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Abstract

Various lattices of subgroups of a finite transitive permutation group G can be used to define a set of
'basic' permutation groups associated with G that are analogues of composition factors for abstract finite
groups. In particular G can be embedded in an iterated wreath product of a chain of its associated basic
permutation groups. The basic permutation groups corresponding to the lattice ££ of all subgroups of
G containing a given point stabiliser are a set of primitive permutation groups. We introduce two new
subgroup lattices contained in S£, called the seminormal subgroup lattice and the subnormal subgroup
lattice. For these lattices the basic permutation groups are quasiprimitive and innately transitive groups,
respectively.
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1. Introduction

Primitive permutation groups have long been regarded as the 'building blocks' for finite

transitive permutation groups since, for a given transitive permutation group G on a

finite set £2, there is a sequence G t, ..., Gt of primitive permutation groups such that G

can be embedded as a subgroup of the iterated wreath product GiiG2i • • -iGt acting

naturally on Q. Because of this embedding many questions about finite transitive

permutation groups can be reduced to similar questions about primitive groups. Thus
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46 Cheryl E. Praeger [2]

the role of primitive groups for studying finite permutation groups is analogous to that
of finite simple groups for the study of abstract finite groups. For some combinatorial
applications, see for example [8], a larger family than the family of primitive groups
is needed. In particular quasiprimitive and innately transitive permutation groups
have arisen in this context. A primary aim of this paper is to demonstrate that
the traditional analysis of transitive group actions, described below, can be replaced
by a similar analysis that associates a set of quasiprimitive or innately transitive
permutation groups with a given finite transitive group action. Most of the analysis
applies to general (not necessarily finite) transitive group actions. The main results
are Theorems 1.12 and 1.13.

Transitive group actions For every group G and proper subgroup Go, the group
G acting by right multiplication induces a transitive permutation group on the set
[G : Go] = [Gog | g € G} of right cosets of Go in G. Moreover, every transitive
action of G on a set of size at least 2 is equivalent to such a coset action, for some
proper subgroup Go. To emphasise both of the groups G and Go in our notation,
we will denote by Trans(G, Go) the transitive permutation group induced by G on
[G : Go]. In this action Go is the stabiliser of the 'point' Go e [G : Go], and
Trans(G, Go) = G/CoreG(G0) where CoreG(G0) = r\eGGo, called the core of Go

inG.
A fundamental problem that arises when studying any transitive action is that of

determining the point partitions left invariant by the group (that is to say, partitions
such that each element of the group permutes the blocks of the partition 'blockwise').
Such a partition is said to be non-trivial if it contains at least two blocks and each of its
blocks contains at least two points. For the permutation group Trans(G, Go), a non-
trivial invariant partition £? corresponds to a subgroup H satisfying Go < H < G.
The blocks of & are indexed by the right cosets of H, namely the block of &
corresponding to Hx is the set of right G0-cosets contained in Hx. Further, & gives
rise to two transitive permutation groups, Trans(G, H) and Trans(//, Go). The first of
these Trans(G, H) is equivalent to the group induced by G on the blocks of &, while
Trans(//, Go) is equivalent to the group induced on one of the blocks. Moreover,
Trans(G, Go) can be embedded in the wreath product Trans(//, Go) i Trans(G, H) in
its imprimitive action, see Theorem 1.6. We give a simple example of this situation
below.

EXAMPLE 1.1. Lettt = {1,2, 8},^ = (12345678) € Sym(fi),G = (g) = Z8,
and Go = 1. Here Trans(G, Go) is equivalent to the natural action of G on £2: for
i = 0, 1 , . . . , 7, the coset Gog' corresponds to the point i + 1. For the subgroup
H — (g4), the G-invariant partition of [G : Go], as described above, corresponds
to the partition & = {B,C,D,E} = {1, 5 | 2, 6 | 3, 7 | 4, 8} of ft, and the
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groups Trans(G, H) and Trans(//, Go) are equivalent to ((£, C, D, E)) = Z4 and
((1,5)) = Z2 respectively, so that Trans(G, Go) <Z2iZ4< Sym([G : Go]).

If there is no non-trivial partition of [G : Go] preserved by Trans(G, Go), or
equivalently, if the stabiliser Go is a maximal subgroup of G, then Trans(G, Go)
is said to be primitive; and otherwise Trans(G, Go) is imprimitive. Suppose that
Go < H < G. If there is a non-trivial invariant point partition for one of Trans(G, H)
orTrans(//, Go), or equivalently ifeitherG0 is not maximal in H,ox H is not maximal
in G, then the same analysis leads to a chain of subgroups of length three from Go

to G, and an embedding of Trans(G, Go) into an iterated wreath product with three
'factors'. This happens with the groups in Example 1.1.

EXAMPLE 1.2. For the group G in Example 1.1, (X, Y] = [B,D \ C, E] is
a Trans(G, //)-invariant partition of &, corresponding to the subgroup K = (g2)
satisfying H < K < G. The groups Trans(G, K) and Trans(A^, H) are equivalent
to ((X, Y)) and ((B, D)) respectively. Thus we have Go < H < K < G and
Trans(G. Go) <Z2iZ2iZ2< Sym([G : Go]).

For arbitrary transitive group actions, on iterating this process we find, for each
subgroup chain of length k from Go to G, an embedding of Trans(G, Go) into an
iterated wreath product with k transitive permutation groups as 'factors'. If each
subgroup of the chain is maximal in the next largest member of the chain, then the
corresponding transitive groups are primitive, and the chain can be refined no further.
Moreover, in this case we have an embedding of Trans(G, Go) into an iterated wreath
product of primitive groups. This is the situation in Example 1.2 where we have three
primitive groups, each equivalent to the primitive group of order two acting on two
points.

In the case where |G : Go| is finite we can always find a maximal subgroup chain
from Go to G, and hence an embedding of Trans(G, Go) into a wreath product of
primitive groups. However, for a complete understanding of the primitive groups
involved in Trans(G, Go) we need in general to examine more than a single maximal
chain of subgroups from Go to G. The reason is that different primitive groups may
occur for different maximal subgroup chains, as illustrated in the next example.

EXAMPLE 1.3. Let X = {1, 2 , . . . , n], G = Sym(X) and Go = Sym({3, . . . , «}),
sothatTrans(G, Go) is equivalent to the action of G on £2 — {(/, j) | i, j e X, i ^ j}.
There are precisely three maximal subgroup chains from Go to G, namely three
chains of the form Go < H < G giving rise to embeddings of Trans(G, Go) = G into
WH := Trans(//, Go) i Trans(G, H). The subgroup H is one of the point stabilisers
G) or G2 in the natural action of G on X, or is the setwise stabiliser G), 2|- If H = G\
or G2, then WH = 5n_i i Sn with 5n_t and Sn in their natural actions on n — 1 and n
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points respectively. On the other hand, if H = G(ii2) then WH = S2 i Sn, this time
with Sn acting primitively on the n(n — l ) /2 unordered pairs from X.

To obtain a full understanding of the primitive permutation groups associated with
a given finite transitive group Trans(G, Go) we need to study the lattice of subgroups
of G containing Go. This is the traditional framework for studying transitive group
actions, and has proved effective in many applications for reducing a problem con-
cerning an algebraic or combinatorial structure admitting a transitive automorphism
group into a similar problem for such a structure admitting a primitive group, see for
example [4, 10].

However, in several applications in graph theory and geometry (see, for example,
[5, 9]) there is no reduction possible to the primitive case, but instead it is possible to
reduce some problems to cases where the relevant permutation group is quasiprimitive
(see Definition 1.11). By a similar analysis to that above we will associate a family of
quasiprimitive groups with any given finite transitive group action.

Subgroup lattices and basic permutation groups A subgroup lattice for a group
G is a non-empty set of subgroups of G, partially ordered by inclusion, such that
every pair of groups in the lattice has a least upper bound (also called a supremum)
and a greatest lower bound (also called an infimum) in the lattice. We will study
various kinds of subgroup lattices, and with each type we will associate a family of
permutation groups that we call basic. In particular, we will prove that each finite
transitive permutation group can be embedded in an iterated wreath product of basic
permutation groups. We will discuss three types of lattices. The first is the lattice of
all subgroups containing a given subgroup; its basic groups are the primitive groups.
The other two are the seminormal and subnormal lattices, and for these the basic
permutation groups are the quasiprimitive, and innately transitive permutation groups,
respectively (see Definition 1.11).

A non-empty subset if| of a subgroup lattice if2 is a sublattice of if2 if. for all
H, K e _£?i, the least upper bound and greatest lower bound of H and K in if2 both
lie in JS?|. For some of the subgroup lattices if,, if2 studied in this paper, ifi may be
a subset, but not a sublattice, of if2.

DEFINITION 1.4. Let SC be a family of pairs (G, Go), where G is a group and Go

is a proper subgroup of G. A subgroup lattice function i f on 3£ is a function on 3C
such that, for (G, Go) € 3L', the output i f (G, Go) is a subgroup lattice that contains G
and is a subset of the lattice of all subgroups of G containing Go. Such a function i f
is called strong if, whenever / / , K e 5?(G, Go) with H < K, then (K, H) € SC and

H) = {M € Se{G, Go) | H < M < K).

If i f is a subgroup lattice function, and H, K € Jz?(G, Go), then we say that K

https://doi.org/10.1017/S144678870001137X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001137X


[5] Lattices and transitive groups 49

covers H in Jif(G, Go) if H < K and there is no subgroup L such that H < L < K
and L € -^(G, Go). If i f is a strong subgroup lattice function then K covers H in
3?(G, Go) if and only if i f (AT, H) = {K, H). Components and basic groups for i f
are defined as follows.

DEFINITION 1.5. Let i f be a subgroup lattice function on 3C, and let (G, Go) e 3C.
If H, K € 5?(G, Go) and H < K then T r a n s ^ , H) is called an ^-component of
Trans(G, Go). If in addition K covers H in i f (G, Go), then Trans(AT, / / ) is an
J£-basic component of Trans(G, Go).

The following result about embedding a transitive group in an iterated wreath
product of its components follows immediately from the embedding theorem for
imprimitive permutation groups, see for example [3, Theorem 8.5]. A subgroup chain
Go < • • • < G; = G is ^-maximal if each of the G, lies in ^f(G, Go), and each G,
covers G,_, in Sf(G, Go).

THEOREM 1.6. Let i f be a subgroup lattice function on some set 3£, and suppose
that (G, Go) 6 3£ and Go < • • • < Gt = G is a finite chain of subgroups in
y(G, Go), where I > 1. Then, fi := [G : Go] can be identified with f l ' = l [G, : G,_,]
in such a way that

Trans(G, Go) < Trans(G,, Go) i • • • i Trans(G,, G,_,) < Sym(^).

Moreover, if the chain is Jif-maximal then, for each i = 1, . . . , / , Trans(G; , G,_i) «

an i?'-basic component o/Trans(G, Go).

Primitive groups arise naturally as basic permutation groups corresponding to the
most natural subgroup lattice function Sub, where Sub(G, Go) = [H \ Go < H <
G] is the lattice of all subgroups of G containing Go. Moreover, Sub is defined
on the family SCau of all pairs (G, Go) where G is a group and Go is a proper
subgroup. The following theorem follows immediately from the standard theory of
transitive permutation groups, see, for example, [6, Theorem 1.5A], and encapsulates
the discussion in the previous subsection.

THEOREM 1.7. The function Sub is a strong subgroup lattice function on 3CA\, and
if Go < G then every Sub-basic component ofTrans(G, Go) is primitive. Moreover,
each primitive permutation group Trans(AT, H) occurs, for example, as the unique
Sub-basic component o/Trans(AT, H).

REMARK 1.8. Finally in this subsection we mention a direction in which the theory
of this paper might be developed. In [1, Section 3] a generalised wreath product
Y[(jf <,(G,, A,) of transitive permutation groups G/ on A, (/ e J) was constructed,
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based on a partially ordered set (J*, <) satisfying the maximal condition (every non-
empty subset of J^ has a maximal element). The generalised wreath product was
defined as a permutation group on A := W^j A,, and was shown to be transitive and
to leave invariant a 'poset block structure' on A, see [1, Lemma 9 and Section 4]. The
construction reduces to the iterated wreath product of Theorem 1.6 in the case where
(•^. <) is a chain. It would be interesting to know the extent to which the theory of
this paper extends to generalised wreath products. When is there a partially ordered
set J* corresponding to a subgroup lattice -£?(G, Go)? When is there an embedding
o/Trans(G, Go) into the corresponding generalised wreath product"}

Seminormal and subnormal lattices Now we define the subnormal and seminormal
lattice functions, and discuss their basic groups. A subgroup N of a group G is
subnormal in G, denoted N <<G,\f there is a finite chain No = N < • • • < N[ = G
such that, for each / < /, N, is a normal subgroup of Ni+i, denoted N, < /V,+1; such a
chain is called a subnormal chain for N. As in [11] we call N a composition subgroup
ofG if there is a subnormal chain from N to G in which all the factor groups Ni+i/Nj
are simple; and we call a subnormal chain with this additional property a composition
series from N to G. Clearly a composition subgroup is subnormal, but the converse
does not hold in general (see [7]).

DEFINITION 1.9. (a) For Go < G, define Subnorm(G, Go) as the set of all sub-
groups of the form Go/V, where /V is a G0-invariant composition subgroup ofG.
(b) For Go < G, and for Go < H < K < G, a G0-seminormal chain of length I

from H to K is a subgroup chain H = Ho < H, < ••• < Ht = K, such that / > 0
and, if 0 < / < I then H, = G0N, for some N, < //,-+,. The pair (K, H) is called
Go-seminormal if there exists a G0-seminormal chain from H to K, and it is said
to have length /, where / > 0, if / is the minimum length of such a chain. Define
Seminorm(G, Go) as the set of all subgroups H containing Go such that (G, H) is
Go-seminormal.

We prove in Lemma 2.1 that, for a G0-seminormal chain as in part (b), we may
take N, = CoreH,+l (//,). Also,

Subnorm(G, Go) c Seminorm(G, Go) c Sub(G, Go)

(see Proposition 3.2), and we have G e Subnorm(G, Go) (since G = G0G),
Go € Seminorm(G, Go) (since Go = G 0 {1G}) , and if Go contains a Go-invariant
composition subgroup N of G then also Go = G0N € Subnorm(G, Go). Equality
can occur among the above displayed inclusions, for example, if Go is maximal in
G and {lc} is a composition subgroup, then Sub(G, Go) = Seminorm(G, Go) =
Subnorm(G, Go) — {G, G()}. However in general these sets of subgroups need not be
equal, as we illustrate in the following examples.
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EXAMPLE 1.10. (a) Let G = S3, and Go = {1G}- Then Sub(G, Go) con-
tains all the subgroups of G and properly contains the set Seminorm(G, Go) =
Subnorm(G,G0) = {{lc},A3,G}.
(b) Let G = A x S < Sym(X), where X = {1, 2, 3, 4, 5, 6, 7, 8}, A ^ A5 is the

alternating group acting on {1, 2, 3, 4, 5), and S = S3 acting on {6, 7, 8}. Let

Go = ((12345), (25)(34)(67)> = D10.

Since CoreG(G0) = {lc}> we have Trans(G, Go) = G of degree \G : Go\ = 36.
There are six subnormal subgroups of G, namely [lc], A, S, S', A x 5 ' ,G. Each
is normal in G, and hence is G0-invariant. Thus, setting Z = ((67)) and D =
((12345), (25)(34)> = D,o,

Subnorm(G, Go) = {Go, G0A = A x Z , G05' , G05 = D x 5, G},

while Seminorm(G, Go) = Sub(G, Go), and consists of Subnorm(G, Go) and one
additional subgroup G0Z — G0D = D x Z.

We shall prove that Seminorm and Subnorm are subgroup lattice functions on
appropriate sets JT, and that the basic components for Seminorm and Subnorm
are quasiprimitive and innately transitive respectively, where we now define these
concepts.

DEFINITION 1.11. (a) A transitive permutation group G is quasiprimitive if every
non-identity normal subgroup of G is transitive.
(b) A transitive permutation group G is innately transitive if G has at least one

transitive minimal normal subgroup.

If a transitive permutation group G on £2 is not quasiprimitive then it has a non-
identity intransitive normal subgroup N. In this case Gw < GWN < G for co e £2, and
hence G is imprimitive. Thus every primitive permutation group is quasiprimitive, and
it follows immediately from the definition that every finite quasiprimitive permutation
group is innately transitive.

The main outcome of the paper is that all the above theory applies to Seminorm
and Subnorm. Although these functions can be applied to all pairs in SCA\, we have
been able to prove only that Seminorm and Subnorm are subgroup lattice functions
on the families

"0™ a n d ^mte"0™ consisting of those pairs (G, Go) for which
Seminorm(G, Go) and Subnorm(G, Go), respectively, are finite.

Clearly, SC^norm c 3C^™m c 3CA\. It is possible, however, that the theory may
extend to larger subsets of 3£M.
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THEOREM 1.12. The function Seminorm is a subgroup lattice Junction on the set
-̂semmorm^ and ,y ( G GQ) £ -̂seminom, then all Seminorm-hwic components of

Trans(G, Go) are quasiprimitive. Moreover iflrans(K, H) is an arbitrary quasi-
primitive group, then (K, H) e ^ ™ n o r m and Seminorm(A:, H) = [K, H}.

THEOREM 1.13. The function Subnorm is a subgroup lattice function on the set

•̂ finite"0™- but lt is not strong. If(G, Go) € f̂i
s
nu

b
e"

orm- then all Subnorm-basic compo-

nents o/Trans(G, Go) are innately transitive. Moreover,

(a) Subnorm(G, Go) = {G, Go} if and only i/Trans(G, Go) is quasiprimitive;

(b) each finite innately transitive group occurs as a Subnorm-basic component of
Trans(G, Go), for some (G, Go) e ST^0"".

Example 1.14 below demonstrates that Subnorm(G, Go) is not always a sublattice
of Sub(G, Go), and that the function Subnorm is not strong.

EXAMPLE 1.14. Let A, B be finite nonabelian simple groups, let [lA] < C < A
and [lB] < D < B such that C = D, and let <p : C -* D be an isomorphism. Define
G = A x B and Go = {(*, (f(x)) | x e C). Then each subnormal subgroup of G is
normal and the normal subgroups a r e { l c } , A , B , G . Thus

Subnorm(G, Go) = {Go, G0A = A x D, G0B = C x B, G}.

The greatest lower bound for G0A and G0B in Subnorm(G, Go) is therefore Go,
whereas G0A (~l G0B = C x D properly contains Go. Thus Subnorm(G, Go) is not a
sublattice of Sub(G, Go).

Note also that the Subnorm-basic components Trans(G0A, Go) = A x D and
Trans(G0B, Go) = C x B of Trans(G, Go) are both innately transitive but not quasi-
primitive. Moreover, Subnorm(G0A, Go) contains {G0A, C x D, Go}, whereas G0A
covers Go in Subnorm(G, Go). Thus the function Subnorm is not strong.

Although we have proved that, for (G, Go) € ^i^mom, Seminorm(G, Go) is
a subgroup lattice, we have been unable to prove that it is always a sublattice of
Sub(G, Go). However we have not found an example where it fails to be. More
precisely, we prove in Section 2 that, for any (G, Go) e 3£M, the infimum of two
subgroups H, K in Seminorm(G, Go) is their intersection H D K, and if (G, Go) e
^fin!™nonn w e P r o v e t n a t H, K have a supremum in Seminorm(G, Go). However in
the latter case we have been unable either to prove or to disprove that their supremum
is always (//, K) (see Propositions 2.3 and 2.4).

Similarly (or perhaps, by contrast), for any (G, Go) e 3EA\, we prove that the
supremum of two subgroups H, K in Subnorm(G, Go) is (//, K) and, if (G, Go) €

1' t n e n w e P r o v e i n Proposition 3.2 that H and K have an infimum in
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Sub(G, Go)
Seminorm(G, Go)
Subnorm(G, Go)

HHK

yes
yes
not

always

(H,K)
eif0?

yes
???
yes

Go-basic
components

primitive
quasiprimitive

innately
transitive

i?0 = {G,G0} ^
Trans(G, Go) is

primitive
quasiprimitive
quasiprimitive

Subnorm(G, Go). In this case we know from Example 1.14 that the infimum may
sometimes be a proper subgroup of H D K.

We summarise in Table 1 the properties of the three subgroup lattice functions
studied in this paper, and we record below the major unresolved issues.

PROBLEM 1.15. Describe the pairs (G, Go) € SCan (if such exist) for which

(1) Seminorm(G, Go) or Subnorm(G, Go) is not a subgroup lattice; and
(2) Seminorm(G, Go) or Subnorm(G, Go) is a subgroup lattice, but not a sublattice

o/Sub(G, Go).

PROBLEM 1.16. Decide whether or not Seminorm is a strong subgroup lattice
function on St^inom.

PROBLEM 1.17. Find the largest subsets of 3CM on which Seminorm and Subnorm
are subgroup lattice functions.

The proof that, for (G, Go) € %~^inorm, Seminorm(G, Go) is a subgroup lattice
is delicate but elementary, and this part of the proof is given in Section 2, where we
investigate some of the properties of seminormal subgroup chains. It was proved
in 1939 by Wielandt (see [11, Theorem 1.1.5]) that the partially ordered set of all
composition subgroups of a group G is a sublattice of the lattice of all subgroups
of G. This is the major tool used in Section 3 to prove that, for any subgroup Go

of a group G, Subnorm(G, Go) is a subgroup lattice contained in Seminorm(G, G()).
We use the characterisation of finite innately transitive permutation groups in [2] to
prove that each finite innately transitive group occurs as a Subnorm-basic component
of some finite Trans(G, Go).

2. The seminormal lattice function

Throughout the rest of the paper let (G, Go) G 3t'M, that is, G is a group with a
proper subgroup Go. It follows from Definition 1.9 that, for Go < H < K < G,
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(AT, H) is Go-seminormal of length at most 1 if and only if H = G0N for some
normal subgroup N of K. For convenience we will call such a pair G0-normal.

LEMMA 2.1. If(K, H) is Go-normal, then there is a unique largest subgroup N
such that H = G0N and N is normal in K, namely N = CoreK(H) = P\xeK Hx.

PROOF. We have that H — GQM for some normal subgroup M of K. Set N =
CoreK(H). Then N is normal in K and N < H, so G0N < H. On the other hand,
since M is normal in K, Hx contains Mx — M for each x e K, and hence M < N.
Thus H = G0M < G0N and so H = G0N and N is the largest such subgroup normal
in AT. •

The next simple property of G0-normal pairs is important.

LEMMA 2.2. If(K, H) is G0-normal and Go < L < K, then (L, HDL) is also
Go-normal. If also (AT, L) is Go-normal, then HL is a subgroup and (K, HL),
(HL, L), (HL, H), and (H, HDL) are all Go-normal

PROOF. By definition, H = G0N, where N is a normal subgroup of K. Thus
H C\L = (G0N) n L and we claim that (G0A0 D L = G0(N D L). Since G0 c L,
we have G0(N n L) c (G0A0 D L. Suppose now that y = gx e (GoN) n L, with
g € Go and x e N. Then x = g~ly € N D L (since L contains Go). Hence
y — gx € G0(N fl L), proving the claim. Since N D L is normal in L it follows that
(L, H Pi L) is Go-normal.

Now suppose that (K,L) is also G0-normal, so L = G0M for some normal
subgroup M of K. Then the argument of the previous paragraph applied to (K, L)
proves that H n L = GQ{H n M), that H n M is normal in / / , and that (//, H CM)
is Go-normal.

Now HL = (G0N)(G0M) = G0NM, since Go normalises N. Since NM is
a normal subgroup of K\ it follows that HL is a subgroup of AT and (K, HL) is
Go-normal. That (HL, L) and ( / /L , / / ) are G0-normal follows by applying the first
assertion to the subgroup HL and G0-normal pairs (K, L) and (K, H) respectively.

•

Recalling from Definition 1.9 the definition of G0-seminormal chains and sub-
group pairs, we observe that concatenations of G0-seminormal chains are again Go-
seminormal. Thus if Go < L < H < K < G, and if (K, H) and (H, L) are
Go-seminormal of lengths h, I respectively, then (K, L) is also G0-seminormal of
length at most h + l. Note that a G0-seminormal pair (K, H) has length 0 if and only
if K = H.
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PROPOSITION 2.3. Let (G, Go) e SCAX, and let GQ < H < K < G and Go <

L < K < G be such that (K, H), (K, L) are Go-seminormal of lengths h and I
respectively. Let H = Ho < Hx < • • • < ///, — K be a Go-seminormal chain.

(a) If I = \, then (H D L) < ( # , n L) < • • • < (Hh n L) = L is also a
Go-seminormal chain, so (L, H C\ L) is Go-seminormal of length at most h.
(b) For any h, I, (//, H n L), (L, HHL) and (K, HP\L) are Go-seminormal pairs

of lengths at most I, h and h + / respectively.
(c) IfH,Le Seminorm(G, Go), then H D L € Seminorm(G, Go).

PROOF. For 0 < i < h, H, = G0Nj for some normal subgroup /V, of Hi+X. First
we prove part (a). Suppose that / = 1, so L = G0M for some normal subgroup M
of K. Applying Lemma 2.2 to the G0-normal pairs (K, //ft_i) and (K, L), we find
that (///,_!, Hh_x fl L) and (L, Hh_x D L) are both G0-normal. Similarly, applying
Lemma 2.2 to the G0-normal pairs (Hh-X, Hh-2) and (Hh-X, Hh-X D L), we find that
(Hh-2, Hh-2 H L) and (/4_i n L, ///,_2 n L) are both G0-normal. Continuing in this
way we deduce that (H n L) < (Hx n L) < • •• < (Hh n L) — L is indeed a
Go-seminormal chain of length h, proving part (a).

If either h or / is zero, then the assertions of part (b) follow from the definitions
of h and /. Thus we may assume that h and / are both positive, so h + I > 2. We
shall prove part (b) by induction on h + I. Let L = Lo < Lx < • • • < Lt = K be a
Go-seminormal chain of length / so, for 0 < j < /, Lj = G0Mj with Mj a normal
subgroup of Lj+\. Suppose first that h + I = 2. Then h = / = 1. In this case A^
and Mo are normal subgroups of K, so by Lemma 2.2, (//, H n L) and (L, H D L)
are G0-normal, and hence (K, H D L) is G0-seminormal of length at most 2 = h +1.
Thus part (b) holds if h +1 = 2. Now we assume that h +1 > 2 and that (b) holds for
smaller values of h + I.

Since (K, L/_i) is G0-normal, it follows from Lemma 2.2 that (//, H D L;_i) is
Go-normal. Note also that ( / / n L , . , ) n L = WflL. NowL = Lo< Lx <••• < L,_,
is a Go-seminormal chain, and so (L/_i, L) is Go-seminormal of length at most/ — 1.
Also, by part (a), (L;_i, H D L;_!) is G0-seminormal of length at most h. Thus, the
inductive hypothesis holds for the pairs (L/_i, L) and (Z.,_i, H D L/_i), and since
( W n Z , , . , ) n L = / / n L , we find by induction that ( / / n L , . , , / / n L), (L, H n L)
and (L/_i, HDL) are G0-seminormal pairs of lengths at most/ — 1, /i, and /i + (/ — 1)
respectively. Since (//, / / D L/_,) and (K, L,-X) are both G0-normal, we have that
(//, HDL) and (K\ HDL) are G0-seminormal pairs of lengths at most / and h +1
respectively. Thus part (b) is proved by induction.

Finally, part (c) follows from part (b) on taking K = G. •

We show in part (b) of the next result that Seminorm is a subgroup lattice function
on .2tin'™"01™ and its basic components are precisely the quasiprimitive groups.
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PROPOSITION 2.4. Let (G, Go) e <2"Sinorni. aradto //, Z, e Seminorm(G, Go).

(a) 77ien / / and L have a supremum in Seminorm(G, Go), and if H < L then
Seminorm(L, H) contains [K e Seminorm(G, Go) I H < K < L).
(b) Seminorm (G, Go) w a subgroup lattice containing G and Go. Moreover, all

Semmorm-basic components of Trans(G, Go) are quasiprimitive.
(c) // Trans(X, Y) is an arbitrary quasiprimitive group, then (X,Y) lies in ^^inorm

and Seminorm(X, Y) = {X, Y}.

PROOF. Note that both G and Go lie in Seminorm(G, Go), since G = G0N with
A' = G, and Go = G0N with N = 1. Let

y = {K e Seminorm(G, Go) I (//, L) < AT}.

Since G e y , this set is non-empty, and since (G, Go) € ^fi
s
ntte

inorm. y is fi-
nite. It therefore follows from Proposition 2.3 (c) that S := dices' ^ belongs to
Seminorm(G, Go). Since 5 contains {//, L) it follows that 5 is the supremum of H
and L in Seminorm(G, Go).

Now suppose that H < L, and let K e Seminorm(G, Go) such that H < K < L.
By Proposition 2.3 (b), (L, K) is G0-seminormal. Let

A: = Ko < K\ < • • • < Kk = L

be a Go-seminormal chain. Then, for each i < k, K, = G0Mj for some normal
subgroup A/, of Ki+l. Since H < K, we have K, = G0A/, = //M,, so the displayed
chain is also //-seminormal. Hence K e Seminorm(L, H). The proof of part (a) is
now complete.

It follows from part (a) and Proposition 2.3 that Seminorm(G, Go) is a subgroup
lattice. Thus Seminorm is a subgroup lattice function on ^^'norm-

Suppose now that L covers H so that Trans(L, H) is a Seminorm-basic component
of Trans(G, Go). Then (L, H) is G0-normal so H = G0N, for some normal subgroup
N of L. Let M be an arbitrary normal subgroup of L. Then HM = G0(NM) and
NM < L, so (L, HM) is G0-normal, whence HM € Seminorm(G, Go). Since
H < HM < L and L covers H in Seminorm(G, Go), it follows that HM = H or
HM = L, and hence M induces a trivial or transitive action on [L : H], respectively.
Thus Trans(L, H) is quasiprimitive.

Suppose finally that Trans(X, Y) is an arbitrary quasiprimitive permutation group,
and let H € Seminorm(X, Y) with H ^ X. Then there exists a K-seminormal chain
H = Ho < • • • < Hh = X with /i > 1 and //;,_i a proper subgroup of X. Then
//,,_i = KM, for some normal subgroup N of X. If N acts nontrivially on [X : KJ.then
N is transitive since Trans(X, Y) is quasiprimitive, and hence X = YN = //*_i, which
is a contradiction. Thus N acts trivially on [X : Y], and in particular is contained in the
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stabiliser Y. This implies that //,,_, = Y = H. Hence Seminorm(A', Y) = {X, Y],

and in particular (X, Y) e <£fi
s
n™

inorm. •

The proof of Theorem 1.12 follows from Proposition 2.4.

3. The subnormal lattice function.

Since G is a normal subgroup of itself it follows that G e Subnorm(G, Go).
Suppose that H e Subnorm(G, Go) and H ^ G. Then, by definition, / / = Go/V
for some proper, G0-invariant, composition subgroup N of G, and so we have a
composition series from N to G, say

(1) N = N0<Ni<---<Nh = G

for some h > 1, where each Ni+I/Nj is simple. Note that, although No = N and
Nh = G are G0-invariant, the other TV, are not in general G0-invariant. Our first
task is to construct a subnormal series from N to G in which all the subgroups are
Go-invariant composition subgroups of G.

LEMMA3.1. Let(G, Go) e 3CM,letH = G0N e Subnorm(G, Go), whereH ^ G.
Then there is a Go-seminormal chain H = G0M/ < G0M/_, < • • • < G0M0 = G such
that Mo = G,l < h, N < Mi and, for each i > 0, A/, is a normal subgroup of M,-\ and
is a Go-invariant composition subgroup ofG. In particular, H € Seminorm(G, Go).

PROOF. Let the N, be as in (1). We shall construct inductively G0-invariant com-
position subgroups Mo, M , , . . . , Mh of G such that Mh < A/;,_i < • • • < Mo = G (with
possible equality for some inclusions), and such that, for each i, N < A/,- < Nh-,.

The group Mo :— G is a Go-invariant composition subgroup containing JV. Also
Mj := Nh_i is a normal subgroup of Mo = G and hence is a Go-invariant composition
subgroup of G that contains N. Assume now that I < i < h and that we have
constructed Go-invariant composition subgroups Mo, M , , . . . , M,_ | such that M,_: <
M,_2 < • • • < Mo = G, and N < Mj < Nh_j for each j < i — 1. We shall construct
a Go-invariant composition subgroup M, of G that is a normal subgroup of M,_|
and satisfies N < Mt < Nh^. If M,_] = JV then the subgroup M, = N has these
properties. So assume that N is a proper subgroup of X := M,_,. Then the distinct
subgroups in the series

N = Nnx<Nlnx<---<N,,nx = x

form a composition series from N to X. Let K = Nj n X be the largest proper
subgroup of X in this series. Then Y is normal in X and X/Y is simple. Define

https://doi.org/10.1017/S144678870001137X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001137X


58 Cheryl E. Praeger [14]

Mi = f)geGo Y8- Since X, N are G0-invariant, each of the groups Yg (for g e Go)
is normal in X and contains N, and hence Af, is a normal G0-invariant subgroup of
X containing TV. Also, since X < Nh-i+l, it follows from the definition of Y that
Y = Nj D X < Nk-i, and hence that Mt < Nh^. It remains to show that A/, is
a composition subgroup of G. Since A/, is a normal subgroup of X, each Nk n X
normalises A/, and so each Mj(Nk D X) is a subgroup, and if k < h then Mi(Nk n X)
is normal in A/,(AV+i n X). Thus the distinct subgroups in the series

Mi = M,(N n X) < MiiNiDX) < < M,(Nh n X) = X.

form a composition series from A/; to X, and since X is a composition subgroup of G,
it follows that Af, is also a composition subgroup of G. Continuing in this way we
construct all of the subgroups Af 0 , . . . , Mh.

Then the subgroup chain H = G0Mh < G0A/A_i < • • • < G0M0 = G is a Go-
seminormal chain with the required properties, and we can take / to be the least i such
that H = G0Mj. In particular H e Seminorm(G, Go). •

Now we prove that Subnorm(G, Go) is a subgroup lattice. Recall (see Exam-
ple 1.14) that Subnorm(G, Go) is not always a sublattice of Sub(G, Go).

PROPOSITION 3.2. Let (G, Go) € SCA\, and let H,L e Subnorm(G, Go).

(a) Then Subnorm(G, Go) c Seminorm(G, Go), and (H, L) is the supremum of
H and L in Subnorm(G, Go). Moreover, Subnorm(G, Go) always contains G; it
contains Go if and only if Go contains a Go-invariant composition subgroup ofG.

(b) / / (G, Go) e ^fi
s
n"(

b
e
norm, then Subnorm(G, Go) is a subgroup lattice.

(c) Subnorm is a subgroup lattice function on •^^"orm, but it is not strong.

PROOF. By Lemma 3.1, Subnorm(G, Go) ^ Seminorm(G, Go). Now H = G0N
and L = G0M, where N, M are Go-invariant composition subgroups of G. By
Wielandt's Theorem [11, Theorem 1.1.5], X := (N, M) is a composition subgroup
of G, and clearly X is G0-invariant. Moreover, (H, L) = (Go, N, M) = G0X, and
hence (//, L) e Subnorm(G, Go). As noted above Subnorm(G, Go) contains G. By
definition, Subnorm(G, Go) contains Go if and only if Go is of the form G0N for
some Go-invariant composition subgroup N of G, or equivalently, if and only if Go

contains such a subgroup N. Thus (a) is proved.

Suppose now that (G, G()) € ^nit""™- ^ e w ' " s n o w 'hat H, L have an infimum in
Subnorm(G, Go). Let y be the set of all subgroups in Subnorm(G, Go) that are con-
tained in H n L. Since N n M is a G0-invariant composition subgroup of G it follows
that G0(A' n M) is a subgroup of H D L that lies in Subnorm(G, Go), so y is non-
empty. Since (G, Go) € •2'ti

s
n£

norni
) Subnorm(G, Go) is finite and hence y is finite,

say y = {G05|, . . . , GoSk) where each of the 5, is a G0-invariant composition sub-
group of G. Let Y := (5| , . . . , Sk). By [11, Theorem 1.1.5] again, Y is a composition
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subgroup of G, and since each 5, is G0-invariant and contained in H n L, it follows that
Y is Go-invariant and contained in H n L. This means that G0Y € Subnorm(G, Go)
and G0Y < H C\L. By definition therefore G0Y e y , and G0Y contains all other
subgroups in 5?. Thus G0Y is the infimum of H and L in Subnorm(G, Go). It now
follows from this fact, and from part (a) that Subnorm(G, Go) is a subgroup lattice.
Thus part (b) is proved.

By part (b), Subnorm is a subgroup lattice function on &^"orm, and by Exam-
ple 1.14, it is not strong. •

Now we look at the roles of quasiprimitive and innately transitive permutation
groups in describing Subnorm-components, proving in particular that every finite
Subnorm-basic component is innately transitive.

PROPOSITION 3.3. Let (G, Go) e SEA\ be such that there is some G0-invariant
composition subgroup of G contained in GQ.

(a) Then (G, Go} Q Subnorm(G, Go), and equality holds if and only if the permu-
tation group Trans(G, Go) is quasiprimitive.
(b) Each finite Subnorm-basic component o/Subnorm(G, Go) is innately transitive.

PROOF. By Proposition 3.2 (a), {G, Go} <= Subnorm(G, Go) c Seminorm(G, Go).
Suppose that Trans(G, Go) is quasiprimitive. Then by Proposition 2.4 (c), we have
Seminorm(G, Go) = {G, Go}, and hence also Subnorm(G, Go) = {G, Go}. Con-
versely, suppose that Subnorm(G, Go) = {G, Go}. We need to prove that the group
Trans(G, Go) is quasiprimitive. First we show that the kernel K of the action of G on
[G : Go] is a composition subgroup of G. By Lemma 3.1, there is a G0-seminormal
chain

Go = G0Mi < GoA/;_! < • • • < G0M0 = G

such that I > I, Mo = G, and, for each i = 1 , . . . , / , M, is a normal subgroup of A/,_,
and is a G0-invariant composition subgroup of G. By definition of Subnorm, each of
the G0Mj lies in Subnorm(G, Go) = {G, Go}, and hence / = 1 so that Go = GOMU

with M, a composition subgroup of G that is normal in G. Since M, < Go and Mi is
normal in G, it follows that M, < K. Then since M\ is a composition subgroup and K
is a normal subgroup of G containing M{, it follows that A' is a composition subgroup
of G. Now to each normal subgroup Y of Trans(G, Go) = G/K there corresponds
a unique normal subgroup X of G containing K such that Y = X/K. Since A" is a
composition subgroup of G, it follows that X is also a composition subgroup of G.
Since X is normal in G, it is G0-invariant, and hence G0A" e Subnorm(G, Go) =
(G, Go}. If G0X = Go then X c Go, and since the kernel K is the largest normal
subgroup of G contained in Go, it follows that in this case X = K, and so Y = 1. On
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the other hand if G0X = G, then X acts transitively on [G : GQ], and hence in this
case Y is transitive. Thus Trans(G, Go) is quasiprimitive, and so part (a) is proved.

Now suppose that K, H e Subnorm(G, Go) and that K covers H, so that
Trans(AT, H) is a Subnorm-basic component of Trans(G, Go). Suppose further that
Trans(/i:, H) is <inite. Let Y = Core*(//), so that Trans(/i:, //) = tf/r. We have
H = G0N anu K = G0M, where M, N are G0-invariant composition subgroups
of G. Thus M is a normal subgroup of K, and so MK/ y is a normal subgroup of the
finite group K/Y. Hence M/(MDY) = MY/Y is finite, and M/{M n K) is normal in
AT/(M H y). Thus there exists a normal subgroup Lof K such that M D Y < L < M,
and L/(M fl K) is a minimal normal subgroup of K/(M D Y). The corresponding
subgroup LY/Y of K/Y is therefore a minimal normal subgroup of K/Y contained in
MY/ Y. Now L is //-invariant since L is normal in K, and so we have H < //L < Jf,
and we note that HL = G0(NL), and N normalises L. The subgroup L is a compo-
sition subgroup of G since M is a composition subgroup and L is a normal subgroup
of M of finite index. Then, since both N and L are G0-invariant composition sub-
groups, it follows that {N, L) = NL is a G0-invariant composition subgroup (using
Wielandt's Theorem again). Hence HL = G0(NL) e Subnorm(G, Go), and since
K covers H it follows that HL is H or K. If HL = H then L < H, and since L is
normal in K this implies that L < CoxeK(H) = Y, which is a contradiction. Hence
HL = K, and this implies that LK/ Y is transitive. Thus Trans(AT, H) has a transitive
minimal normal subgroup and so is innately transitive. •

There is one further ingredient to put in place to enable us to complete the proof of
Theorem 1.13, namely we must demonstrate that each finite innately transitive group
occurs as a Subnorm-basic component. To do this we use a construction similar to
the construction given in [2, Construction 6.6] for innately transitive groups. For a
group K and subgroup A"o, Inn(A") denotes the group of inner automorphisms of K,
and lnriK0(K) denotes the subgroup of Inn(AT) induced by elements of Ko- We use
A : B to denote a semidirect product of A by B.

CONSTRUCTION 3.4. Let

(a) K = Tk, where k > 1, and T is a finite simple group (possibly abelian),
(b) J < Ko < K such that CoreK(J) = 1, and if K is abelian, then Ko = K,
(c) L < Aut(K) such that the only L-invariant normal subgroups ofK are 1 and K,

and such that L D \x\n{K) — Inn^CAT), and J is L-invariant.

Define G to be the semidirect product (K x K) : L, where L acts naturally on each
of the two direct factors of K x K, let Go = Y : L, where

Y = {(x,y)\x,y<=K0,Jx =

and let A = G0(l x K) = (Ko x K) : L.
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PROPOSITION 3.5. Let G, Go, A be as in Construction 3.4, and let <p be the nat-
ural homomorphism Ko ->• Ko/J. Then (G, Go) € - ^ST"" - the subgroup A e
Subnorm(G, Go), and Jrans(A, Go) is a Subnorm-basic component o/Trans(G, Go).
Moreover, Trans(A, Go) is permutationally isomorphic to the innately transitive group
constructed from the triple (AT, <p, L) in [2, Construction 6.6]; and every finite innately
transitive group arises in this way.

PROOF. Since G is finite and Go £ G, we have (G, Go) € ^fi
s
nit

b
e
norm, and since 1 x K

is normal in G, it follows that A G Subnorm(G, Go). Next we prove that A covers
Go in Subnorm(G, Go). Suppose that H e Subnorm(G, Go) and Go < H < A.

Then H = G0N for some G0-invariant composition subgroup N of G. Let
M = (1 x AO7V. Then M is a composition subgroup of G, by Wielandt's Theorem,
and A — G0M since N < A. It follows from Lemma 3.1, and its proof, that there is
a subnormal chain

M, < Af;_i < • • • < Mo — M

where / > 1, H = G0N = G0Mh N < Mo, each of the M, is G0-invariant, and if
/ > 0 then M, is a proper normal subgroup of M,-_i. We may suppose that this chain is
maximal with respect to these properties. Then U :— M\ is a proper normal subgroup
of M containing N, and there is no Go-invariant normal subgroup V of M such that
U < V < M. Since U ^ M it follows that U does not contain 1 x K. Since U is
normalised by M, we have that U D (1 x K) is a normal subgroup of 1 x K\ and since
U is Go-invariant it follows that U D (1 x K) is L-invariant. Thus, using condition (c),
we deduce that C / n ( l x A ' ) = l . I n particular, U centralises 1 x K, and (1 x K)U is
a Go-invariant normal subgroup of M properly containing U. Thus U < CG(1 x K),
and using condition (c) again, we have M = U x (1 x K).

Since M = ( l x K)N and W < U = M/(l x K), it follows that N = U. Hence
N < C c ( l x AT). We claim that C c ( l x K) = {(x, y)Cy

x \x e K,y e Ko] (where
iy is the inner automorphism of K induced by y). Let (x, y)a e CG(1 x K), where
JC, y € AT and a € L. For (1, M) e 1 x AT, (1, u)(x-y)° = (1, uya), and it follows that
o = i"1. By condition (c), L D Inn(AT) = Inn^0(A"), and hence y € A"o. Conversely
each element (x, y)t~l, with x e K, y € Ko, centralises 1 x K. Thus the claim is
proved, and we have that

(2) N < CG(1 x K) D A = C c ( l x K) n ((AT0 x AT) : L)

Now AT x 1 is normal in G and hence M' := (K x \)N is also a G0-invariant
composition subgroup of G containing N (by Wielandt's Theorem). Thus there is a
Go-invariant subnormal chain from N to M'\ let U' be the largest proper subgroup
of M' in this chain. An analogous argument to the one above, with M', U', K x 1
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in place of M, U, 1 x K, shows that U' centralises K x 1, that U' = N, and that
CG(K x 1) = {(JC, y)i~l | x € #o, y € K}. Combining this information with (2), we
obtain that N < {(x, x)tjl | x e Ko}. Thus N < Go, and hence G0N = Go, so A
covers Go in Subnorm(G, Go).

It follows that Trans(A, Go) is a Subnorm-basic component of Trans(G, Go). Now
Trans(A, Go) is the permutation group induced by the right multiplication action of
A on [A : Go]. Moreover, Go contains the normal subgroup J x 1 of A. Let <p be the
natural homomorphism <p : Ko —*• Ko/J, so that Ko, J are the domain and kernel of <p,
respectively. The conditions (a)-(c) on K, Ko, J, L in Construction 3.4 give precisely
the conditions for (K, <p, L) to be an innate triple, as defined in [2, Definition 6.1].
Moreover, X :— (Im<p x K) : L = A/(J x 1) is the group constructed in [2,
Construction 6.6] from the triple (K, <p, L), and the subgroup of X corresponding to
G0/(J x 1) is Xo := {(<p(u), u) \ u € Ko] : L. Thus Trans(A, Go) is permutationally
isomorphic to the group induced by X on [X : Xo], and by [2, Proposition 6.7], this
is the innately transitive group constructed from (K, <p, L) in [2, Construction 6.6].

By [2, Theorem 1.1 ], up to permutational isomorphism, every finite innately transi-
tive group arises from [2, Construction 6.6] applied to some triple (K, <p, L) satisfying
the conditions in Construction 3.4 (with Ko, J the domain and kernel of <p). This is
because every epimorphism with domain Ko and kernel J can be replaced in the
construction in [2, Construction 6.6] by the natural map #o —* Ko/J- Thus, by
[2, Theorem 1.1], every finite innately transitive group arises as Trans(A,G0) for
some G, Go in Construction 3.4. •

Theorem 1.13 follows from Propositions 3.2, 3.3, and 3.5.
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