPV is estimated over a 10-year planning horizon using an 8% discount
rate. For specific details about the ethanol production path considered in this
study and its corresponding financial statements, see Monge et al. (2014).

Compared with the original model in Monge et al. (2014), where most of
the feedstock and biofuel production parameters were fixed at current industry
estimates, we define the different production parameters of interest as random
variables and allow them to take values within a continuous, reasonable range
of possible alternatives following a uniform distribution.

3.2. Data Generation

Monte Carlo simulation techniques were used to generate n {NPVi,X i} samples,
where the subscript i denotes the ith iteration. The vector X represents all the
exogenous and independent parameters of theNPV function.The true underlying
probability distribution function of most production parameters is unknown;
thus, a uniform distribution function (Unif) was assigned to each parameter.
Consequently, on each iteration the value of X can be represented as a random
deviation relative to the baseline scenario X . Namely, X i can be defined as

X i = (1m + δi) ◦ X , (2)

where the operator ◦ denotes the Hadamard or entrywise product, 1m is
an m vector of ones, and δi is an m vector with its elements (δi j) independent
and uniformly distributed from ω j− to ω j+. Therefore, the δi j’s can be seen
as percentage deviations from the baseline scenario. In other words, the NPV
generated on each iteration is a nonstochastic realization of a particular set of
production parameters (i.e., X ), where the vector X randomly changes for each
iteration.Thus, variations on the probability of economic success are not assessed
on each iteration but on the whole simulated data set. A total of 10,000 iterations
were simulated to analyze the effect of production parameters on the NPV. Each
iteration may be a unique combination of production parameter values, and
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Table 1. Baseline Scenario and Distribution Range

Parameter Acronym Units Baseline Distribution Function

Harvest months HarvMonth month 9.5 Unif (8.00, 11.00)
Production cost FeedPrdCost $/ac. 450 Unif (350.00, 550.00)
Return to producers Return % 20 Unif (10.00, 30.00)
Energy cane yield Yield_EC dst/ac. 20 Unif (17.50, 22.50)
Variable harvesting
and hauling cost

VarHrvCost $/dst 10 Unif (7.50, 12.50)

Fixed harvesting and
hauling cost

FxHrvCost $/ac. 92 Unif (69.00, 115.00)

Ethanol annual
production

FuelPrd million gal. 30 Unif (25.00, 35.00)

Biofuel yield FuelYld gal./dst 85 Unif (75.00, 95.00)
Energy prices Price_Ene $/gal.

$/kWh 2013 EIA
reference case

EIA∗Unif (0.75, 1.25)

Note: dst, dry short ton; EIA, U.S. Energy Information Administration.

consequently, every generated iteration can be considered as a realization of a
possible production scenario.

The baseline scenario and the considered range of each parameter are
described in Table 1. The baseline scenario represents the latest industry and
research production parameters in south Texas. The parameter values are based
on a discussion panel of local sugarcane producers and energy cane yields
and production cost obtained from large experimental field plots in Weslaco,
Texas, managed by Texas A&MAgriLife Research and Extension Center. On the
baseline scenario, energy cane is harvested for 9.5 months, and the production
cost is equal to $450 per acre. Also, the producers’ return for growing energy
cane is set to 20% of the preharvest or standing production cost. The 2014
average energy cane yield of 20 dry short tons (dst) per acre is used as the baseline
feedstock yield. The variable and fixed costs to harvest and deliver the produced
feedstock to the conversion plant are equal to $10/dst and $92/ac., respectively.
The conversion plant’s nameplate capacity is 30 million gallons of ethanol a year,
and 1 dst of energy cane yields 85 gallons of ethanol. Because of the lower current
energy prices, the 2013 U.S. Energy Information Administration (EIA) Reference
Scenario for ethanol and electricity was used for the 10-year planning horizon of
the project (EIA, 2013). Namely, the forecasted and nominal before tax ethanol
wholesale prices and electricity prices for the generation sector were used. The
purpose of using the 2013 energy prices was to represent a more likely future
situation.

Under the uniform distribution function, each possible outcome within a
bounded interval has the same probability of occurrence. Interval boundary
values were set to be equal to the interval limits considered in the original study or
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Figure 1. 2013 Ethanol and Electricity U.S. Energy Information Administration
Reference Price Scenario (dotted lines represent ±25% from the baseline price
trend)

current industry observable values. In the case of ethanol and electricity prices,
it is expected that these two parameters are intrinsically related to each other,
tending to move in the same direction. In order to avoid multicollinearity issues,
their corresponding projected 10-year price trends shift proportionally to the
random energy price deviation parameter (δPrice_Ene). For example, if δiPrice_Ene is
equal to 5%, then the yearly ethanol and electricity prices used to estimate the
NVP in the ith iteration are both 5% higher than the EIA Reference Scenario.
The 2013 EIA Reference Scenario for both ethanol and electricity prices is shown
in Figure 1.

3.3. Conceptual Framework

The complex deterministic function f(·) in equation (1) can be approximated by
a functional form h(·). Thus, the NPV is expressed as a conditional function of
δi given X plus an error term. Specifically,

NPVi = h [(1m + δi) ◦ X ] + εi

= h (δi |X ) + εi, i = 1, 2, . . . , n, (3)
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where the εi’s are assumed to be independent and identically distributed errors,
with zero mean, finite variance, and cumulative density function (CDF) Fε.

The probability of economic success can be estimated by specifying the NPV in
equation (1) as an ordinal variable. Namely, the generated NPVs are transformed
to a binary variable (Y ) such that

Y =
{
1 i f NPV > 0
0 i f NPV ≤ 0

. (4)

Then, by equation (3) the probability of observing a positive NPV (i.e.,Yi = 1)
given a set of production parameters can be written as follows:

Pr (Yi = 1 |δi, X ) = πi = Pr (NPVi > 0)

= Pr
[
h (δi |X ) + εi > 0

]
= Pr

[
εi > −h (δi |X )

]
= 1 − Fε

[−h (δi |X )
]
. (5)

The probability function described in equation (5) can be further used to
analyze the impact that changes on feedstock and biofuel production parameters
have on the probability of economic success. In a practical sense, the marginal
effects are defined as the changes on the probability of economic success by
increasing the production parameters by 1% relative to the baseline scenario.
Particularly, the marginal effect of the jth parameter is given by the partial
derivative

∂πi

∂δi j
= ∂Fε

∂h
∂h
∂δi j

= ∂h
∂δi j

fε, (6)

where fε is the marginal density of ε. Therefore, the marginal effects can be used
to identify themost economically relevant production parameters and to quantify
their impact on the probability of economic success. Improvement efforts can
then be primarily focused on those parameters with the largest marginal effects.

3.4. Model Estimation

Maximum likelihood techniques were used to estimate the aforementioned
model. Specifically, given n observations, the generic likelihood function
associated with the probabilities in equation (5) can be defined as

L =
n∏
i=1

πi
yi (1 − πi)

1−yi . (7)
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With the aim to keep the results easier to interpret, it was further assumed that
h(·) in equation (3) is given by a linear function of the form

h (δi |X ) = β0 +
m∑
j=1

β j
[(
1 + δi j

) X j
]

= α0 +
m∑
j=1

α jδi j, (8)

where βs are function parameters, and α0 = β0 + ∑m
j=1 β jX j and α j = β jX j.

Note that the functional form in equation (8) is expressed as a function of the
percentage deviations from the baseline scenario.

Two distribution functions were considered to model the distribution of ε.
Specifically, the standard normal and logistic distributions were used to analyze
the effect of production parameters on the probability of economic success. These
two distributions are commonly used in the literature to model binary data (e.g.,
Hoetker, 2007; Long, 1997).

Under the normal distribution, the probability of observing a positive NPV is
given by

πi = 	

⎛
⎝α0 +

m∑
j=1

α jδi j

⎞
⎠ , (9)

where	(·) is the CDF of the standard normal distribution function. Furthermore,
it can be shown that the marginal effect of the jth production parameter is given
by

∂πi

∂δi j
= α jφ

⎛
⎝α0 +

m∑
j=1

α jδi j

⎞
⎠ , (10)

where φ(·) is the marginal density function of the standard normal distribution.
The probability of observing a positive NPV when the errors are assumed to

follow a logistic distribution is equal to

πi = e(α0+
∑m

j=1 α jδi j)

1 + e(α0+
∑m

j=1 α jδi j)
. (11)

Similarly, it can be shown that the marginal effect of the jth production
parameter is given by

∂πi

∂δi j
= α jπi (1 − πi) . (12)
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The marginal effects presented in this study were calculated as the average
marginal effects across the n iterations. Marginal effects’ standard errors were
estimated using the delta method (Greene, 2012).

Given the nonnested nature of the models considered in this study, the
distribution that “best fitted” the data was selected using the Akaike information
criterion (AIC) (Akaike, 1974). The AIC is a log-likelihood–based model
selection criterion adjusted by the number of independent parameters. Given
a data set and several candidate models, the model with the smallest AIC is
preferred

4. Results

The estimated total cost to produce a gallon of ethanol from energy cane under
the baseline scenario assumptions is $2.13 without any government incentives.
This cost includes $0.49/gal. for the cost of feedstock, $0.87/gal. to convert the
feedstock into ethanol, $0.50/gal. in interest expenses, $0.37/gal. in dividends,
and an additional revenue of $0.09/gal. because of selling of excess electricity.
Even though this cost structure is consistent with other cellulosic feedstocks
(Bansal et al., 2013; Epplin et al., 2007; Haque and Epplin, 2012; Khanna,
Dhungana, and Clifton-Brown, 2008; Tao et al., 2014), lower production costs
have been reported in both the United States and Brazil using sugar-based
feedstock alternatives (Coyle, 2010; Outlaw et al., 2007; Ribera et al., 2007;
Richardson et al., 2007; Shapouri, Salassi, and Fairbanks, 2006).

The overall mean for the simulated NPVs was −$31.38 million with a
standard error of $0.73 million. The maximum and minimum observed NPVs
were $189.24 million and −$222.17 million, respectively. Also, based on
the Monte Carlo simulations, 3,487 iterations were considered as economic
successes (i.e., NPV >0), and 6,513 iterations were defined as economic failures
(i.e., NPV ≤0). The 10,000 generated NPVs are shown in Figure 2.

Normal and logistic distributions were used to model the probability
of obtaining a positive NPV given a set of production parameters. Model
estimation results for both the normal and logistic distributions along with
the corresponding AIC are presented in Tables 2 and 3, respectively. The AIC
suggests that the preferred distribution is the normal distribution. Therefore, the
normal distribution results are further used to discuss the impact of feedstock
production and biofuel conversion parameters on the probability of economic
success. It is important to note that the marginal effect estimates were robust
across the two candidate models considered in this study. Thus, from a practical
perspective and for this particular application only, there is no significant
difference between using either the logistic or normal model.

The normal distribution marginal effects of the different production
parameters are presented in Table 2. These marginal effect estimates are
interpreted as the percentage increase in the probability of observing a
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Table 2.Normal Distribution Coefficient and Marginal Effect Estimates

Parameter Coefficient Standard Error Marginal Effect Standard Error

Constant − 9.580a∗∗∗ 0.545
Harvest months 0.895∗∗∗ 0.051 1.321∗∗∗ 0.149
Production cost − 0.133∗∗∗ 0.009 −0.196∗∗∗ 0.023
Return to producers − 0.024∗∗∗ 0.002 −0.036∗∗∗ 0.005
Energy cane yield 1.032∗∗∗ 0.058 1.523∗∗∗ 0.172
Variable harvesting

and hauling cost
− 0.048∗∗∗ 0.005 −0.071∗∗∗ 0.010

Fixed harvesting and
hauling cost

− 0.024∗∗∗ 0.005 −0.036∗∗∗ 0.008

Ethanol annual
production

0.260∗∗∗ 0.016 0.384∗∗∗ 0.044

Biofuel yield 0.214∗∗∗ 0.015 0.316∗∗∗ 0.038
Energy prices 1.260∗∗∗ 0.071 1.860∗∗∗ 0.210
Akaike information

criterion
556.828

aSignificance levels of 0.01, 0.05, and 0.10 are indicated by ∗∗∗, ∗∗, and ∗, respectively.

Figure 2. Monte Carlo Simulated Net Present Values (NPVs)

positive NPV by increasing the production parameters by 1% relative to the
baseline scenario. It is relevant to mention that the likelihood of changing
the production parameters is not the same across all parameters. Some
production parameters could be improved by achievable industry technological
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Table 3. Logistic Distribution Coefficient and Marginal Effect Estimates

Parameter Coefficient Standard Error Marginal Effect Standard Error

Constant −17.153a∗∗∗ 1.044
Harvest months 1.604∗∗∗ 0.098 1.316∗∗∗ 0.012
Production cost − 0.239∗∗∗ 0.017 −0.196∗∗∗ 0.007
Return to producers − 0.044∗∗∗ 0.005 −0.036∗∗∗ 0.003
Energy cane yield 1.850∗∗∗ 0.112 1.518∗∗∗ 0.013
Variable harvesting
and hauling cost

− 0.086∗∗∗ 0.009 −0.071∗∗∗ 0.006

Fixed harvesting and
hauling cost

− 0.044∗∗∗ 0.008 −0.036∗∗∗ 0.006

Ethanol annual
production

0.467∗∗∗ 0.030 0.383∗∗∗ 0.008

Biofuel yield 0.389∗∗∗ 0.028 0.319∗∗∗ 0.013
Energy prices 2.26∗∗∗ 0.137 1.855∗∗∗ 0.014
Akaike information
criterion

561.522

aSignificance levels of 0.01, 0.05, and 0.10 are indicated by ∗∗∗, ∗∗, and ∗, respectively.

advancements, whereas others are driven by exogenous and variable economic
and political circumstances.

Simulation results based on south Texas production conditions suggest that
the probability of economic success increases by 1.32% if the parameter of
energy cane harvesting months is extended by 1% (or 2.85 days). Prolonging the
harvest window of dedicated energy crops has been identified as a key economic
challenge to the new cellulose-based biofuel industry (Epplin et al., 2007). A
suggested possibility to extend the harvest windows is to consider a variety
of feedstocks including both cellulosic and sugar-based options (Monge et al.,
2014).

The marginal effects also indicate that increasing the overall cost to produce
and deliver the feedstock including energy cane production cost, producers’
returns, and harvesting and hauling costs has a negative impact on the probability
of obtaining a positive NPV. Namely, increasing the feedstock production cost
by 1% (or by $4.5/ac.) reduces the probability of observing a positive NPV by
0.20%. Similarly, the probability of economic success is reduced by 0.04% when
the return to producers increases by 1%. In addition, unit percent increases on
the variable and fixed harvesting and hauling costs reduced the probability of
economic success by 0.07% and 0.04%, respectively. Lower biomass production
costs have been gauged to be essential to guarantee the success of next-generation
biofuels mainly because lower feedstock production costs are needed to offset the
higher conversion and capital costs associated with cellulosic biofuels relative to
their counterpart sugar-based biofuels (Coyle, 2010). Feedstock production also
needs to compete with other crops in terms of profits; thus, higher return rates
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may be needed to incentivize growers to switch from any incumbent crop to the
new dedicated energy crops.Additionally, feedstock economic feasibility has been
found to be sensitive to transportation and delivery costs (Linton et al., 2011).
Government programs aimed to subsidize the different feedstock production
costs may contribute to improve the possibility of economic success; however,
the continuity of such programs is uncertain.

Based on the estimated marginal effects, improvements on energy cane yields
will have a significant impact on obtaining a positive NPV. Specifically, simulation
results indicate that a 1% increase on the feedstock yield (i.e., 0.2 dst/ac.) raises
the probability of economic success by 1.52%. In order to achieve the goals
of the RFS2 mandate, this finding suggests that future research target efforts
should increase biomass yields. Higher feedstock yields are expected to translate
into lower costs of production of advanced biofuels. To this end, improving
current feedstock yields will require a combination of multidisciplinary efforts
to develop novel high-yielding varieties and optimal agronomic production
practices especially under marginal land conditions.

In terms of ethanol conversion parameters, results indicate that both
conversion plant’s nameplate capacity and biofuel conversion yield are positively
related to NPV. Namely, the probability of economic success increases by
0.38% and 0.32% with respect to unit percent increases in the total annual
ethanol produced and ethanol conversion yield, respectively. The probability of
economic success increases with plant production capacity because of economies
of scale. As production scales up, the capital expenditure costs per unit
of output decline. However, higher capital-investment costs are expected for
cellulosic ethanol comparedwith sugar-based ethanol primarily because of higher
feedstock preparation costs (Coyle, 2010; Shapouri, Salassi, and Fairbanks,
2006). Similarly, improvements on conversions rates are presumed to reduce
the overall cost of ethanol production, but no data for commercial operations
using energy cane exist to corroborate this fact. Higher plant construction costs
along with higher uncertainty about untested conversion technologies on a
large scale may reduce investors’ willingness to support large cellulosic ethanol
projects (Coyle, 2010). Currently, there are five cellulosic ethanol plants in the
United States with production capacity between 6 and 30 million gallons per
year, but only one of them is commercially producing ethanol (Renewable Fuels
Association, 2016).

Lastly, energy prices play an important role in the probability of economic
success. Particularly, a 1% positive shift of the ethanol and electricity price trends
increases the probability of economic success by 1.86%. Consequently, current
lower energy prices may delay the development of future investment initiatives
aimed to increase the production of cellulosic ethanol. In fact, it has been argued
that substantially higher oil prices are needed to guarantee a steady market-based
development and expansion of the cellulosic biofuel industry (Miranowski and
Rosburg, 2010, 2013).
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5. Summary and Conclusions

The optimal allocation of resources and efforts is needed to fulfill the latest RFS2
mandate. Particularly, 16 billion gallons of cellulosic biofuels are envisioned
to be produced by 2022. In order to guarantee the success of the nascent
cellulose-based biofuel industry, it is crucial to better understand the effects that
production parameters have on the economic feasibility of a biofuel enterprise
to effectively target future improvement efforts. The main goal of this study
was to estimate the impact that the different feedstock production and biofuel
conversion parameters have on the probability of economic success.

A flexible stochastic financial model was developed in this article to
analyze and identify the most economically relevant components of the biofuel
production path. Although the proposed analysis can be extended to any biofuel
production process, we focused on ethanol produced from energy cane through
a hydrolysis conversion process. Estimation of the model was carried out using
Monte Carlo simulation techniques along with parametric maximum likelihood
estimation procedures.

This article provides insights to improve production systems by better
targeting future research efforts. Simulation results indicate that the probability
of economic success of transforming energy cane into ethanol can be increased
by extending the feedstock harvest windows, reducing the overall feedstock
production costs, including return to producers and harvesting and hauling costs,
increasing feedstock yield, augmenting conversion plant’s nameplate capacity,
and improving biofuel conversion yield. Based on the magnitude of the marginal
effects, the findings of this study suggest that operational efficiency strategies
should concentrate on improving feedstock yields and extending the growing
season. Energy prices were also found to have a significant impact on the
probability of economic success; thus, higher energy prices may be needed to
incentivize the development and expansion of the emerging cellulosic biofuel
industry.
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