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ON THE SMALLEST DEGREES OF PROJECTIVE 
REPRESENTATIONS OF THE GROUPS PSL(ny q) 

MORTON E. HARRIS AND CHRISTOPH H E R I N G 

Introduction. In this paper, we obtain information about the minimal 
degree 5 of any non-trivial projective representation of the group PSL(w, q) 
with n ^ 2 over an arbitrary given field K. Our main results for the groups 
PSL(w, q) (Theorems 4.2, 4.3, and 4.4) state that, apart from certain excep­
tional cases with small n, we have the following rather surprising situation: 
if q = pf (where p is a prime integer) and char K — p, then 8 = n, but if 
q = pf and char K ^ p, then ô is of a considerably higher order of magnitude, 
namely, ô is at least qn~l — 1 or J (q — 1) if n = 2 and q is odd. Note that for 
n = 2, this lower bound for <5 is the best possible. However, for n ^ 3, this 
lower bound can conceivably be improved. But, since the classical (doubly 
transitive) permutation representation of PSh(n, q) on the projective points of 
the underlying vector space provides us with an ordinary representation of 
degree (f~l + qn~2 + . . . + q over any field, ô must in any case be essentially 
of the same magnitude as our lower bound. 

As an application, we present a new method for the determination 
of the so-called exceptional isomorphisms between the groups PSL(n, q) 
(cf. Theorem 4.5). 

The main motivation for this work lies in certain applications to problems 
about doubly transitive permutation groups (cf. [5]). 

The lower bounds for the degrees of projective representations that we 
obtain actually apply to a much wider class of groups than the groups PSL (n, q) 
(see Theorems 3.1 and 3.2). Moreover, the methods of proof require certain 
results which appear in §§ 1 and 2 and are of independent interest. For example, 
in § 1, a very useful result of Brauer (Lemma 1.1) is extended to splitting fields 
of prime characteristic (Lemma 1.2) and then used to obtain Lemmas 1.3 and 
1.4 which are used in § 3 and to generalize certain results on Frobenius groups. 
Also, § 2 contains homological results on group algebras which are used to 
prove Lemma 2.6 needed in the proof of Theorem 3.2 and are also of independent 
interest. 

Our notation is fairly standard and tends to follow that of [6]. 

1. Lemmas in group representation theory. In this section, the analogue 
for fields of prime characteristic of a very useful result of Brauer is derived by 
means of modular character theory. This analogue is then applied to obtain 
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results (Lemmas 1.3 and 1.4) needed in § 3, and to extend to fields of arbitrary 
characteristic, some basic results on representations of Frobenius groups over 
fields of characteristic not dividing the order of the Frobenius group. 

Let & denote a finite group and let L denote a splitting field of characteristic 
zero of &. Let K = {Ki = {£}, K2, . . . , Kk] denote the set of conjugacy 
classes of S ,̂ let X = {ïi = 1, X2, • • • , %k} denote a full set of representatives 
for the equivalence classes of L- (absolutely) irreducible representations of ^ 
and let ch X = {xi = 1> X2, . . . , x*} denote the corresponding characters of X 
(i.e., xi = t r ï i ) . 

A very useful result of Brauer (cf. [6, Kapitel V, Satz 13.5]) is the following. 

LEMMA 1.1 (Brauer). Assume that the finite group 3/ has permutation repre­
sentations on: (1) the set ch X, denoted by x —> xA for all A 6 s/ and x <E ch X, 
and (2) the set K, denoted by K —» KA for all A £3/ and I Ç K , such that if 
ch X is viewed as a set of L-valued functions on K, then xA{K) = x(KA) for all 
X G ch X, K G K and A Ç s/. If the {complex) permutation characters of the 
permutation representations of s/ in (1) and (2) are denoted by wi and 7r2, 
respectively, then TI = 7r2. 

A similar result holds for splitting fields of @ of prime characteristic. Thus 
let & denote a finite group, let i7 denote a splitting field of & of characteristic p 
and let | ^ | = ^ Y , where a ^ O a n d £ | g' .LetK* = [Kx = {£}, K2,... , Ku) 
denote the set of ^-regular conjugacy classes of &. A well-known theorem of 
Brauer (cf. [1, Satz (3B)]) states that a full set of representatives for the 
equivalence classes of F- (absolutely) irreducible representations of & consists 
of u representations; let % = {§1 = 1, g2, • • • , 3U denote such a set and let 
ch g = {<£>!* = 1, <£2*, • • • , <Pu*} denote the corresponding characters of % 
(i.e., (p* = tr %f). The "modular analogue" of Lemma 1.1 is the following. 

LEMMA 1.2. Assume that the finite group s/ has permutation representations on: 
(1) the set ch g denoted by y* —> <p*A for all A Ç se and ç* Ç ch g, and (2) the 
set K* denoted by K —> KA for all A £ Stf and I Ç R * such that if ch g is viewed 
as a set of F-valued functions on K*, then cp*A(K) = <p*(i£A) /or all <p* £ ch g, 
i£ G K* a?zd a// A G J^. If //ze (complex) permutation characters of the permuta­
tion representations of se in (1) and (2) are denoted by m and 7r2, respectively, 
then 7Ti = 7T2. 

Proof. Let 12 denote an algebraic number field containing a primitive g'th root 
of unity, let 0 denote the ring of algebraic integers of 12 and let p denote a fixed 
prime ideal of 0 such that p G p. Set 12* = o/p (a field) and let v be any 
exponential valuation of 12 associated with p. Finally, let o„ denote the ring of 
p-local integers of 12 and let p„ denote the unique prime ideal of o„. We may 
identify 0„/p„ with 12*. Since 12* is a splitting field for S? of characteristic p, we 
may assume that F = 12*. Let 0: 0 —-> 12* denote the residue class mapping; then 
there exists a set <£ = {<pi = 1, ^2, . • . , <pu\ of o-valued functions (the Brauer 
characters) defined on the ^-regular elements of & which are constant on the 
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^-regular classes of & such that 6(<pi(G)) = <p*(G) for all ^-regular elements 
G G ^ and ail 1 ^ i ^ u (cf. [1, § 3]). Moreover, <pt = <pj if and only if i = 7 
and hence S$ has an obvious permutation representation on <ï> which is 
equivalent to (1) above. If $ is viewed as a set of functions on K*, then 
(obviously) <pA(K) = <p(KA) for all p G $, if G K*, A G J^, and the w X M 
o-valued matrix (<pi(Kj)) is non-singular (cf. [1, Satz (3E)]). Now the same 
argument used to prove Lemma 1.1 applies to the permutation representations 
of S$ on K* and $, and the lemma follows. 

Note that this lemma is valid even if a = 0 (i.e., if p \ \&\) and hence 
Lemma 1.1 is generalized to splitting fields of & of arbitrary characteristic. 

These lemmas clearly apply to the case in which s/ is a subgroup of Aut ( ̂  ), 
and then ssf induces the obvious permutation representations on K and K* and 
induces the permutation representations on ch X and on ch % defined by 
X -» XA, where X

A(K) = x(KA), and <p* -> <p*A, where <p*A(K*) = <p*((K*)A) 
for all A 6 s/, x € ch X, <p* Ç ch g, if € K, and if* 6 K*. In this situation, 
the hypotheses of both lemmas are trivially satisfied. 

For our later work we need the following two lemmas. 

LEMMA 1.3. Let & be a finite group with a proper normal nilpotent subgroup 31. 
Let p be a prime integer such that Op(3l) ^ (1). Suppose that & /0P>(31) is a 
Frobenius group with Frobenius kernel 3l/0p> (31) ( = 0p(3l)) and suppose that g 
is a representation of & in afield F with characteristic not p. If Ker (%) 2 Op(3l), 
then deg % ^ \^: %. 

Proof. By extending the field if necessary, we may assume that F is alge­
braically closed. Since %\oPcm is completely reducible, we may also assume that 
% is irreducible. Since Ker(g) ^ Op(3l), Clifford's theorem implies that there 
exists a positive integer e and a non-trivial irreducible ^-representation ^ of 
0P(31) such that 5|oP(ft) is equivalent to e(@H^^ ^H), where JÏ? is a full set of 
representatives for the left cosets of the subgroup 3» (\E0 = {G G ^\^G and ^ 
are equivalent .F-representations of 0p(3l)} in @. Thus deg g ^ |S^: 3 (^ )1-
Let 8 be a subgroup of ^ such that 8 D 0P> (31) and 2/0p> (31) is a complement 
to 3i/Op>(3l) in &/0p,(3l). Clearly C8(Op(5R)) = <V(5R) and 8 /0^ (91) acting 
by conjugation induces a fixed-point free group of automorphisms on 0p(3l). 
By [6, Kapitel V, Satz 8.9], 8AV(9l) has a faithful semi-regular permutation 
representation on the set of non-identity conjugacy classes of 0p($l). Now 
Lemmas 1.1 and 1.2 imply that 8/0P> (31) has a faithful semi-regular permuta­
tion representation on the set of non-trivial irreducible ^-representations of 
0p(3l). Thus 8AV(9l) has orbits of length |8AV(5tt)l = | ^ : 3l\ on this set. 
Consequently, | &: 3 W | ^ | &: 3l\ and the result follows. 

LEMMA 1.4. Let & be a finite group with a proper normal abelian p-subgroup 31 
such that *& acting by conjugation on 31 is transitive on 31*. Suppose that % is a 
representation of & in a field F of characteristic not p. If Ker(g) ^ 31, then 
deg g è |5R| - 1. 
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Proof. Again it suffices to assume that F is algebraically closed. Since & 
acting by conjugation is transitive on 31*, Lemmas 1.1 and 1.2 and [6, Kapitel V, 
Satz 20.2] imply that @ has two orbits on the ^-irreducible characters of 31 
namely the 1 character and the other |9t| — 1 characters. Thus if \F is any 
non-trivial /^-irreducible character of 31, then \@ : 3 (^)1 = \3l\ — 1. An 
appropriate modification of the proof of Lemma 1.3 yields the desired result. 

Lemma 1.2 has various other applications. For example, [6, Kapitel V, 
Satz 16.13] which characterizes the irreducible representations of a Frobenius 
group & over an algebraically closed field F such that char F \ \ & | can be 
generalized to hold for arbitrary algebraically closed fields. To prove this 
generalization, we require the following result. 

LEMMA 1.5. Let & = 31 & be a Frobenius group with Frobenius kernel 31 and 
complement &. If F is a splitting field for 31 and if % is a non-trivial irreducible 
F-representation of 31, then the induced representation ^ is an absolutely 
irreducible F-representation of & with kernel not containing 31 and such that 

Proof. First assume that F has prime characteristic p. As in Lemma 1.3, § , 
acting by conjugation, has a faithful semi-regular permutation representation 
on the ̂ -regular classes of 31. Now Lemma 1.2 applies, and we conclude that § 
acts semi-regularly on the non-trivial irreducible ^-representations of 31. Let T7* 
be the algebraic closure of F and let 36 be an (absolutely) irreducible constituent 
°i ($9)F* such that % is equivalent to a constituent of 3E|̂ . Now Clifford's 
theorem implies that 36|̂  is equivalent to e(Q)He$ %H), where e is a positive 
integer. 

Hence deg ^ = | § | deg g ^ deg ï è e |£ | deg g. Thus e = 1, ($*)F* = X 
and g^ is absolutely irreducible. If F has characteristic zero, the analogous 
argument using Lemma 1.1 applies, and the lemma follows. 

The generalization of [6, Kapitel V, Satz 16.13] to fields of arbitrary charac­
teristic mentioned above is the following. 

THEOREM 1.6. Let & = 3i$£ be a Frobenius group with Frobenius kernel 31 and 
complement § . Let F be afield which is a splitting field for both § and 31. If char F 
is a prime p, let ho(31) and h0(&) denote the number of p-regular conjugate classes 
of 31 and § respectively. If char F = 0, let ho(31) and h0($>) denote the number 
of conjugate classes of 31 and § , respectively. Then: 

(1) F is a splitting field for @, 
(2) if $i and g2 are non-trivial irreducible F-representations of 31, then $i9 

and $2^ are absolutely irreducible F-representations of &;also, %i^ and g2^ 
are equivalent F-representations of & if and only if there exists an H £ § 
such that %\H and %2 are equivalent F-representations of 31, 

(3) the following list of F-representations of & comprises a full set of 
representatives for the set of equivalence classes of (absolutely) irreducible 
F-representations of &': 
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(a) h0(&) inequivalent F-representations of & with kernel containing 9Î 
obtained from § , 

(b) (Ao(9î) — 1)/|€H inequivalent F-representations of & induced from 
non-trivial irreducible F-representations of ^p. 

(4) if V is an irreducible F[ &]-module on which 9Î acts non-trivially, then V§ 
is a direct sum of regular F[S}]-modules (where F[&] and F[jçi] denote the 
group rings of & and § , respectively, over F). 

Proof. We first prove (2). If there exists an H £ p̂ such that %±H and $2 are 
equivalent, then clearly (%iHY, %i^, and g2^ are all equivalent representations 
of &. Conversely, assume that $1^ and %2® are equivalent representations of 
&. But, by Lemma 1.5, 

Si'k = 0 5? and 8fs*|w = 0 gf, 

and (2) follows. Since the number of ^-regular classes of S? is 

Ao($) + (Ao(SR) - 1 ) / | $ | , 

(3) follows. Then (1) is immediate and (4) follows as in the proof of 
[6,KapitelV,Satz 16.13]. 

Finally, we state a generalization of [3, Theorem 3.4.3] which follows from 
our lemmas and Clifford's theorem. 

COROLLARY 1.7. Let @ = yiQ be a Frobenius group with Frobenius kernel 9Î 
and complement §>. Let F be a splitting field for SSI and let % be an irreducible 
representation of & with Ker(g) 2 9Î. Then g|^ has exactly | § | distinct 
Wedderburn components. 

2. Lemmas in homological algebra of groups. In this section, we derive 
a result (Lemma 2.6) which is needed in the proof of one of our main theorems 
(Theorem 3.2) as a consequence of various group homological results which are 
of independent interest. 

LEMMA 2.1. Let K denote an arbitrary field, let & denote an arbitrary finite 
group, and let (S denote the category of right K[&]-modules (where K[&] denotes 
the group ring of & over K). Then, for any objects V, W in (S and any integer 
n ^ 1, we have: 

ExtKW»(V, W)9ïH"(&, HomK(F, W)) 

as abelian groups, where H o m ^ F , W) is viewed as a right &'-module with action 
defined by: if G £ ^ , v G V,f G Hom*(F, W), then v(fG) = ((vG~l)f)G. 

Proof. By [2, XVI, § 7(6)], ExtK[^(K, UomK(V, W)) £* ExtK[^(V, W) 
for all integers n ^ 0, where K is viewed as a trivial ^-module. Let 5) denote 
the category of right Z[S^]-modules and let T: E —> 35 denote the obvious 
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"forgetful" functor. Clearly {ExtZ[^]w(Z, *) o T\ n ^ 0} is a connected sequence 
of functors in S and for each object X in Ê, 

Extz[,]û(Z, r p O ) ^ X ^ Hornet,] (K, X) ^ E x t ^ C K , X) . 

Moreover, by [8, Corollary 2.2], every i£[^]-injective module P is weakly 
K[@]-projective and hence T(P) is weakly Z[^]-projective. Thus 

Extz[,]»(z, r(p» = o 
for all n > 0 and all i£[S?]-injective modules and 

{Extz[,]
B(Z, *) oT\n ^ 0} 

satisfies the well-known axiomatic description of {ExtK[9]
n (K, *)| n ^ 0} 

(cf. [7, Chapter III, Theorem 10.2]). Finally, for all integers « è l , 

E x t ^ f (7 , 17) ^ ExtKW»(K, Horn,, (7 , 17)) 

^ Ext*w*(Z f r (Hom*(7 , W))) 

^Hn(&,HomK(Vy 17)). 

LEMMA 2.2. Let V be a vector space over a field K and let & be a group of 
K-linear transformations of V (acting on the right). Let F be a subfield of K such 
that \K: F\ is finite. Then the left K[&]-modules Hom F (7 , F) and Homi5:(7, K) 
are K[&]-isomorphic. 

Proof. By means of standard isomorphisms of left K[&]-modules we have: 

Hom F (7 , F) ^ Hom^X" ®K 7, F) ^ Hom*(7, HomF(K, F)). 

Let /3: Hom F (7 , F) —> Hom x (7 , HomF(i£, F)) denote this isomorphism. Now 
HomF(i£, F) is a vector space over K and 

dimK(HomF(K, F)) = ,Rm p. dimF(HomF(if, F)) = L ; ' = 1. 

Let t: HomF(K, F) —> K be a ^-isomorphism ; thus / induces an isomorphism 
/*: Hom*(7, HomF(K, F))->HomK(V, K) of left i£[^-modules . Finally 
a = ]8 o t* is the required isomorphism. 

COROLLARY 2.3. L ^ X denote an arbitrary field, let F be a subfield of K such 
that \K: F\ is finite and let & denote an arbitrary finite group. If Vis an arbitrary 
right K[ &]-module and if both F and K are viewed as trivial right & -modules, then 
ExtX[^]w(7, K) ~ ExtF[^]w(7, F) as abelian groups for any integer n ^ 1. 

Proof. By Lemma 2.1, ExtKW
n(V, X) ^ Hn(@, Hom*(7, K)) and 

ExtF[^
n(V, F)^LHn{&, Hom F (7 , F)) for all integers n ^ l where the actions 

of Ŝ  on the right on Hom^(7, K) and Hom F (7 , F) are as defined in Lemma 2.1. 
However, by Lemma 2.2, HomjK:(7, K) and Hom F (7 , F) are isomorphic under 
this action; henceH»(&, Horn* (7 , K))^Hn(@, Hom F (7 , F)) for all integers 
n ^ 1, and the result follows. 
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Using the same method of proof as in [4, Lemma 4], we can prove the follow­
ing result. 

LEMMA 2.4. Let V be a vector space of dimension n ^ 3 over afield K. Let U be 
a subspace of V of dimension 1 over K. Let & = S L ( F / U, K) and suppose that 
a: & —•> GL(F, K) is a monomorphism such that if G £ &, then Ga is trivial on 
U and Ga induces G on V/U. Then, excluding the cases (a) n = 3, char K = 2 
and (b) n = 4 and \K\ — 2, there exists a subspace W of V which is &°-invariant 
such that V = U © W. 

COROLLARY 2.5. If X is a vector space of dimension n ^ 2 over afield K, theny 

excluding the cases (a) n = 2, char K = 2 and (b) n = 3, \K\ = 2, we have 
ExtK[8Ux,K))(X, K) = 0, where the action of SL(X, K) on X is the natural 
action and on K is the trivial action. 

We conclude this section with a result needed in the proof of Theorem 3.2. 

LEMMA 2.6. Let K and X be as in Corollary 2.5 and assume also that K is a 
finite field. Let F be a sub field of K and let & be a group such that 
GL(X, K) 3 ^ 3 SL(X, K). Then, excluding the cases (a) and (b) above, we 
have Ext^t^]1^» F) = 0, where the action of & on X is the natural action and 
on F is the trivial action. 

Proof. Since | &: SL(X, K)\ is relatively prime to char K and Hl(SL(X, K), 
H o m ^ X , K)) = (0) by Lemma 2.1 and Corollary 2.5, we have 

H^^,nomK{X,K)) = (0). 

Then Extxiy]1 (X, K) = (0) follows from Lemma 2.1 and E x t ^ ^ p f , F) = (0) 
follows from Corollary 2.3. 

3. Lower bounds for the degrees of projective representations of two 
types of groups. This section contains our basic results which give lower 
bounds on the degrees of non-trivial projective representations for groups con­
taining subgroups of two specific types. These results are applied in § 4 to the 
groups PSL(n, q). 

Let ^ be a finite group and let F be a finite-dimensional vector space over a 
field K. Let p: S? —•> GL(F, K) be a projective representation of & and let 
p*: & —» PGL(F, K) denote the p-induced group homomorphism. 

Definition. The projective representation p: 2^ —>GL(F, K) is said to be 
faithful if p*: ^ —» PGL(F, K) is a monomorphism. 

THEOREM 3.1. Let & be a finite group which contains a subgroup 3f which is a 
Frobenius group with elementary abelian kernel of order qn with n ^ 1 and q — pJ\ 
p a prime, f ^ 1, and with cyclic complement of order (l/d)(qn — 1) where 
d = gcd{n + I, q — 1}. If p: ^ —* GL(V, K) is a projective representation of & 
such that p restricted to ^f is faithful, if p 9^ char K, and if (n, q) ^ (1, 4), 
(1,9), (2, 2), and (2, ±),thendegp (= dim^F) à Wd)(qn - 1). 

https://doi.org/10.4153/CJM-1971-010-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-010-1


PROJECTIVE REPRESENTATIONS OF PSL(w, q) 97 

Proof. Clearly we may assume that ^ = Jf, that K is algebraically closed, 
and that p*: ^ ->PGL(T, i£) isamonomorphism. Note that (l/d)(qn - 1) = 1 
if and only if (n,q) = (1,2) or (n,q) = (1, 3); thus we may exclude (n,q) = (1,2) 
and (n, q) — (1, 3). Since & has a finite representation group over K, there 
exists a finite subgroup g of GL(F, K) of minimal order such that if 

3 = Z(GL(V,K)), 

then S / (S ^ < 3 ) = ^ - Let $t be the pre-image of the Frobenius kernel in g. 
Since fl/(gn 3 ) is abelian and g H 3 C Z ( $ ) , « isnilpotent. If p f |g Pi 3 | , 
then J ? = ( g P 3 ) X < i ) 3 , where ^ is elementary abelian of order qn and is the 
£-Sylow subgroup of $ . Since g is a subgroup of GL(F, K) and char i£ 5̂  p, 
Lemma 1.3 applies, and we conclude that deg p ^ (l/d) (qn — 1). Thus for the 
remainder of the proof, we assume that p\ |g P £\. Here $ = 0P>($) X $ , 
where $ denotes the ^-Sylow subgroup of $ , 0^ ($) = 0P> ( g H 3)» and where 
^/0P(% H 3 ) is an elementary abelian ^-group of order qn. Since % P 3 is 
cyclic, let 9Î denote the unique subgroup of index p in 0P(% P 3 ) ; clearly 
31 < g. If $/5ft is non-abelian, then ($/$»)' = 0P($ P 3 ) / ^ = *($/*«) 
since $ / 0 p ( g H 3 ) is elementary abelian and \0P(% P 3) /9 î | = £. Note that 
2^ operates irreducibly by conjugation on its Frobenius kernel. For, the 
Frobenius kernel of ^ is a vector space over GF(p) of order qn and a Frobenius 
complement has order (l/d)(qn — 1) which is relatively prime to p. By 
complete reducibility and the fixed-point free action of the complement on the 
kernel, if & acts reducibly on its Frobenius kernel, then (l/d) (qn — 1) ^ q& — 1. 
This implies that 

(qn - 1) ^ (ên - l)(g - 1) = qkn+2) - qh - q+ 1 < qkn+2) - 1, 

andhencen < \(n + 2) or n < 2. But then n = 1, d S 2, q2 - 1 ^ 2(q - 1), 
and hence q + 1 ^ 2 which is impossible. Consequently, $ acts irreducibly on 
^/0P(% P 3 ) , and hence Z($/STC) = 0 p (g P 3 ) / ^ . Thus $/3t is an extra-
special £>-group. Let § be the inverse image in g of a Frobenius complement of 
@. Clearly § = §1 X 0P(% C\ 3 ) , where §1 is a ^'-group containing 
0p>(%r^£) = 0p.($t). Let §* = Ô! X 5ft; then 

Cs*0P/O,(gn3)) = 0p'(«) X SR, 

and hence §*/<XV($) X 91) is a cyclic group of order (l/d)(qn — 1) which 
when operating by conjugation on ty/%1 both centralizes 

zop/5ft) = o , (gn3 ) /9 î 

and acts fixed-point free on $/0p(% P 3 ) . Now [6, 2£a/>iteZ V, Sate 17.13] 
applies, and we conclude that (l/d)(qn — 1) ^ (q*n + 1). However, gw = pfn 

and since $/$# is extra-special, 2\fn. Thus 

^^ - 1 ^ ( ^ + l)(pf - 1) = £*'<»+2> + £ / _ £*/* - 1. 
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If n ^ 2, then pfn - 1 ^ £*/<»+2> _ i and hence n S \(n + 2) and then 
n = 2. But if ^ = 2, d| 3 and (g2 - 1) ^ d(q + 1); thus g - l g i which 
implies that g = 2, g = 3 or g = 4. Since (n, g) ^ (2, 2) and (n, q) ^ (2, 4), 
we must have q = 3. But then d = 1 and 32 — 1 ^ 3 + 1 which is a contradic­
tion. Hence assume that n = 1. If g is even, d = 1 and g — 1 ^ Vg + 1. 
Thus g2 — 4g + 4 ^ g, g2 — 4g < g, g — 4 < 1, and g = 2 or g = 4. Since the 
cases (n, g) = (1, 2) and (n, g) = (1, 4) have been excluded, we may assume 
that g is odd and then d = 2 and g — 1 ^ 2(V<Z + 1). Hence g2 — 10g < 0 
and g < 10. Since 2| / , we see that g = 9 but (n, q) = (1, 9) has also been 
excluded. Thus we may assume that ty/Wl is abelian. If 

Mvm = op(%ns)/% 
then ^3/5ft is cyclic and hence fn = 1. Since {n, g) = (1, 2) has been excluded, 
we may assume t h a t / = n = 1, p ^ 2, and ^3/9^ is cyclic. But g acts trivially 
on QiW/W) = O p ( g n 3)/5ft, and hence g acts trivially on ^/$l which is 
impossible. By the same argument above, g acts irreducibly on ^3/Op(g C\ 3 ) , 
and hence fii^/St) = ^3/9î. Thus "Ç/Sî is elementary abelian. However, 
Op(\$ r\ &)/ç?fl is centralized by g and | g : $ | is relatively prime to p. Also 
C&0P/9t) 2 $ and hence $/9l is a completely reducible g/C&($/9l)-module 
over GF(£>). Thus there exists a subgroup 9î of ^ such that $R 3 51, 9? <| g, 
and $/5ft = O p ( g n 3)/5ft X SR/9t. As before, if § is the inverse image in g 
of a Frobenius complement of 2^, then § = § i X 0 P (g ^ 3)> where § i is a £ ' 
subgroup containing 0 ^ ( 8 ^ 3 ) . Then § i / 0 P ' ( 5 ^ 3 ) 1S cyclic of order 
(l/^)(gw — 1) and §i9? is a proper subgroup of g such that 

It is now clear that 3 H (§i$R) = (g H 3 ) H (£>i3?) = 5ft X CV (g H 3 ) and 
§ i $ R ( g n 3 ) 3 C T = 8 - Hence § i $ R / ( 3 n (£i9l)) ^ g / g n 3 = &, which 
contradicts the minimal choice of g and so this case does not occur. This 
completes the proof. 

Now let F denote a finite field of q = pf elements, where p is a prime integer 
and / è 1 is an integer. Let W denote a vector space of dimension n ^ 1 over 
F, let d = gcd{n + 1, g - 1} and let 8 = {X G GL(W, F)\ det X G (F x) d}. 
We shall denote by W& the obvious semi-direct product. 

The final result of this section is the following. 

THEOREM 3.2. Let & be a finite group containing a subgroup ^ isomorphic to 
W% with n ^ 2. If p: 2^ —> GL(F, K) is a projective representation of & such 
that p restricted to Jtif is faithful, ifp 9e char K, and if the cases (a) n = 2, p = 2 
and (b) n = 3, q = 2 are excluded, then deg p ( = dim^F) ^ g" - 1. 

Proof. As in Theorem 3.1, we may assume that & = J^7, that K is 
algebraically closed, and that p*: ^ —> PGL(F, K) is a monomorphism. 
Moreover, there exists a finite subgroup g of GL(F, X) of minimal 
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order such that g / ( g H 3 ) = W2. Let $ be the pre-image of W in g; 
as above, $ is nilpotent. If £ | |g H 31, then $ = ( g H ^ X ? , where $ is 
the ^>-Sylow subgroup of $ and is isomorphic as a group to W and where 
0*'($) = g<^ «3- s i n c e g is a subgroup of GL(V, K) and £ ^ char K, 
Lemma 1.4 applies, and we conclude thatdegp ^ qn — 1. Thus for the remainder 
of the proof, we assume that p \ \ g C\ 3 | . Here $ = $ X (V (g H 3 ) , where $ 
is the £-Sylow subgroup of « , < V ( « ) = O ^ g H 3 ) , and <P/0„(g H 3 ) ^ flK. 
Suppose that there exists an elementary abelian subgroup @ of $ such that 
<g « g, <g ^ W, and g C\ 0 , ( g r\ 3 ) = (1). Then $ = 6 X 0 , ( g H 3 ) and 
$ /£^(g ^ cS) = ® over g. Again, since 2 is transitive on W#, g acting by 
conjugation on (g is transitive on S#, and the proof can be completed as above. 
In order to demonstrate the existence of such a subgroup © of $, let 3) be a 
subgroup of 3̂ of minimal order such that 3) is a normal subgroup of g and 
$ = 350p(g H 3 ) . Set g) = 35 H 0 p (g n 3 ) ; if 2) = (1), our proof is com­
plete and so we assume that g) ^ (1). Note that 35/g) ~ $ / ^ ( g H 3 ) over g 
and hence C$(35/§D) = $. Since g) is cyclic, let 9? denote the unique subgroup 
of §) of index £; clearly 9? <] g. If 35/5ft is non-abelian, then 

(35/9?)' = g)/9? = *($/SR) 

since |$/9?| = £. Also Z(35/9?) 2 g)/9l and g operates transitively on (35/g))# 
and hence irreducibly on SD/g). Thus Z(35/9?) = g)/9? and 35/9? is an extra-
special £-group. Since Cg(35/9?) = Q*(35/g)) = « , Ç = 35<9p(g C\ 3 ) , 
« = ^ X O ^ ( g n 3 ) a n d C s ( 3 5 / 9 l ) = 0 , (g H 3 ) X O , ( g n ^ ) = g H 3 -
Since |GL(IF, F): 8| = d, the "Singer cycle" of GL(W, F) (cf. [6, Kapitel II, 
the proof of Sate 7.3]) implies that there exists an element of S of order 
(l/d)(qn — 1) > 1 (since w ^ 2). Hence there exists a ^/-element a Ç g such 
that a (g H 3 ) is an element of order (l/d)(qn - 1) > 1 in g / ( g H 3 ) . Also 
g / ( g ^ 3 ) can be viewed as a subgroup of Aut (35/9?) and a (g H 3 ) is fixed 
point free on 35/2) and centralizes Z (35/9?) = $/9?. Consequently, [6, Kapitel V, 
Sate 17.13] applies and we conclude that 2 \fn and (I/o7) (pfn - 1) ^ ^ / w + 1. 
Since w ^ 2, as above, we must have n = 2 and g = 2 or 4 but both of these 
cases have been excluded. Thus we may assume that 35/9? is abelian. Clearly 
Ûi(35/91) 2 g)/SR and if Qi(J)/SW) = §)/9l, then 35/9? is cyclic, |35/g)| = £ and 
hence fn = 1; but n = 2. Thus 12i(35/9?) is elementary abelian and, since 
Q*(35/9?) Ç Cfe(35/g)) = $, we have Cg(35/9?) = $ . Let 9K be the inverse 
image of £ in g. Then 2 J î / ( g n 3 ) (acting by conjugation) is a group of 
automorphisms on the elementary abelian ^-group 35/9? and centralizes $/9? 
and the action of 99?/(g Pi 3 ) o n 35/§D mimics the action of 8 on W. Now, 
setting Fi = GF(p), Lemma 2.6 implies that Ext^1[g]1(PF, Fi) = (0). Hence 
there exists a subgroup 35i in 35 such that 35i D 9?, 35/9? = 35i/9l X $/9? and 
such that 35i is invariant under 93?. But $ = 3 5 0 p ( g n 3 ) and so 35i is 
invariant under <$. Since g = « l = ^ ( g n 3)9W, we have 35i < g. Also 
? = 350p(g C\ 3 ) = 35i2)(9p(g H 3 ) = 3 5 A ( g n 3 ) . This contradicts the 
minimal choice of 35, and the theorem follows. 
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4. Lower bounds for the degrees of projective representations of the 
groups PSL(w, q). We now proceed to show how the results of § 3 can be 
applied to obtain lower bounds for the degrees of projective representations of 
the finite groups PSL(w, q), and we give a new proof of a classical result 
(Theorem 4.5). 

LEMMA 4.1. Let n ^ 2 be an integer, let q = pf, where p is a prime integer andf 
is a positive integer, let F denote afield of q elements, and let d = gcd{n, q — 1}. 
Then: 

(a) PSL(n, q) contains a subgroup isomorphic to the "natural" semi-direct 
product W2, where W denotes a vector space of dimension n — 1 over F and 
where 8 = {X e GL(W, F)\ d e t X 6 (P<)d}, 

(b) if (n, q) ^ (2, 2) and (n, q) ^ (2, 3), then PSL(?z, q) contains a subgroup 
which is a Frobenius group of order (l/d)qn~1(qn~~1 — 1) with an elementary 
abelian kernel of order gw_1 and a cyclic complement. 

Proof. Note that the inverse image of the subgroup PSL(^, q) of the group 
PGL(w, q) under the natural homomorphism of GL(n, q) onto PGL(w, q) is 
§ = {X Ç GL(n, q)\ d e t X Ç (F*)d}. Let « denote the subgroup of GL(n,K) 
formed by all matrices of the form (x ] ) , where E is the (n — 1) X (n — 1) 
identity /^-matrix, 0 denotes the 1 X in — 1) zero .F-matrix, and X is an 
arbitrary element of the set W* of all (n — 1) X 1 -F-matrices. Note that the 
mapping of $ into the set W* defined by 

as)-' 
is an isomorphism of $ onto the additive group W*. To demonstrate (a), let 30Î 
consist of all matrices of GL(n, K) of the form (0 c)> where 0 denotes a 
I X (n — 1) and (n - 1) X 1 zero F-matrix and C is an arbitrary matrix in 
{C 6 GL(n - 1, q)\ det C G (Fx)<*}. It is easy to see that $ , 2ft, and $9JJ are 
subgroups of § and that ($9JÏ) Pi Z(GL(w, g)) = (1). Hence PSL(w, g) con­
tains a subgroup isomorphic to $9JÎ. But $ ^ PF* = W and SO? is isomorphic 
to 8. Clearly $9J? is of the desired type. 

To demonstrate (b), note that (l/d)(qn~1 — 1) = 1 if and only if 
(n, q) = (2, 2) or (w, q) = (2, 3). Hence we may assume that 

(l/d)(q^- 1) > 1. 

Since n - 1 ^ 1, GL{n — 1, F) has a cyclic subgroup X — (T) of order 
(l/d) (q71"1 — 1) such that det T € (Fx)d and such that X acts regularly on the 
non-zero T^-space of (n — 1) F-tuples (cf. [6, Kapitel II, Sate 7.3]). Now let 3D? 
denote the set of all matrices of GL(w, F) of the form (0 c)> where C is any 
matrix in %. It is easy to see that $3JÎ is a Frobenius subgroup of § with 
kernel « and complement 9JÎ ^ St. Again, ($2)î) H Z(GL(w, g)) = (1) and the 
result follows. 
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THEOREM 4.2. Using the notation above (n ^ 2), if (n, q) ^ (2, 4), (2, 9), 
(3, 2), (3, 4), then the degree of any non-trivial projective representation p of 
PSL(n, q) over any field K with char K ^ p is at least (l/d)(qn~1 — 1). 

Proof. Since (\/d)(qn-1 - 1) = 1 if and only if (n,q) = (2, 2) or (n,q) = (2, 3), 
we may also assume that (n,q) ^ (2, 2) and (n,q) 9e (2, 3). But then PSL(n, q) is 
simple and so the p induced group homomorphism p*: PSL(w, g) —•> PGL(^, i£), 
where n = deg p, is a monomorphism since p is non-trivial. The theorem now 
follows from Theorem 3.1 and Lemma 4.1 (b). 

A similar proof using Theorem 3.2 and Lemma 4.1 (a) yields the following 
result. 

THEOREM 4.3. If n ^ 3 and if the cases n = 3, p = 2 and n = 4, q = 2 are 
excluded, then the degree of any non-trivial projective representation p of PSL(^, q) 
over any field K with char K 9e p is at least qn~1 — 1. 

For projective representations of PSL(w, q) in the characteristic p case we 
have the following result. 

THEOREM 4.4. Let n ^ 2 and q = pf be as above. If (n, q) ^ (2, 2) and 
(n, q) 9e- (2, 3), then the degree of any non-trivial projective representation of 
PSL(w, q) over any field of characteristic p is at least n. 

Proof. Let p denote a non-trivial projective representation of PSL(w, q) of 
degree n over a field K of characteristic p. Clearly we may assume that K is 
algebraically closed. Since PSL(?z, q) has a finite representation group over K, 
we may assume that K is the algebraic closure of GF(^>). Since PSL(w, q) is 
finite, we may assume that p takes values in GL{n, K), where K is a finite field 
of characteristic p. Since PSL(n, q) is simple, p induces a group monomorphism 
p*: PSL(w, q) —> PGL(?z, j£). But the ^-Sylow subgroups of PSL(n, q) and 
PGL(rô, .K) have classes n — 1 and w — 1, respectively (cf. [6, Kapitel III, 
Sate 16.3]). Hence n ^ n. 

To conclude, we give a new proof of the following well-known result 
(cf. [6, Kapitel II, Satz 6.14]). 

THEOREM 4.5. Let Wi ^ 2 and n2 è 2 ôe integers and let q\ = ^ i / x awd 
52 = ^2/2> where p\ and pi are prime integers and f\ and f2 are positive integers. 
If PSL(^i, qi) Ç=L PSL(n2, #2) with (wi, gi) 9^ (w2, #2), ^0» we ^ e 0^e of the 
follwing two cases: 

PSL(2, 4) ^ PSL(2, 5) or PSL(2, 7) ^ PSL(3, 2). 

Proof. Since PSL(2, 2) and PSL(2, 3) are the only solvable groups under 
consideration and have different orders, we may assume that (nit qt) 9e- (2, 2) 
and {nu qt) 9* (2, 3) for i — 1, 2. If pi — p2l then Theorem 4.4 implies that 
n\ ^ n2 and n2 ^ Wi. Hence, in this case, n\ — n2 and, comparing the orders of 
£-Sylow subgroups, we conclude that q\ = q2. Thus we may assume that 
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pi 7e P2. First suppose that n± = n2 = n. If n è 3, then pi ^ 2 or p2 ^ 2 and 
Theorem 4.3 implies that n ^ qn~l - U 37*-1 - 1. Since 37*-1 - 1 > n for ail 
n ^ 3, we may assume that n = 2. Suppose that pi — 2; thengcd{2, gi — 1} = 1 
and 2 ^ gi — 1 by Theorem 4.2. Hence qi = 4; but since 

|PSL(2,4) | ^ |PSL(2,9)| , 

we must have q2 ^ 9. Applying Theorem 4.2 again, we obtain 2 ^ %(q2 — 1) or 
q2 S 5. Hence q2 = 5; but, as is well known, PSL(2, 4) ^ PSL(2, 5) (cf. [6, 
Kapitel II, 5a/s 6.14]). Suppose now that ^ 1 ^ 2 ^ ^2. Then either qt = 9 or 
4 è g< - l f o r i = 1,2 by Theorem 4.2. But |PSL(2, 5)| ^ |PSL(2, 9)| and so 
this case is excluded. Thus we may now assume that 2 ^ ni < n2. If p2 ^ 2, 
then ni ^ g2W2_1 — 1 ^ 3W2_1 — 1 > w2 > ^i (using Theorem 4.3) and hence 
p2 = 2 and pi is odd. If n2 = 4, then gcd{n2, q2 — 1} = 1 and Theorems 4.2 
and 4.3 imply: if n2 ^ 4, then wi ^ g2

W2_1 - l e 2n2_1 — 1 > w2 > Wi, which 
is impossible. Hence w2 = 3 and ni = 2. If g2 ^ 8, then 

2 ^ — ^ Tx (g2
2 - l ) è (Z2 + l 

gcd{3, q2 - 1} 

by Theorem 4.2; thus q2 = 2 or q2 = 4. Since 
|PSL(3, 2)| ^ |PSL(2, 9)| * |PSL(3, 4)|, 

we have qi ^ 9. Then 3 ^ J(gi — 1) or ci ^ 7. Hence #i = 5 or 7 and, by 
comparing orders, we must have q2 = 2 and qi = 7. But, here again, 
PSL(2, 7) ^ PSL(3, 2) [6, Kapitel II, Sate 6.14]. 

REFERENCES 

1. R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung, Math. Z. 63 (1956), 
406-444. 

2. H. Cartan and S. Eilenberg, Homologuai algebra (Princeton Univ. Press, Princeton, N.J. , 
1956). 

3. D. Gorenstein, Finite groups (Harper and Row, New York, 1968). 
4. D. G. Higman, Flag-transitive collineation groups of finite projective spaces, Illinois J. Math. 6 

(1962), 434-446. 
5. C. Hering, On transitive linear groups (in preparation). 
6. B. Huppert, Endliche Gruppen. I (Springer-Verlag, Berlin, 1967). 
7. S. MacLane, Homology (Springer-Verlag, Berlin, 1963). 
8. D. S. Rim, Modules over finite groups, Ann. of Math. (2) 69 (1959), 700-712. 

University of Illinois at Chicago Circle, 
Chicago, Illinois 

https://doi.org/10.4153/CJM-1971-010-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-010-1

