
Review: Seasonal differences in the physiology of wild
northern ruminants

W. Arnold†

Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, Vienna A-1160, Austria

(Received 20 May 2019; Accepted 21 August 2019)

Ruminants living in seasonal environments face a two-fold challenge during winter. The energetic cost of maintaining a high body
temperature is higher at lower ambient temperatures, and this is compounded by poor availability and quality of feed. Wild
ruminants acclimatize to this energetic challenge by hypothermia, that is, reduced endogenous heat production and abandoning the
maintenance of a high body temperature, particularly in peripheral body parts. Further but lesser contributions to lower energy
expenditure during winter are reduced foraging activity; lower heat increment of feeding; and reduced maintenance cost of size-
reduced organs. Altogether, metabolic rate, estimated by the continuous measurement of heart rate, during winter is downregulated
to more than half of the summer level, as is voluntary food intake, even in animals fed ad libitum. The transformation from the
summer into the thrifty winter phenotype is also evident in the physiology of digestion. Microbial protein synthesis is less facilitated
by diminished phosphorus secretion into the shrunk rumen during winter. In line with this result, the concentration of ammonia, the
end-product of protein digestion in the rumen, peaks in rumen liquid in spring, whereas the molar proportion of acetate, an
indicator of fermentation of a diet rich in fiber, peaks in winter. In contrast to reduced stimulation of growth of ruminal microbes
during winter, active transport of nutrients across the intestinal epithelium is increased, resulting in more efficient exploitation of the
lower amount and quality of ingested winter feed. Nevertheless, the energy balance remains negative during winter. This is
compensated by using fat reserves accumulated during summer, which become a major metabolic fuel during winter.
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Implications

The dramatic change of environmental conditions among sea-
sons is a challenge for free-living animals. Wild northern rumi-
nants acclimatize to seasonality by adjusting both physiology
and behavior. A profound decrease of energy expenditure dur-
ing winter, mostly achieved by a decrease in body temperature,
allows a decline in voluntary feed intake. However, digestion of
ingested feed becomes simultaneously more efficient. Similar
reactions may also be present in domesticated ruminants, at
least in primordial breeds. A better understanding of the mech-
anisms and extent of seasonal acclimatization will help to
improve both animal keeping and wildlife management.

Introduction

High latitudes and altitudes are characterized by profound
differences in environmental conditions between summer
and winter, particularly for herbivores. Outside the vegetation

period, the availability and quality of plant material is con-
siderably lower, and feed is difficult to access if covered
by snow. In addition, temperatures are much lower during
winter, causing endothermic organisms to expend more
energy for thermoregulation. Many small mammals cope
with these difficulties by entering hibernation or daily torpor
(Geiser and Ruf, 1995). Among large mammals, such reactions
were for a long time only known from bears. Non-hibernating
large mammals under cold load seemed to minimize energy
requirements solely by changing to a well-insulating winter
fur, counter-current heat exchange mechanisms and
reduced locomotor activity. With the advance of telemetry
techniques, it became possible to measure physiological
and behavioral reactions in free-living animals continuously
over long periods. These data unequivocally answered the
long-standing question of whether seasonal changes of
metabolic rate in northern ungulates are predominantly
due to different intake of feed (and hence heat increment
of feeding), or to changes of endogenous heat production
(and thus basal metabolic rate), similar to the reactions of
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hibernators and daily heterotherms (Arnold et al., 2004,
2006; Turbill et al., 2011).

In this paper, I review studies addressing the question
of seasonal acclimatization of physiology and energy
expenditure of northern wild ruminants. I further present
as-yet-unpublished data and analyses of samples delivered
by hunters to the Research Institute of Wildlife Ecology dur-
ing the years 1970 to 2006.

Metabolism and body temperature regulation

In all wild northern ruminant species where seasonal accli-
matization has been studied in appropriate detail (i.e. with
long-time measurements of high resolution), profound
changes have been found during the year in physiological
and behavioral parameters (Figure 1). Although these species
do not hibernate or show daily torpor in the classical sense,
they do become hypometabolic during the winter, as indi-
cated by a reduction of heart rate (f H), a good proxy of met-
abolic rate (Turbill et al., 2011). This reduction is most
pronounced in species dwelling in alpine (chamois, Alpine
ibex) or polar habitats (Svalbard reindeer) with particularly
harsh winter conditions (Figure 1).

The reduction of energy expenditure during winter is
accomplished to some degree by reduced locomotor activity
reflecting less foraging (Arnold et al., 2018), but most
strongly correlates with body temperature (Tb) measured
in the rumen (Tr, slightly higher but closely following core
Tb; Beatty et al., 2008) (Figure 1). Decreased endogenous
heat production as the major contribution to reduced meta-
bolic rate during winter has been found in many species of
ungulates (Arnold et al., 2004, 2006; Signer et al., 2011;
Turbill et al., 2011; Brinkmann et al., 2012; Riek et al.,
2017; Arnold et al., 2018). In red deer, for instance, the
annual variation of Tr is in the range of 0.5°C, which is suffi-
cient to explain most of the annual variation of fH (estimated
effect size 24.5 beats/min, annual range of fH variation 30
beats/min; Turbill et al., 2011). The effect is greater than
expected from the Newtonian equation of thermoregulatory
heat production. The discrepancy was initially postulated to
be the result of the simplified calculation assuming a uniform
temperature throughout the body. However, red deer – and
presumably all wild ungulates living in seasonally cold envi-
ronments – allow substantial peripheral cooling, particularly
during nocturnal bouts of hypometabolism, with subcutane-
ous temperature measured at the neck dropping to 15°C dur-
ing late winter nights (Arnold et al., 2004). Therefore, a
slightly lower core Tb apparently indicates a much greater
reduction in the mean temperature of the entire body mass
and hence basal metabolic rate. Allowing considerably low
temperature in peripheral parts of the body, particularly in
the extremities, has long been known as an important ther-
moregulatory strategy in mammals and birds of the Arctic
(Irving and Krog, 1955). The evidence available now chal-
lenges the traditional view that a change in thermal conduct-
ance is the primary mechanism available to large mammals

for reducing their thermoregulatory energy expenditure
(Scholander et al., 1950). Instead, large mammals seem to
reduce endogenous heat production in response to cold
exposure and nutritional bottlenecks (Turbill et al., 2011;
Brinkmann et al., 2017; Thompson et al., 2019). This process
is analogous to that of small species employing daily torpor
or hibernation and has, at least temporally, comparable con-
sequences for Tb in peripheral parts of the body (Arnold et al.,
2004, 2006; Brinkmann et al., 2012). Experimental food
restriction elicits a further decrease of fH and Tr during winter
(Turbill et al., 2011; Brinkmann et al., 2017), but does not
suppress the pronounced increase of fH and Tr in spring,
nor does ad libitum feeding prevent the decline toward
the winter trough (Turbill et al., 2011).

Use of fat reserves

Another analogy to hibernation, manifest in wild northern
ungulates, is the switch to body fat reserves as an important
metabolic fuel. These fat reserves are built up during summer
and autumn and are consumed during winter (Figure 2). The
use of body fat reserves during winter is apparently associ-
ated with a reduction of appetite and hence less motivation
to search for scarce winter feed. Red deer, for instance, halve
their feed intake during winter even when fed ad libitum
(Arnold et al., 2015b). The seasonal difference in energy
intake is similar to that caused by reproduction during peak
lactation in June (Figure 3). The reduction of appetite during
winter is controlled by photoperiod (Loudon, 1994) and
seems to be ubiquitous among wild northern ungulates
(Peltier et al., 2003; Arnold et al., 2004; Barboza et al.,
2006; Kuntz et al., 2006; Crater and Barboza, 2007;
Brinkmann et al., 2017). Changes in feed intake, on the other
hand, lead to a different heat increment of feeding, which
contributes to seasonal changes of metabolic rate, although
not close to the extent as previously thought (Lawler and
White, 2003; Arnold et al., 2004, 2006; Turbill et al., 2011).

Organ size and body mass

Since less feed needs to be processed during winter, this can
be accomplished with a smaller alimentary tract, which addi-
tionally saves energy necessary for maintaining expensive tis-
sue (Stevens and Hume, 1995). Profound shrinking of the gut
and visceral organs, for instance, occurs in marmots during
hibernation (Hume et al., 2002), but is also known from
chamois, red deer and roe deer, and takes place even when
animals are fed ad libitum (Arnold et al., 2015b). Data on
liver mass, available from free-living animals of three species
of wild ruminants, clearly demonstrate the magnitude of
seasonal change in the size of visceral organs (Figure 4).
Due to changes in fat reserves and organ size, total body
mass also shows a considerable seasonal variation (Figure 5;
similar changes are reported for Alpine ibex (Giacometti
et al., 1997), bighorn sheep (Pelletier et al., 2011),
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Figure 1 (colour online) Seasonal change of heart rate, rumen temperature and activity in six species of wild ungulates (roe deer (Capreolus capreolus): re-analyzed data from Reimoser, 2012; red deer (Cervus elaphus):
re-analyzed data from Turbill et al., 2011; chamois (Rupicapra rupicapra): unpublished data sampled between 2009 and 2012 from nine male and seven female chamois (ages 4 to 12 years), living free in an alpine area in
Upper Austria; Alpine ibex (Capra ibex): re-analyzed data from Signer et al., 2011; Svalbard reindeer (Rangifer tarandus platyrhynchus): re-analyzed data from Arnold et al., 2018; Taurus cattle: unpublished data from
6- to over 2-year-old females living free in Hortobágy National Park, Hungary). Taurus cattle are the result of a long quest to resurrect the extinct aurochs (Bos primigenius) (Stokstad, 2015). Chamois and Taurus cattle
were studied with the same telemetry technique used for red deer, alpine ibex and Svalbard reindeer. Plotted are monthly means with 95% CI reflecting variation between individuals.
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Figure 2 (colour online) Seasonal changes of kidney fat mass as an indi-
cator of body fat reserves of free-living chamois, red deer and roe deer.
Plotted are monthly means with 95% CI; single values are indicated by a
white dot. Significance of seasonal variation was tested by linear modeling
with sine (t ) and cosine (t ) as predictors with t as month in radians. Lines
represent periodic fits to the data; horizontal bars at peaks represents
95% CI of peak location.

Figure 3 Seasonal changes of daily energy intake from pellets and natural
vegetation of adult red deer hinds provided ad libitumwith pellets (re-analyzed
data from Arnold et al., 2015b). Plotted are monthly means with 95% CI; error
bars are lacking for yeld hinds in February and October because only one indi-
vidual was measured; linear mixed-effects modeling: effect of month,
F(5,60)= 9.53, P< 0.0001; effect of reproduction, F(1,60)= 0.36, P= 0.552;
interaction of month and reproduction, F(5,60)= 0.44, P= 0.817.

Figure 4 (colour online) Seasonal changes of liver mass of free-living
chamois, red deer and roe deer. Plotted are monthly means with 95% CI;
single values are indicated by a white dot. Significance of seasonal variation
was tested by linear modeling with sine (t ) and cosine (t ) as predictors with
t as month in radians. Lines represent periodic fits to the data; horizontal
bars at peaks represent 95% CI of peak location.

Figure 5 (colour online) Seasonal changes of body mass of free-living
chamois, red deer and roe deer. Body mass is plotted as a percentage of
mean body mass of the respective age/sex class of a species. Adult body
mass is achieved at the age of 2 in female and 5 in male chamois, 4 in
female and 7 in male red deer, 2 in female and 4 in male roe deer. Plotted
are monthly means with 95% CI. Significance of seasonal variation was
tested by linear modeling with sine (t ) and cosine (t ) as predictors with
t as month in radians. Lines represent periodic fits to the data; horizontal
bars at peaks represent 95% CI of peak location.
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bison (Rutley and Hudson, 2000), black-tailed deer
(Parker et al., 1993), moose (Milner et al., 2012), musk-
oxen (Crater and Barboza, 2007), reindeer (Tyler and Blix,
1990) and white-tailed deer (DelGiudice et al., 1992)).

Digestion and uptake of nutrients

In contrast to the reduction of the size of alimentary tract and
the surface area for nutrient absorption, the efficacy of
nutrient extraction may be increased (Ferraris and Carey,
2000), as found for protein digestion in wintering red deer
(Arnold et al., 2015b). Three mechanisms may explain this
result. Firstly, models predict that optimal digestion time is
longer if food quality is low. When plants contain a high
amount of lignified cell walls, the rumen-reticulum fills
with residues that ferment so slowly that passage out
of the forestomach is impeded (Hume, 1989). Indeed,
longer retention time during periods when feed is of
low digestibility seems to be common among ungulates
(Lechner-Doll et al., 1991; Holand, 1994; Kuntz et al.,
2006). However, in small ruminants such as roe deer,
the strategy of increasing cell wall digestion by increased
rumen retention is severely limited by the small size of the
rumen-reticulum. Therefore, roe deer depend more on a
selective feeding strategy to enhance winter survival than
other wild ruminants (Holand, 1994).

Secondly, the expression of transporter proteins seems to
be increased during winter. For example, in red deer, the
uptake of dipeptides into brush-border membrane vesicles,
prepared from enterocytes, is higher during winter (Arnold
et al., 2015b). This might be linked to seasonal expression
profiles of the proton-dependent peptide transporter 1
(pepT1). The upregulation of pepT1 during winter could
be the mechanism responsible for increased extraction of
peptides from digested proteins and be an integrative part
of the winter phenotype of wild ruminants. A similar sce-
nario is likely to exist in red deer for glucose uptake
(Arnold et al., 2015b). Therefore, it seems that the ener-
getic cost of additional transporter expression during win-
ter is lower than the benefit derived from attenuating an
inevitably negative energy balance by maximal exploita-
tion of poor feed.

Thirdly, a reduction of the number and size of ruminal
papillae and a smaller rumen volume, as is typical for winter-
acclimatized wild ruminants (reviewed in Arnold et al.,
2015b), may sustain the rate of absorption of short-chain
fatty acids (SCFA). Due to lower intake of feed, and pre-
sumably diminished microbial fermentation at lower Tr
(Crater and Barboza, 2007), SCFA production is lower dur-
ing winter (Figure 6; Tataruch and Onderscheka, 1993;
Crater et al., 2007). The uptake of SCFA, the most impor-
tant source of energy for ruminants, occurs mainly by diffu-
sion (Aschenbach et al., 2011). Hence, the surface area for
SCFA absorption must be reduced during winter to maintain
a sufficient gradient of SCFA concentrations between rumen
content and blood. Therefore, the rapid loss of mucosal mass

induced by malnutrition might, for wild ruminants, in fact be
functional. This interpretation is supported by the finding of a
reduction of rumen volume by about one-third during winter
in red deer, although the study animals did not lose body
mass due to the availability of pellets ad libitum (Arnold
et al., 2015b). Interestingly, high SCFA concentrations,
and particularly those of butyric and propionic acid, stimulate
ruminal blood flow and induce the formation of new pap-
illae by increasing the mitotic rate of papillary epithelium
(Hofmann, 1989). Short-chain fatty acid concentrations in the
rumen peak in spring in red deer, roe deer and chamois
(Figure 6; Tataruch and Onderscheka, 1993), and at least
in red deer the molar proportions of n-butyric, propionic
and n-valeric acid (Figure 7; Tataruch and Onderscheka,
1993). Similar changes have been reported for mule deer
(Short et al., 1966) and muskoxen (Crater et al., 2007). On
the other hand, the molar proportion of acetate, an indicator
of fermentation of a diet rich in fiber (Weiss et al., 2017), is
highest during winter (Figure 7; Short et al., 1966; Tataruch
and Onderscheka, 1993; Crater et al., 2007). Higher concen-
trations of SCFA are indicative of high digestibility of feed,
andmolar proportions of n-butyric and n-valeric acid increase
with the content of crude protein (CP) in the diet (Tataruch
and Onderscheka, 1993). Further, the concentration of
ammonia, the end-product of protein digestion in the rumen,
also peaks in rumen liquid in spring (red deer, P< 0.001;
roe deer, P< 0.001; 95% confidence interval (CI) of peak
location: red deer, mid-April to mid-May; roe deer, early
March to early May). Altogether, the changes of concentra-
tions of fermentation products in the rumen liquid reflect the

Figure 6 (colour online) Seasonal changes of total short-chain fatty acid
(SCFA) concentrations in the rumen liquid of free-living red and roe deer
(for methods, see Tataruch and Onderscheka, 1993). Plotted are monthly
means with 95% CI; single values are indicated by a white dot. Significance
of seasonal variation was tested by linear modeling with sine (t ) and cosine
(t ) as predictors with t as day of the year in radians. Lines represent periodic
fits to the data; horizontal bars at peaks represent 95% CI of peak location.
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increase of feed availability and quality in spring. This may
well be a signal that, together with increasing day-length,
elicits the change into the anabolic summer phenotype with
high metabolic rate (Figure 1) and regrowth of the alimentary
tract and visceral organs (Figure 4; Arnold et al., 2015b).

Stimulation of microbial protein biosynthesis by
phosphorus secretion

However, seasonally varying feed quality and Tr are not
the only variables that shape the community of ruminal

symbionts. A further mechanism seems to be seasonally
changing concentrations of phosphorus in the rumen content
(Figure 8). The CI of location of peak phosphorus concentra-
tion overlaps in each species with the CI of location of peak
concentration of CP in the rumen content (cf. Figures 8 and
9). Phosphorus is essential for the growth and protein synthe-
sis of ruminal microbiota (Durand and Kawashima, 1980).
High phosphorus concentrations during summer indicate
increased delivery by the host, presumably via saliva
(Breves and Schröder, 1991), as the phosphorus concentra-
tion of plants follows the opposite pattern. This is indicated

Figure 7 (colour online) Seasonal changes of the molar proportions of acetic (a), propionic (b), n-butyric (c) and n-valeric acid (d) in the total amount of short-
chain fatty acids in the rumen liquid of free-living red and roe deer (for methods, see Tataruch and Onderscheka, 1993). Plotted are monthly means with 95%CI.
Significance of seasonal variation was tested by linear modeling with sine (t ) and cosine (t ) as predictors with t as day of the year in radians. Lines represent
periodic fits to the data; horizontal bars at peaks represent 95% CI of peak location.
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by the phosphorus concentration in the stomach content of
the monogastric European brown hare (Figure 8). From these
data, it can be concluded that microbial growth is stimulated
by increased phosphorus secretion into the rumen during

summer when the need for protein synthesis by rumen
microbes is high, for example, for growth and reproduction
(Peltier and Barboza, 2003; Knott et al., 2005). In line with
this interpretation, the highest phosphorus and CP concen-
trations are present throughout the year in the rumen content
of roe deer (Figures 8 and 9), a concentrate-selecting species
with limited ability for cell wall digestion.

With regard to endogenous phosphate recycling,
increased phosphorus secretion by the host might be medi-
ated by respective changes in salivary phosphate secretion
and intestinal phosphate absorption. The expression of a
sodium-dependent phosphate transporter has been demon-
strated in the parotid gland of goats (Huber et al., 2003) and
in jejunal tissue (Huber et al., 2002). It is therefore likely that
a higher expression level of this transporter during summer
increases the endogenous recycling of phosphorus in wild
ruminants and hence produces the summer peak of phospho-
rus in the rumen content.

Altogether, peaks of CP in rumen contents, rather than
seasonal changes of CP concentration in the feed, reflect a
high microbial protein biosynthesis, governed by seasonal
changes in host-derived gastrointestinal mechanisms
(Figure 10). This view is supported by the aforementioned
pattern of ruminal CP digestion, indicated by ammonia pro-
duction. In red deer, the peak concentration of ammonia in
rumen liquid occurs right after the peak of CP concentration
in its most important feed plants, but clearly before the CP
concentration in DM rumen content reaches its maximum
(cf. peak CI of ammonia production, mid-April to mid-May,
with Figure 10).

Figure 8 (colour online) Seasonal changes of phosphorus concentrations
in the rumen content of four wild ruminant species and in the stomach
content of the monogastric European brown hare (for methods, see
Tataruch and Onderscheka, 1996). Plotted are monthly means with 95%
CI. Significance of seasonal variation was tested by linear modeling with
sine (t ) and cosine (t ) as predictors with t as day of the year in radians.
Lines represent periodic fits to the data; horizontal bars indicate 95% CI
of peak or trough location, respectively.

Figure 9 (colour online) Seasonal changes of CP in the rumen content of
free-living wild ruminants (for methods, see Tataruch and Onderscheka,
1996). Plotted are monthly means with 95% CI. Significance of seasonal
variation was tested by linear modeling with sine (t ) and cosine (t ) as pre-
dictors with t as day of the year in radians. Lines represent periodic fits to
the data; horizontal bars at peaks represent 95% CI of peak location.

Figure 10 (colour online) Annual course of average CP concentrations in
10 most frequently eaten plants by red deer hinds that lived in a 45-ha
enclosure close to natural conditions (squares, dark green; for details on
methods, see Arnold et al., 2015b), and in the stomach content of free-
living red deer (circles, light green; same data as shown in Figure 9).
Shaded areas indicate 95% CI of the overall mean courses determined by
spline fitting (for details, see Wascher et al., 2018). White horizontal bars
within belts indicate 95% CI of peak location.
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Conclusion

Profound phenotypical plasticity, evident in considerable sea-
sonal changes of physiology and behavior, seems to be ubiqui-
tous in wildlife species, including ruminants, living in seasonal
environments of the northern hemisphere. Acclimatization to
different living conditions during winter and summer is easily
seen in the change from a winter to a summer coat, and vice
versa. However, this visible seasonal acclimatization is only one
feature of an all-embracing change taking place during the
transition from a thrifty, catabolic winter phenotype into a
highly productive, anabolic summer state, and encompasses
the organismic and molecular levels (Arnold et al., 2015a).

The major environmental cue governing this change is the
photoperiod. It is well established that an endogenous circan-
nual rhythm has a role in coordinating the expression of sea-
sonal behaviors, such as reproduction, migration, hibernation,
molt and the physiological and behavioral changes outlined
above. A circannual biorhythm is maintained by cells residing
in the hypothalamus and is entrained to time of the year by
changes in pineal secretion of melatonin according to the
photoperiod (Lincoln et al., 2003). The importance of melato-
nin signal is revealed by the experimental administration of
melatonin during summer, which caused in red deer a phase
advance of the endogenous seasonal rhythm with advanced
initiation of reproduction and seasonal reduction of voluntary
feed intake (Heydon et al., 1993).

We know meanwhile that seasonal differences in physiol-
ogy are also present in domesticated animals, at least in pri-
mordial breeds (Brinkmann et al., 2012; Brinkmann et al.,
2017; Riek et al., 2017). The degree to which such differences
exist in breeds of highly productive farm animals is far less
understood and remains a scientific challenge for the future.
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