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1. Introduction
The goal of this article is to analyze whether certain geometric conditions imply that a
one-dimensional foliation in a 3-manifold is the foliation by flow lines of a topological
Anosov flow. We do this analysis for one-dimensional foliations whose leaves lie inside
leaves of two-dimensional foliations and whose leaves are quasigeodesics in these
two-dimensional foliations. In other words, the goal of this article is to analyze whether
some strictly geometric behavior implies strong dynamical systems behavior in this setting.
This has important connections with partial hyperbolicity in dimension three.

A foliation G subfoliates a foliation F if each leaf of F has a foliation made up of leaves
of G. We call G the subfoliation and F the super foliation. This situation is very common,
for example, if F1 and F2 are two foliations which are transverse to each other everywhere,
then their intersection forms a subfoliation of each of them. This article aims to study
geometric properties of leaves of subfoliations inside the leaves of the super foliation.

One very common and extremely important example is the following: let � be
an Anosov flow and let Fws , Fwu be the weak stable and weak unstable foliations
of � respectively [Ano63, KH95]. Then Fws , Fwu are transverse to each other—the
intersection is the foliation by flow lines of � which is a subfoliation of each of them. This
example has connections with geometry or large-scale geometry: the leaves of Fws , Fwu

are Gromov hyperbolic. In rough terms, this means that they are negatively curved. The
subfoliation by flow lines in, say, Fws satisfies an additional strong geometric property:
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Leafwise quasigeodesity and the funnel property 2625

in each leaf of Fws , the flow lines are quasigeodesics. This means that when lifted to
the universal cover of the leaves, the flow lines are uniformly efficient up to a bounded
multiplicative distortion in measuring length in the weak stable leaves. In other words, the
flow lines are quasi-isometrically embedded in these weak stable leaves. The quasigeodesic
property has many important consequences, for example, the flow lines are within a
bounded distance from length minimizing geodesics when lifted to the universal cover
of their respective weak stable leaves [Gro87, Thu82, Thu97]. Hence the flow lines have
well-defined distinct ideal points in the Gromov boundary of the weak stable leaves in
both directions. These properties and others are very strong and useful in many contexts.
Obviously, this also works for the flow subfoliation of the weak unstable foliation.

A (one-dimensional) subfoliation made of quasigeodesics in the leaves of a super
foliation by Gromov hyperbolic leaves is called a leafwise quasigeodesic foliation.

The Anosov case has an additional geometric property: in (say) a weak stable leaf, all
flow lines are forward asymptotic, which is a defining property of the weak stable foliation.
In particular, all flow lines in a given weak stable leaf have the same forward ideal point in
the ideal boundary of the weak stable leaf (when lifted to the universal cover).

When all leaves of a leafwise quasigeodesic subfoliation in a leaf of the super foliation
have a common ideal point, we call that leaf a funnel leaf. If all leaves of the super
foliation are funnel leaves, then the leafwise quasigeodesic foliation is said to have the
funnel property.

The motivation for this article is the following question: is the funnel property an
additional property or is it a consequence of the leafwise quasigeodesic property? The
importance of this is the following: in dimension three, we have a much stronger
connection between some of these properties as follows. Suppose that G is a leafwise
quasigeodesic foliation (which is a one-dimensional subfoliation of a two-dimensional
foliation) which has the funnel property. The ambient manifold is three-dimensional.
Suppose that the foliation G is orientable or, in other words, it is the foliation of a
non-singular flow. Then one can prove that the flow in question is expansive. (We refer
to [BFP20] for definitions of the terms used here and for detailed proofs.) This implies
that the flow is a topological Anosov flow [IM90, Theorem 15], [Pat93, Lemma 7]. If
the flow is transitive (the union of periodic orbits is dense), then the topological Anosov
flow is in addition orbitally equivalent to a (smooth) Anosov flow [Sha20]. This means
that if the leafwise quasigeodesic property implies the funnel property, then this purely
geometric condition implies a very strong dynamical systems property: the foliation is the
flow foliation of an Anosov flow, up to topological equivalence.

In this article, we prove that the funnel property is not a consequence of leafwise
quasigeodesic behavior.

THEOREM 1.1. There are examples of leafwise quasigeodesic foliations in dimension three
which do not have the funnel property. In these examples, the two-dimensional foliations
are C0 with C1 leaves and the subfoliation is by C1 curves in the two-dimensional leaves.

We now briefly explain one class of examples: start with the Franks–Williams example
of a non-transitive Anosov flow �. This is obtained as follows: start with a suspension
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Anosov flow and do a DA (derived from Anosov) blow up of a periodic orbit transforming
it into (say) a repelling orbit α. Remove a tubular neighborhood of α so that the resulting
semiflow is incoming in the complement of the removed tubular neighborhood of α.
Glue this manifold with boundary with a copy of it which has a reversed flow. One
fundamental result is that the ensuing flow � in the final manifold M is Anosov [BBY17,
FW80]. This holds for certain isotopy classes of gluings and certain gluing maps satisfying
transversality conditions. These were the first examples of non-transitive Anosov flows in
dimension three. Our examples use this flow. There is a smooth torus T in M transverse to
the flow. There is a single two-dimensional attractor and a single two-dimensional repeller
of the flow � in M. Start with a one-dimensional foliation Z in T which is transverse to the
intersections of both the weak stable and the weak unstable foliations of � with T. Saturate
Z by the flow producing a collection of two-dimensional sets embedded in M. The flow
saturation of T is an open subset V of M, and the collection of the two-dimensional subsets
described is a two-dimensional foliation in V. In addition, V is exactly the complement
of the union of the attractor and the repeller of �. Complete the foliation in V to a
foliation F in M which is the weak unstable foliation of � in the attractor of � and
the weak stable foliation in the repeller of �. The proof that this is in fact a foliation of
M depends on a careful choice of the one-dimensional foliation Z in T. There is a subtle
point here in that if one chooses an arbitrary foliation Z in T, then when lifting to M̃,
the lifted sets may not be properly embedded in M̃ and so F would not be a foliation
in M. This is carefully analyzed in §3 and there we prove that for appropriate choices
of Z, the object F we construct is a foliation. The super foliation is this two-dimensional
foliation F . The subfoliation G of F is the foliation by flow lines of �. Each leaf of F
is saturated by flow lines. We prove that G is a leafwise quasigeodesic subfoliation of F ,
but G does not have the funnel property. There is an Anosov flow � in this example;
however, notice that the super foliation F is neither the weak stable nor the weak unstable
foliation of �, but rather a different foliation. In fact in the same way, one can construct
an infinite number of inequivalent examples with the same starting flow �. The foliations
are pairwise distinguished because of how they intersect the torus T in foliations which are
not equivalent.

In this article, we consider more general examples. We prove that one can construct
examples starting with any non-transitive Anosov flow � in dimension three so that
all the basic sets have dimension two. As in the case of the Franks–Williams example,
we construct super foliations which have Gromov hyperbolic leaves and whose leaves
are saturated by flow lines of �. We show that the subfoliation G by flow lines of �

is by quasigeodesics in each leaf of the super foliation F . This is the hardest step to
prove. This involves a very careful analysis of the geometry in these examples. The
proof that G is not funnel is simpler than proving it is leafwise quasigeodesic as a
subfoliation of F .

In the course of the proof of Theorem 1.1, we prove another independent result which
can be used in other contexts. In Definition 6.1, we define the notion of continuity
properties for a pair of foliations (F , G) on M where F is a two-dimensional foliation
sub-foliated by a one-dimensional foliation G. We can show that the continuity property
implies leafwise quasigeodisity.
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THEOREM 1.2. Suppose F is a two-dimensional foliation on a 3-manifold M and F is
subfoliated by a one-dimensional foliation G. If the pair (F , G) satisfies the continuity
properties as defined in Definition 6.1, then G is leafwise quasigeodesic on F .

We finish this introduction mentioning another reason why we analyzed this question:
this comes from partially hyperbolic dynamics. Let f be a partially hyperbolic diffeomor-
phism in a closed 3-manifold M (we refer to [BFP20] for definitions and properties of
partially hyperbolic diffeomorphisms). Under very general orientability conditions, there is
a pair of transverse two- dimensional branching foliations (center stable and center unstable
foliations) associated with the partially hyperbolic diffeomorphism which intersect in
an one-dimensional branching foliation, called the center foliation [BI08]. The center
foliation subfoliates both the center stable and center unstable foliations. In some situations
[BFP20], it is shown that the center foliation is a leafwise quasigeodesic subfoliation of
both the center stable and center unstable foliations. However, in [BFP20], it is proved
that in the partially hyperbolic setting the leafwise quasigeodesic property implies that the
center foliation has the funnel property (as a subfoliation of both super foliations). The
proof of this also uses dynamical system properties, namely partial hyperbolicity. An open
question from the article [BFP20] was to whether the funnel property could be derived
strictly from the leafwise quasigeodesic property in (say) the center stable foliation. In
this article, we prove that this is not the case by constructing counterexamples for general
foliations.

2. Preliminaries
A C1-flow �t : M → M on a Riemannian manifold M is Anosov if the tangent bundle
TM splits into three D�t -invariant sub-bundles TM = Es ⊕ E0 ⊕ Eu and there exists
two constants C, λ > 0 such that:
• E0 is generated by the non-zero vector field defined by the flow �t ;
• for any v ∈ Es and t > 0,

‖D�t(v)‖ ≤ Ce−λt‖v‖;

• for any w ∈ Eu and t > 0,

‖D�t(w)‖ ≥ Ceλt‖w‖.

The definition is independent of the choice of the Riemannian metric ‖.‖ as the
underlying manifold M is compact. For a point x ∈ M, the set γx = {�t(x)|t ∈ R} is
called the flow line of x. The collection of all flow lines of a flow defines a one-dimensional
foliation on M. For an Anosov flow, there are several flow invariant foliations associated
with the flow and these foliations play a key role in the study of Anosov flows.

Property 2.1. [Ano63] For an Anosov flow �t on M, the distributions Eu, Es , E0 ⊕ Eu,
and E0 ⊕ Es are uniquely integrable. The associated foliations are denoted by Fu, F s ,
Fwu, and Fws respectively and they are called the strong unstable, strong stable, weak
unstable, and weak stable foliation on M.
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For the remainder of this article, we will assume that M is a closed three-dimensional
Riemannian manifold.

We also assume that M is equipped with an Anosov flow �t and �̃t is the lift of the
flow �t in M̃, the universal cover of M. The strong unstable, strong stable, weak unstable,
and weak stable foliations of �̃ are the lifts of the foliations Fu, F s , Fwu, and Fws in the
universal cover M̃, and these foliations in M̃ are denoted by F̃u, F̃ s , F̃wu, and F̃ws

respectively.
A map f : (X1, d1) → (X2, d2) is called a (K , s)-quasi-isometric embedding if there

exits K > 1 and s > 0 such that for all x, y ∈ X1,

1
K

d1(x, y) − s ≤ d2(f (x), f (y)) ≤ Kd1(x, y) + s.

A (K , s)-quasigeodesic in X is the image of a (K , s)-quasi-isometric embedding γ :
[a, b] → X, where [a, b] is a closed interval on R with the Euclidean metric. The interval
could be infinite (that is, a = −∞, b = ∞, or both), in which case the notation would
be of a half open or open interval. If we have a map R → X with rectifiable image, we
consider the arclength metric in the domain R.

LEMMA 2.2. Flow lines on the leaves in F̃ws and F̃wu are quasigeodesics with respect to
the induced path metric from M̃ in their respective leaves.

Proof. Reparameterize the flow to have unit speed. The new flow is still Anosov with the
same flow lines and the same weak stable and weak unstable foliations; however, the strong
stable and strong unstable leaves may change [Ano63, AS67].

Any leaf L of F̃wu is subfoliated by F̃u and by the flow lines, these two foliations are
transversal to each other. We can define a metric ds′ on L by ds′ = dw + dy, where dw

measures length along flow lines and dy measures length along unstable curves. Suppose
ds is the Riemannian metric induced on Lwu from M̃. The two path metrics induced in
L from ds′ and ds are uniformly quasi-isometric to each other [Fen94]. Moreover, each
flow line in the leaf L is a length-minimizing curve in the ds′ metric, and hence flow lines
are uniform quasigeodesics with respect to the metric induced by ds. Similarly, it can be
shown that flow lines on leaves in F̃ws are quasigeodesic with respect to the induced metric
on their respective leaves.

Definition 2.3. Suppose F is a two-dimensional foliation on M with Gromov hyperbolic
leaves when lifted to the universal cover. Suppose that G is a one-dimensional foliation on
M which subfoliates F . In this situation, we say that leaves of G are leafwise quasigeodesic
in F if every leaf of G is a quasigeodesic in the respective leaf of F containing it
when lifted to the universal cover of the leaf. In that case, we say that G is a leafwise
quasigeodesic subfoliation of F .

In Lemma 2.2, the flow lines of �t are shown to be leafwise quasigeodesics in the leaves
of Fws and Fwu.

The leaves in F̃ws and F̃wu are Gromov hyperbolic with respect to the Riemannian
metric on the leaves induced from the metric on M̃ [Fen94]. Suppose that L is a leaf either
in F̃ws or in F̃wu. As the leaves are Gromov hyperbolic, we can define the ideal boundary
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of L which is homeomorphic to the circle and we denote it as S1(L). The compactification
L ∪ S1(L) is homeomorphic to a closed disk. As the flow lines are quasigeodesics in L,
they define two distinct ideal points on S1(L): if γ is a flow line in L, then the forward ray
of γ defines an unique ideal point on S1(L) as γ is a quasigeodesic, which is called the
forward or positive ideal point of γ . Similarly, we define the backward or negative ideal
point as the limit of the ray in the backward direction. The following statement describes
the equivalence between the forward and backward flow rays in the leaves of F̃ws and
F̃wu, and the points on their ideal boundaries.

Property 2.4. [Fen94] For a leaf L either in F̃ws or F̃wu, all the points on S1(L)

correspond to forward or backward flow rays on L. If L ∈ F̃ws , then all the flow lines
on L have a common forward ideal point and all the other ideal points are backward ideal
points on S1(L) of the flow lines. No two different flow lines define a common negative or
backward ideal point.

If L ∈ F̃wu, then all the flow lines have a common backward ideal point and all the
forward flow lines define all the other ideal points on S1(L). No two different flow lines
define the same positive or forward ideal point.

The property for forward ideal points in F̃ws is immediate as these flow lines are
forward asymptotic, a direct consequence of the definitions. The property for backward
ideal points in leaves of F̃ws is not as immediate and is proved in [Fen94].

Definition 2.5. Suppose that G is a leafwise quasigeodesic subfoliation of F . If a leaf L of
F̃ has all leaves of G̃ in it sharing a common ideal point, then the projected leaf π(L) of
F in M is called a funnel leaf. In this case, the common ideal point shared by all the flow
lines in L is called the funnel point of L.

COROLLARY 2.6. By Property 2.4, for an Anosov flow �t on a 3-manifold M, with the
flow foliation a leafwise quasigeodesic subfoliaton of both Fws and Fwu, the following
happens: all the leaves in weak stable foliation Fws and weak unstable foliation Fwu are
funnel leaves, as shown in Figure 1.

2.1. Basic sets of Anosov flows on 3-manifolds. The Anosov flow � is called transitive
if there exists a flow line γ dense in M, otherwise the flow is non-transitive. The
first example of a non-transitive Anosov flow was constructed by John Franks and Bob
Williams in their 1980’s article [FW80].

A point x ∈ M is called non-wandering if for any open neighborhood U of x and any
t0 > 0, there exists t > t0 such that �t(U) ∩ U �= ∅, the set of all non-wandering points is
denoted by �(�). For a non-transitive Anosov flow �t , the non-wandering set �(�) is not
equal to the whole manifold M and according to spectral decomposition theorem [Sma67],
�(�) is decomposed into finitely many closed, disjoint, �t -invariant, and transitive basic

sets {�i , i = 1, . . . , n}, so �(�) = ⊔n
i=1 �i .

Suppose � is a basic set of a non-transitive Anosov flow �t on a 3-manifold. Then �

can be characterized into four different types [Bru93, Sma67]:
• dim(�) = 2, and the basic set � is an attractor, i.e. there exists an open set U

containing � such that
⋂

t>0 �t(U) = �;
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a b

FIGURE 1. Geometry of flow lines on the leaves in F̃ wu (a) and F̃ ws (b).

• dim(�) = 2, and the basic set � is a repeller, i.e � is an attractor for the reversed flow
�t = �−t ;

• dim(�) = 1, and � is a saddle with local cross section a Cantor set;
• dim(�) = 1, and λ is a hyperbolic periodic orbit.

Property 2.7. If � is an attractor, then � is saturated by weak unstable leaves. If � is a
repeller, then � is saturated by weak stable leaves.

From now on we assume the following.

Assumption 2.8. We assume throughout that the Anosov flow � on M is non-transitive
and its non-wandering set � consists of two-dimensional basic sets only.

In other words, we assume that � has no one-dimensional basic set. As M is compact,
there exits at least one attracting basic set and one repelling basic set. Suppose A denotes
the union of all attracting basic sets and R denotes the the union of all repelling basic sets.
We will denote the collection of all lifts of A in M̃ by Ã. Here, Ã is the the attracting set
for �̃t defined on M̃. The union of all lifts of R is denoted by R̃ similarly.

Property 2.9. [KH95] Suppose γ is a flow line not contained in A or R. Then there
exists a flow line in A, say α, such that the forward rays of γ and α are asymptotic in
M. Similarly, there exits a flow line β in R such that the backward rays of γ and β are
asymptotic in M.

Proof. This is classical [KH95], we explain briefly. Given the orbit γ , it gets closer and
closer to the attractor A in future time. Fix x in γ . Every point in the attractor has a local
product structure, see, for example, Proposition 6.4.21 of [KH95]. Hence for a t sufficiently
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big, �t(x) is ε near the attractor where ε is smaller than the size of product boxes of the
hyperbolic set A. Hence, �t(x) is ε near some point z in A and there is w in A near z so
that �t(x) is in the stable manifold of w because of the local product structure in sets of
size ε. This proves the result.

The attractor is saturated by leaves of Fwu and the repeller saturated by leaves of Fws .
In the property above, one can choose the flow line α in the attractor A to be contained
in the boundary of the attractor. This means the following: let x ∈ α and L the Fws leaf
through x. Let D be a small disk in L with x in the interior. The local flow line of x cuts D
into two components D1, D2 (which are also disks). The condition is that one of D1 or D2

does not intersect the attractor A. Suppose it is D1. The ‘D1 side’ of α in L is the side so
that γ is getting increasingly closer to α.

3. The foliation F
Throughout the article, we will fix a non-transitive Anosov flow � as in the previous
section, that is, � has only two-dimensional basic sets.

To prove our results, we will consider a two-dimensional foliation F in M such that:
• on the attractor A, F |A = Fwu|A;
• on the repeller R, F |R = Fws |R;
• on M \ {A ∪ R}, F is transversal to both Fws and Fwu;
• every leaf L ∈ F is subfoliated by the flow lines of �, i.e. every leaf L is �R-invariant.
We will denote the lift of F in the universal cover M̃ by F̃ . Leaves of F̃ in Ã and R̃
look like the leaves in Figure 1. Leaves in M̃ \ (Ã ∪ R̃) are described in Figure 2. It is not
immediate from the definition why the leaves not contained in Ã and R̃ are as described
in Figure 2, but we will prove this later in this article.

THEOREM 3.1. There exists foliations F with the properties described above.

Start of the proof of Theorem 3.1. We start with an Anosov flow as described above. For
simplicity, assume that M is orientable as well. There is a finite collection of disjoint tori
{Ti} transverse to the flow � which separate the basic sets [Bru93, Sma67]. We choose Ti

to be smooth. The collection of tori is supposed to be minimal respective to the property
that if an orbit is not in R or A, then it intersects one of the {Ti}. Let γ be such an orbit
intersecting a specific Ti , let x be a point in the intersection. Then the forward orbit of x
is asymptotic to a component A of the attractor A—this uses the important fact that there
are no one-dimensional components of the non-wandering set of � by assumption. The
set of such x so that the forward ray of x is asymptotic to A is open in Ti . This holds for
any component A of the attractor A. Since the union over such components of A is all of
Ti and Ti is connected, it follows that all orbits in Ti are forward asymptotic to a single
component A of A.

In a similar way, one proves that if T1, T2 are tori contained in the complement of
the union of the attractor and repeller, and T1, T2 intersect a common orbit of �, then
T1, T2 intersect exactly the same set of orbits of �. In other words, if B is a component of
M − (A ∪ R), then there is a torus T contained in B, transverse to � so that B is the flow
saturation of T. Hence, we can choose a minimal collection {Ti} of tori transverse to � and
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R1

R2

R3

FIGURE 2. An example of a leaf L ∈ F̃ not contained in Ã or R̃. In R1, forward rays are asymptotic to Ã; in R3,
backward rays are asymptotic to R̃; R2, the blue line, represents the intersection of L with some lift T̃i of some

torus Ti .

intersecting all orbits in the complement of A ∪ R, and any such orbit intersects a unique
Ti and only once.

3.1. Construction of F . Now we construct F . The foliations Fws , Fwu are C0 with
C1 leaves [KH95], and so are the intersections with each Ti . On each Ti , choose a
one-dimensional C1 foliation Fi transverse to both

Fws ∩ Ti , and Fwu ∩ Ti .

Saturate Fi by the flow to produce a two-dimensional foliation in the flow saturation of Ti .
Note that the leaves in the flow saturation are either a plane or an infinite annulus. Let F
be this foliation in the complement of the attractor union the repellor. Figure 2 describes a
possible leaf in the lift F̃ of F to M̃, where R2, the blue line, represents its intersection
with some lift of Ti . The figure depicts the following several properties that we are going
to prove later and that are essential to the results of this article: (1) we will show later that
leaves of F̃ are Gromov hyperbolic; (2) we will also show that for L ∈ F̃ not in the lift of
the attractor or repeller, each flow ray in L converges to a single point in S1(L) and distinct
flow rays do not forward converge to the same ideal point in S1(L). Similarly for backward
flow rays.

A flow line that does not intersect any Ti has to lie either in the attractor (A) or in the
repeller (R). We define F to be Fwu in the attractor, Fws in the repeller, and the saturation
of the Fi everywhere else.
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3.2. Properties of F . At this point, F is just a collection of two-dimensional subsets of
M. We will prove that F is a foliation of M. Clearly, F is a foliation in the complement
of the union of the attractor and the repeller, because this is an open set and because of the
definition of F : each component C of M \ (A ∪ R) is equal to �R(Ti) for some Ti and
this is homeomorphic to Ti × R with the product topology (the topology in Ti is induced
from M). The foliation F in C is equivalent to the foliation Fi × R in Ti × R.

The interaction between F in M − (A ∪ R) and F in A ∪ R is more complex. There is
a subtle point here, which we now explain. Let F̃ be the lift of F to M̃. If F is a foliation,
then it will follow that F̃ is a foliation of M̃ by properly embedded planes. By construction,
the ‘leaves’ of F intersecting the attractor are contained in the attractor and similarly for
the repeller. Therefore, the leaves of F in the complement of A ∪ R are entirely contained
in the complement of A ∪ R as well. In particular, if L is a lift of a leaf of F in the
complement of the attractor and repeller, then it should be properly embedded when lifted
to M̃. As it turns out, this property is not true if one starts with an arbitrary foliation
Fi in Ti . Let us review the construction: we start with a foliation Fi in Ti and saturate it
by the flow to produce a foliation in an open set in M. Then consider a lift L of a leaf
of this foliation to the universal cover. Is L always properly embedded in M̃? In general,
this is not true. For example, start with the Franks–Williams non-transitive flow [FW80],
consider a smooth torus T which separates the attractor and repeller, and start with say
the intersection of the stable foliation of � with T, which we call F. Then for some of the
leaves of F, it follows that if L is a lift of the flow saturation to M̃, then L is not properly
embedded in M. For example, [FW80, Fig. 3, p. 164] depicts the foliations induced by
the weak stable and unstable foliations in T for the Franks–Williams flow. Each has two
Reeb components. Take α to be a leaf of the stable foliation which is not in the interior of
a Reeb component, that is, a horizontal line in the figure, and also that α is a closed curve.
Lift it to α̃ in M̃. If C is the flow saturation of α̃, then C is not properly embedded in M̃:
there is an orbit γ of �̃ which is not in C but is contained in the closure of C. This orbit
γ is the lift of a periodic orbit contained in the attractor of the Franks–Williams flow. The
same would happen if we took F to be the intersection of the unstable foliation with T, α a
closed leaf of F, and considering the repeller of � instead of the attractor.

The reason why our construction of F as above produces a foliation is because we start
with a foliation Fi in Ti which is transverse to both the stable and unstable foliations in Ti .
We first prove the following result.

LEMMA 3.2. Let � be a leaf of Fi and let E be the flow saturation of �. Then, with the
induced path metric from M, it follows that E is complete.

Proof. Let E be the flow saturation of �. Since � is smooth and the flow is C1 it follows
that E is C1. For any x, y in � if

�t(x) = �s(y),

then x = y and t = s, since the component of M − (A ∪ R) containing � is homeomor-
phic to T × R and � is injectively immersed in T. Hence, E is parameterized as � × R, that
is, every point p in E can be represented as (x, t) where x ∈ � and t ∈ R.
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The Riemannian metric in M induces a Riemannian metric in E and a path metric in E.
What we prove is the following.

CLAIM 1. There is a0 > 0 so that any point p = (x, t) in E is the center of a metric disk
of radius a0 in E.

Proof. This is obvious for any point p in � or, in other words, if t = 0.
We now prove the claim for t > 0 using the unstable foliation. The analogous proof

shows the result for t < 0 using the stable foliation. The foliation Fi is transverse to
both the stable and unstable foliations induced in Ti , hence uniformly transverse to these
foliations (which means the angles between Fi and Fwu ∩ Ti or Fcs ∩ Ti are uniformly
bounded away from 0 on Ti). Given any smoothly embedded curve α in M, let lu(α) be its
unstable length: we integrate only the component of the tangent vector in the direction of
the unstable bundle. For example, if α is contained in a weak stable leaf, then lu(α) is zero,
while if α is contained in a strong unstable leaf, then lu(α) is the same as its length under
the Riemannian metric of M. In particular, if α is a curve not contained in a strong stable
or unstable leaf, then the original length l(α) is always strictly greater than the unstable
length lu(α).

By the definition of an Anosov flow, there exist constants C > 0, λ > 1 such that if we
flow forward a segment with t amount of time, the new unstable length is at least Cλt

times the original unstable length. Hence if we let a1 = C, then for any smooth segment,
any flow forward of that segment has unstable length which is at least a1 times the original
unstable length.

Since Fi is uniformly transverse to Fws ∩ Ti by our construction, it follows that any
point x in Ti is the midpoint of a segment β in its leaf of Fi of unstable length 2. For any
t ≥ 0, the unstable length of �t(β) is at least 2a1. This constant a1 is defined globally. In
addition, if v is a non-zero vector tangent to β, then v makes a definite positive angle with
the flow direction. Since flowing forward increases the size of unstable vectors more than
the size of tangent vectors (where t > t0 > 0 for some t0 big enough), it follows that there
is a global constant θ > 0 so that D�tv also makes an angle > θ with the tangent to the
flow. Consider the infinitesimal arclengths dt , ds, du along the flow, stable, and unstable
bundles. The (non-Riemannian) metric

|dt | + |ds| + |du|
is quasicomparable (this means Lipschitz equivalent) with the Riemannian metric in M:
there is a2 > 0 so that the Riemannian length is at least a2 times the length in this metric.
Consider the following set:

A = �[t−1,t+1](β)

for t ≥ 0. The segment β of Fi is contained in the leaf E of F . From any point in the
boundary of A to �t(x) along E, one has to have at least a1 unstable length and flow length
of at least 1. It follows that there is a global constant a0 (depending only on a1) so that A
contains a disk in the Riemannian metric of radius a0 and centered at �t(x).

For t < 0, we use the stable foliation and flow backward instead of forward. This finishes
the proof of the claim.
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The claim shows that E is complete and finishes the proof of the lemma.

Continuation of the proof of Theorem 3.1 We consider the collection F as constructed in
the beginning of this section. This object F is a foliation restricted to M − (A ∪ R) and
this is an open set.

The only remaining thing to prove is that if a sequence xn in M − (A ∪ R) converges
to x in A ∪ R, then the leaves of F through xn converge to the leaf of F through x. Without
loss of generality, we may assume that x is in an attractor.

Let pn ∈ Ti so that xn are in �R(pn). There are tn ∈ R with xn = �tn(pn). Since x is
in the attractor, then tn converges to positive ∞. The leaf of F through pn is the � flow
saturation of the leaf of Fi through pn. The tangent to this two-dimensional set through
pn is generated by the Anosov vector field generating � and a tangent vector v to Fi at
pn. The leaf of F is �-flow invariant. Flowing forward, the flow vector remains invariant.
The vector v is transverse to the weak stable foliation and hence it flows increasingly more
(does not matter how fast) to the weak unstable direction. So flowing forward, these leaves
become increasingly more tangent to the E0 ⊕ Eu bundle and limit to leaves of Fwu. Since
flowing forward limits to the attractor, this shows that the leaves of F through xn converge
to the leaf of F through x.

In addition, the previous lemma shows that the leaves of F through xn are complete
in their path metrics. This shows that F defines a foliation. We stress that Lemma 3.2 is
needed to ensure that F is a foliation. Otherwise, even if the tangent directions of F in
M − (A ∪ R) and F in A ∪ R match continuously, one would have that leaves of the first
set ‘arrive’ at leaves of the second set in finite distance. In other words, the union of a
leaf in M − (A ∪ R) and a leaf in (A ∪ R) would form a branched surface. This would
produce a branching foliation, instead of a foliation.

This finishes the proof of Theorem 3.1. �

We remark that the construction of F highlights why our methods do not work when
there are one-dimensional basic sets. For simplicity, suppose that there is a basic set which
is a periodic orbit γ . There is a torus T so that negative saturation limits on γ . If we start
with F in T transverse to both Fws ∩ T and Fwu ∩ T , then flowing backward will make
it limit to the weak stable leaf of γ . So the weak stable leaf of γ is in the collection F
so constructed. However, there is also a torus T ′ so that the forward flow saturation limits
on γ . The similar argument shows that the weak unstable foliation of γ also has to lie in
the collection F . Hence the collection F has sets which intersect transversely and cannot
be a foliation.

Remark 3.3. By construction, the foliation F does not have compact leaves: any leaf in
R ∪ A is not compact as they are weak stable leaves of an Anosov flow. Each leaf in
M − (R ∪ A) limits on R and hence cannot be compact. Since F does not have compact
leaves, it follows from Novikov’s theorem [Cal01] that leaves of F̃ are properly embedded
planes in M̃.

To prove Theorem 1.1, we will prove the following properties for such a foliation F :
(1) the flow lines are leafwise quasigeodesics in leaves of F ;
(2) every leaf of F not contained in A or R is a non-funnel leaf, as in Figure 2.
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4. Gromov hyperbolicity of the leaves of F
We will consider a foliation F as constructed in the previous section.

In this section, we will show that there exists a metric g such that every leaf of the
foliation F is Gromov hyperbolic. By Candel’s uniformization theorem, this condition
is equivalent to the fact that every holonomy invariant non-trivial measure μ on M
has Euler characteristic χμ(M, F) < 0, which includes the case when there exists no
invariant measure. For more details about the Euler characteristic, see [Can93] or [CC00].
In our context, we will prove that there is no holonomy invariant transverse measure
to F . Candel’s theorem requires that the foliation has C∞ leaves. To obtain that, we
use Calegari’s result [Cal01b] which implies that F is isotopic to a foliation with C∞
leaves. This does not change the property that F has or does not have holonomy invariant
transverse measures. Once this is obtained, Candel proved that there is a metric in M
inducing a smooth Riemannian metric in the leaves so that curvature in each leaf of F is
constant equal to −1. A precise statement can be found in [Can93], [CC00], or [Cal01].
We call such a metric a Candel metric. This Candel metric is not smooth in the transverse
direction.

Here is the precise statement on the equivalence of Gromov hyperbolicity of leaves of a
foliation and negative Euler characteristic of a positive invariant measure.

PROPOSITION 4.1. [Can93] Let (M , F) be a compact oriented surface lamination with a
Riemannian metric g. Then χ(M , μ) < 0 for every positive invariant transverse measure
μ if and only if there is a metric in M which induces a metric in each leaf of F which makes
it into a hyperbolic surface. In particular, this holds true if M has no invariant measure.

To prove that all the leaves of F are Gromov hyperbolic, we will show that there does
not exist any invariant measure. We will argue by contradiction, we assume that there exists
a invariant measure μ, and we will attain a contradiction.

The support of μ on M, denoted by supp(μ), is defined as the collection of all points
x ∈ M such that if τ is a one-dimensional manifold transverse to F which contains x in
its interior, then μ(τ) > 0. The support of a holonomy invariant transverse measure is a
closed set and it is saturated by F , which means supp(μ) is a union of leaves of F . The
orientation hypothesis is not essential as it can be achieved by a double cover. The double
cover does not change the conformal type of any leaf.

LEMMA 4.2. The support of μ on M contains at least one leaf from the attractor A or
the repeller R.

Proof. Consider a point x ∈ supp(μ) and suppose Lx is the leaf in F which contains x,
then Lx ⊂ supp(μ) as supp(μ) is F-saturated. If x ∈ A, then Lx ⊂ A and the claim is
true. Similarly if x is in R, then its leaf is contained in supp(μ). Finally suppose that
x /∈ (A ∪ R). Then consider the sequence {�n(x)} as n → ∞. Let z be an accumulation
point of {�n(x)}. As supp(μ) is closed, z is in supp(μ) and hence Lz ⊂ supp(μ). Since z
is an accumulation point of �n(x), it implies that z is a non-wandering point, and hence
z ∈ A ∪ R and Lz ⊂ (A ∪ R) ∩ supp(μ). In fact, since n → ∞, it follows that z is in the
attractor, so Lz ⊂ A.
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Suppose L is a leaf in supp(μ) which is contained in A (assume in A without loss of
generality). By [Pla75, Theorem 6.3], we know that if μ is a holonomy invariant transverse
measure on a compact manifold foliated by a codimension-one foliation F , then any leaf
contained in supp(μ) has polynomial growth. Then the leaf Lz in the attractor A, as
obtained in the previous paragraph, has polynomial growth. Recall that the leaves of F
are either planes or annuli. At the same time, Lz is contained in the attractor and each leaf
in the attractor belongs to the weak unstable foliation of the Anosov flow �. However, weak
stable and weak unstable leaves of Anosov flows have exponential growth, a contradiction.

As each leaf L ∈ F̃ is Gromov hyperbolic with respect to the path metric from the
induced Riemannian metric from M̃, we can define the circle at infinity or the ideal
boundary S1(L) of each leaf L.

Next we will describe the topology we will use on the spaces

S1(M̃) =
⋃
L∈F̃

S1(L) and

M̃ ∪ S1(M̃) =
⋃
L∈F̃

(L ∪ S1(L)).

For this, we will assume first that M has a Candel metric.
Suppose τ is an open segment homeomorphic to (0,1) and transversal to F̃ . We define

the the following sets

Pτ =
⋃
y∈τ

S1(Ly) and Qτ =
⋃
y∈τ

(Ly ∪ S1(Ly))

If T 1(τ ) denotes the unit tangent bundle of F̃ restricted to τ , then T 1(τ ) is naturally
homeomorphic to the standard cylinder. The natural identification between T 1(τ ) and Pτ

induces the topology on Pτ homeomorphic to the standard annulus. In [Fen02], it is proved
that this topology is independent of the particular transversal τ that is chosen intersecting
the same sets of leaves of F̃ . This is because the metrics induced in S1(L) from the visual
metric in any point are Hölder equivalent.

Similarly, Qτ has a natural topology homeomorphic to the standard solid cylinder.
The collection of all Pτ sets over a π1(M)-invariant discrete collection of transversals

defines a topology on S1(M̃). Similarly, the collection of Qτ sets over the same
collection of transversals defines a topology on M̃ ∪ S1(M̃). Deck transformations act
by homeomorphisms on both sets. For more details, see [Fen02], [Cal00], or [Cal01].

After the fact, it is easy to see that the topologies described are independent of the
specific metric in M chosen and also work for any Riemannian metric in M.

5. Properties of flow lines
This section describes the behavior of forward rays of flow lines, in particular their
asymptotic behavior toward the the boundary at infinity

⋃{S1(L)|L ∈ F̃}. In particular,
we will prove that the rays are quasigeodesics in their respective leaves of F̃ . Notice that
this is definitely much weaker than saying that full flow lines are quasigeodesics in their
respective leaves. We will also show that in some leaves, the forward ideal points are
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pairwise distinct and the negative ideal points are also pairwise distinct. In particular, even
if the flow foliation is a leafwise quasigeodesic subfoliation of F , it will not have the funnel
property.

We now introduce a family of sets in M̃ which will be extremely useful for us.

5.1. The sets U . Consider an arbitrary point x ∈ Ã ⊂ M̃ and the forward ray from x
which is denoted by

γ +
x = �̃[0,∞)(x)

starting at x, and let Lx ⊂ Ã be the leaf containing γ +
x . Recall that in the attractor A, the

foliation F is equal to Fwu, and hence transverse to Fws . Therefore, the foliations F̃ and
F̃ws are transversal to each other near Ã.

Let U be a compact rectangle transverse to the flow and with x in the interior of U. We
assume that U is contained in the foliation boxes of all foliations F̃ , F̃ s , and F̃ws such
that U is made up of a union of stable segments, every one of which intersects the local
strong unstable segment through x. Consider the set

U = �̃[0,∞)(U).

The set U is a neighborhood of the forward ray �̃[0,∞)(x). We can assume that U
is homeomorphic to [−1, 1] × [−1, 1] × [0, ∞) with x = (0, 0, 0) and we can define
coordinates on U such that the following hold.
• U is identified with [−1, 1] × [−1, 1] × {0} and points on U are represented as

(r , s, 0) for r , s ∈ [−1, 1]. In particular, x = (0, 0, 0).
• For a point y = (r , s, 0), �̃t (y) has coordinates (r , s, t), that is, the ray {(r , s, t)|t ∈

[0, ∞)} represents the ray �[0,∞)(y).
• For a point y′ = (r ′, s, t ′) ∈ U , Py′ denotes the horizontal infinite strip

Py′ = {(r , s, t)|r ∈ [−1, 1], t ∈ [0, ∞)}.
The infinite strip Py′ is contained in the leaf Ly′ ∈ F̃ which contains y′.

• For a point y′ = (r , s′, t ′) ∈ U , Qy′ denotes the vertical infinite strip

Qy′ = {(r , s, t)|s ∈ [−1, 1], t ∈ [0, ∞)}.
The infinite strip Qy′ is contained in the leaf Ey′ ∈ F̃ws which contains y′.

As x = (0, 0, 0) ∈ Ã, the leaf of F̃ through x is actually the weak unstable leaf of �̃

through x, and hence Px is contained in the F̃wu leaf through x.
The sets U will be used throughout this section. Any such particular set U is completely

determined by the rectangle U.
We can define a projection map � : U → Px by the formula �(y) = Sy ∩ Px , where

Sy is the one-dimensional leaf of the strong stable foliation F̃ s containing y. This is
possible because one can do that in the original rectangle U as it is a union of strong
stable segments, and then U is the flow forward saturation of U and the maps �̃t preserve
the strong stable foliation in M̃. These projection maps are well defined and continuous
because of the foliation structures on U .
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Observation 5.1. Here we list out all of the important observations from the above
construction of U which we need in the rest of the article.
(1) For any y ∈ U , the rays �̃[0,∞)(y) and �̃[0,∞)(�(y)) are asymptotic as they lie on

the same weak stable leaf.
(2) We can assume that lengths of all the line segments {(r , s, 0)|s ∈ [−1, 1]} are less

than a fixed ε > 0 in M̃. Without loss of generality, we assume ε is small enough
that for any point p ∈ M, the ε−neighborhood of p is contained in a covering
neighborhood of all the foliations F , Fu, F s , Fwu, Fws .

(3) We have considered a Candel metric on the leaves of F̃ in M̃ and the Candel metric
varies continuously on the leaves transversally.

The line segment λ = {(0, s, 0)|s ∈ [−1, 1]} is transversal to F̃ . Consider the open sets
V = ⋃

x′∈λ S1(Lx′) and W = ⋃
x′∈λ(Lx′ ∪ S1(Lx′)).

Definition 5.2. Let γ be a flow line of �̃ contained in a leaf L of F̃ . Given z in γ , if the
forward ray of γ converges to a single point of S1(L), we let this be η+(z). Similarly define
η−(z). In addition, given a point a in M̃, let γa be the flow line of �̃ containing a.

At this point, we only know that flow lines on Ã ∪ R̃ are leafwise quasigeodesics (by
Lemma 2.2). Hence for x ∈ Ã ∪ R̃, both η+(x) and η−(x) are well-defined points in
S1(L). The next lemma shows that every flow ray on M̃ is leafwise quasigeodesic (in
the respective leaf of F̃), and hence η+(x) and η−(x) are well defined for any arbitrary
x ∈ M̃. The proof of this lemma is quite involved.

LEMMA 5.3. For any w ∈ M̃, the forward and the backward rays of the flow line γw =
�̃R(w) are quasigeodesics on the leaf Lw in F̃ which contains the flow line.

Proof. In §4, we proved that F does not admit any holonomy invariant transverse measure,
so by Candel’s theorem, M admits a Candel metric. To prove the current lemma, we
assume a Candel metric in M so that leaves of F are hyperbolic surfaces. This metric
is not Riemannian, but the result is independent of the metric.

By Lemma 2.2, every forward or backward ray in a leaf in F̃wu or F̃ws is quasigeodesic
in its respective leaf. In particular, every flow line is a quasigeodesic in the respective leaf
of F if contained in the attractor or repeller.

So we may assume that the ray is in a leaf not in the attractor or repeller. Property
2.9 shows that every forward (respectively backward) ray is asymptotic with a ray in the
attractor (respectively repeller). We will prove the result for a forward ray and the backward
case is similar. Suppose γ denotes a forward ray not contained in the attractor. By taking a
subray, we may assume that the ray γ is in the weak stable leaf of a point x in the attractor
and the initial point w of the ray γ is very near x and contained in the strong stable segment
of x. Hence we may assume that the initial point is contained in a local cross section U to
�̃ which is a rectangle centered at x, as described in the construction of the set U in the
beginning of this section. Let Lx be the leaf of F̃ containing x, and similarly define Lw.

Recall that Lx is also the weak unstable leaf of �̃ containing x.
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FIGURE 3. The region Ax in Lx and the half-space Px . The region Ax is the region bounded by the curve
c = r1 ∪ I ∪ r2.

Therefore, it is sufficient to show that every forward ray in the set U described above is
quasigeodesic in its respective leaf of F̃ . In the leaf Lx through x, we consider a curve c as
follows.

Let I be the compact unstable segment U ∩ Lx which has endpoints z, y. Let r1 =
�̃[0,∞)(z) and r2 = �̃[0,∞)(y) be the forward rays of �̃ through z and y. Then c := r1 ∪
I ∪ r2 is the bi-infinite curve on Lx , as shown in Figure 3.

The two rays r1 and r2 are quasigeodesics in Lx by Lemma 2.2 as Lx is a weak unstable
leaf of �̃. Moreover, they converge to distinct ideal points in S1(Lx). Let ν be the interval
in S1(Lx) bounded by these ideal points and containing the ideal point of �̃[0,∞)(x).

The curve c bounds a region Ax in Lx (as in Figure 3) which is exactly �̃[0,∞)(I ). The
region Ax is contained in U , in fact,

Ax = �̃[0,∞)(I ) = U ∩ Lx .

This region contains a half plane in Lx , which we denote as Px , as shown in Figure 3.
Recall that we are considering w, a point in U ∩ F̃ s(x), where F̃ s(x) is the strong

stable leaf of x, in other words, �(w) = x in U according to the definition of the map �

above. Let J be the intersection of Lw ∩ U , where Lw is the leaf of F̃ through w. Then
Bw := �̃[0,∞)(J ) is contained in Lw and contained in U . In addition, �(Bw) = Ax .
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FIGURE 4. Px in Lx is asymptotic to Pw in Lw .

Since every point in J is in the strong stable leaf of a point in I, it follows that every flow
ray in Bw is asymptotic to a flow ray in Ax by Observation 5.1(2). In fact, as points leave
compact sets in Bw, they become closer and closer to Ax .

The flow ray rx = �̃[0,∞)(x) is quasigeodesic on Lx by Lemma 2.2 as Lx is a weak
unstable leaf of �̃. We want to show that rw = �̃[0,∞)(w) is also quasigeodesic with
respect to the induced path metric on Lw. The key idea of the proof is as follows: the
induced metrics on the leaves F̃ vary continuously and the region Ax ⊂ Lx is very close
to Bw ⊂ Lw. As rx is quasigeodesic in its leaf and asymptotic to the ray rw = �̃[0,∞)(w),
it follows that the other ray is also a quasigeodesic in its F̃ leaf.

Next we provide more specific details. In the leaf Lx , choose two points x1, x2 in I
with x in between them so that the geodesic βx in Lx with ideal points η+(x1), η+(x2)

is contained in the interior of Ax . This is possible since the flow lines in Lx are uniform
quasigeodesics and they spread out in the forward direction. We stress that, in general, it is
not possible to choose x1, x2 as the endpoints of ν as the flow lines are only quasigeodesics
and not geodesics in Lx . Recall that ν is the interval of S1(Lx) defined previously. Let Px

be the half plane of Lx bounded by βx and containing a forward ray from x. We also may
assume that every point in Px is ε1 close to Lw with ε1 very close to zero. Then βx is
ε1 close to a curve β ′ in Lw which has geodesic curvature in Lw very close to zero. To
obtain this property of β ′ with small geodesic curvature in Lw was one of the reasons to
choose a Candel metric with hyperbolic leaves varying continuously, and hence uniformly
continuously, since M is compact. Notice that using this continuity only gives us a curve β ′
with small geodesic curvature, but not necessarily one which has zero geodesic curvature.
However, since the induced path metric in Lw is hyperbolic, it now follows that this curve
β ′ with very small geodesic curvature is very close in Lw to an actual geodesic in Lw. This
geodesic is denoted by βw. Let Pw be the union of the size-1 neighborhood of βw in Lw

and the half plane of Lw which is very close to Px , as shown in Figure 4.
Note that �−1(rx) = rw. We choose ε1 small enough so that �−1 is defined in Px and

�−1(Lx) ⊂ Pw. This is the reason to include a neighborhood of βw in Lw.
We will now show that the map �−1 : Px → Pw is a quasi-isometry. Using the fact

that Pw is very close to Lx , continuity of leafwise Riemannian metric on M, and the
compactness of M, we obtain the following: given ε > 0, we can consider ε1 > 0 small
enough, such that

if dLx (a, b) ≤ 1, for a, b ∈ Px , then dLw(�−1(a), �−1(b)) ≤ 1 + ε.
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Next consider a0 and b0 on Px and let ρ be the geodesic connecting them on Px . Partition ρ

in n subintervals a0, a1, a2, . . . , an+1 = b0 such that dLx (ai , ai+1) = 1 for all 0 ≤ i <

n − 1 and 0 < dLx (an, b0) ≤ 1. As d(ai , ai+1) ≤ 1 for all i,

dLw(�−1(a0), �−1(b0)) ≤
n∑

i=0

dLw(�−1(ai), �−1(ai+1))

≤ (n + 1)(1 + ε) = n(1 + ε) + (1 + ε).

By construction, n < dLx (a0, b0). Hence, we conclude

dLw(�−1(a0), �−1(b0)) ≤ dLx (a0, b0)C0 + C0,

where C0 = (1 + ε) is a fixed constant. Similarly, if a0, b0 are in �−1(Px), we get
that dLx (�(a0), �(b0)) < C1dLw(a0, b0) + C2 for some globally fixed constants C1, C2.
Since �−1(Px) is 2-dense in Pw, it follows that �−1 is a quasi-isometry from Px to Pw.

Finally, as we know that rx is a quasigeodesic on Px , then its image via the
quasi-isometry �−1, rw = �−1(rx) is a quasigeodesic on Pw ⊂ Lw with respect to the
metric dLw . Since Pw is a quasi-isometrically embedded in Lw, it now follows that rw is a
quasigeodesic in Lw.

If we reverse the flow, every backward ray becomes a forward ray, and hence leafwise
quasigeodesic.

This finally finishes the proof of Lemma 5.3.

By compactness and continuity, there is global K0, s0 > 0 so that given any flow line γ ,
there is a forward ray γ + and a backward ray γ − of γ which are (K0, s0) quasigeodesics in
leaf Lγ , the leaf of F̃ containing γ . Note that all the leaves L ∈ F̃ are hyperbolic and we
can define their boundary at infinity S1(L). As the flow rays γ + and γ − are quasigeodesics
on Fγ , they define unique points on the ideal boundary S1(Lγ ). Hence for all a ∈ γ ⊂ M̃,
the forward subray γ +

a limits on a single point in S1(Lγ ) and η+(a) is well defined as in
Definition 5.2. Similarly, η−(a) is also well defined by the backward subray γ −

a .
In the next proposition, we consider the sets Py contained in U .

PROPOSITION 5.4. Suppose a, b ∈ Py ⊂ Ly but γa �= γb, then η+(a) �= η+(b) in S1(Ly).

Proof. By the previous Lemma 5.3, we already know that all rays are quasigeodesics
in their respective leaves. We do the proof by contradiction and assume that η+(a) =
η+(b) on S1(Ly). Since the rays �̃[0,∞)(a), �̃[0,∞)(b) are quasigeodesics in Ly and by
assumption they have the same ideal point in S1(Ly), the following happens: there is
d0 > 0 and points pi , qi in �̃[0,∞)(a), �̃[0,∞)(b) respectively, escaping in the rays so that
dLy (pi , qi) < d0. Consider the points �(a) and �(b) on Px . Since

�̃[0,∞)(a), �̃[0,∞)(�(a))

are asymptotic in the weak stable leaf of �̃ in M̃, there are p′
i in �̃[0,∞)(�(a))

with d(pi , p′
i ) → 0. Here d is the ambient distance in M̃. Similarly, there are q ′

i in
�̃[0,∞)(�(b)) with d(qi , q ′

i ) → 0. By the local product structure of the foliation F , it
follows that dLx (p

′
i , q ′

i ) < d0 + 1 for i sufficiently big.

https://doi.org/10.1017/etds.2022.55 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.55


Leafwise quasigeodesity and the funnel property 2643

We explain this in more detail. We choose a finite cover of M by foliated boxes of F ,
each of which contains a ball of radius 2/m, where m is a fixed integer. Any disk in a
leaf of F which has diameter less than 1/m which is product foliated and any path in the
disk is approximated by a path in another leaf with length very close to the length of the
original path. Let n be the smallest positive integer bigger than d0. Using compactness of
M, it follows that any connected union of at most nm such disks in a leaf has a transversal
neighborhood of fixed size which is product foliated and has the property above on lengths
of paths. Therefore, the paths from pi to qi in Ly can be approximated by paths from p′

i to
q ′
i in Lx with length very close, resulting in dLx (p

′
i , q ′

i ) < d0 + 1 for i sufficiently big.
Therefore, the rays �̃[0,∞)(�(a)), �̃[0,∞)(�(b)) converge to the same ideal point in

S1(Lx). However, Lx is also a weak unstable leaf of �̃ and as the flow lines �̃R(�(a))

and �̃R(�(b)) are distinct flow lines in Lx , by the description of ideal points of flow lines
in weak unstable leaves as in Property 2.4, the forward limit points are distinct, that is,

η+(�(a)) �= η+(�(b)) in S1(Lx).

This is a contradiction and shows that η+(a) �= η+(b) in S1(Ly).

LEMMA 5.5. In each leaf L of F̃ , the leaf space of the flow foliation is Hausdorff and
homeomorphic to the real line R.

Proof. For the leaves of F̃ in lifts Ã and R̃ of the attractor and repeller, the result is
obvious, since the foliation by flow lines satisfies this property in weak stable and weak
unstable leaves of Anosov flows [Fen94]. Any other leaf L of F̃ is the lift of a leaf of F
which intersects a torus T from the collection of tori {Ti} which separates A and R. Hence
L intersects a lift T̃ of T in a curve β. The flow saturation of β is exactly L, since every
flow line in M is either in the attractor or repeller; or intersects a torus in {Ti}. The curve
β is transverse to the weak stable and weak unstable foliations, and hence intersects a flow
line exactly once. Hence β parameterizes the flowlines in L. This proves the result.

For each L of F̃ , the map η+ induces a map from the flow foliation leaf space in L
(which is ∼= R) to S1(L). Since flow lines are disjoint, this map is weakly monotone.

COROLLARY 5.6. For all y ∈ U , η+(y) �= η−(y) in S1(Ly).

Proof. If η+(y) = η−(y), then the flow line γy bounds a disk D on Ly ∪ S1(Ly) such
that the closure of D in L ∪ S1(L) intersects S1(L) only in η+(y) = η−(y). For any z in
the interior of D, the flow line γz is contained in D, and hence η+(z) = η−(z) = η+(y) =
η−(y). This contradicts Proposition 5.4, because if z, y ∈ U , and γz �= γy , then η+(z) �=
η+(y).

We now extend the map η+ to a map from M̃ to S1(M̃). For each x in M̃, η+(x) is in
S1(Lx) ⊂ S1(M̃).

PROPOSITION 5.7. η+ and η− are continuous on M̃.
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Proof. In this proof, we again use a Candel metric in M.
Suppose xi → x0 in M̃. We will show that η+(xi) → η+(x0) in S1(M̃). There are two

different cases depending on whether x0 ∈ R̃ or x0 /∈ R̃.
We first prove the result for x0 /∈ R̃. As x0 /∈ R̃, the forward ray starting at x0 is

asymptotic to a forward flow ray in Ã. Therefore, it is enough to assume that {xi} and
x0 belong to a neighborhood U as constructed above, since this is true for every ray
asymptoptic to Ã.

For z in M̃, let Lz be the leaf of F̃ containing z.
For i ∈ N ∪ {0}, let γ +

i denote the forward flow ray starting from xi and let ζi denote the
geodesic ray on Lxi

starting at xi and with ideal point η+(xi) in S1(Lxi
). Each ζi defines

the ideal point η+(xi) on S1(Lxi
), therefore it is enough to show that any convergent sub-

sequence of (ζi) converges to ζ0 in the compact open topology. Since all xi are contained
in a compact subset of M̃, existence of convergent subsequences of {ζi} is assured.

Suppose that a subsequence (ζi(k)) converges to ζ ′. We have to prove that ζ ′ = ζ0.
We assume that the neighborhood U constructed above has a point x ∈ Ã, as in the
construction of U . Then all flow rays in Lx ∩ U are (K , s)-quasigeodesics in Lx for some
fixed K , s. Since all flow rays in U are forward asymptotic to flow rays in Lx , there are
K ′, s′ so that all flow rays in U are (K ′, s′)-quasigeodesics in their respective F̃ leaves. It
follows that there exists a constant d ′ > 0 such that

γ +
i(k) ⊂ Nd ′(ζi(k)) and γ +

0 ⊂ Nd ′(ζ0),

where Nd ′ denotes the neighborhood of radius d in the respective leaf of F̃ . For any
d1 > 0, the segment of length d1 on γ +

i(k) starting at xi(k) is within d ′-distance from ζi(k).
Therefore in the limit, the segment of γ +

0 of length d1 starting from x0 is contained in
Nd ′(ζ ′) in the respective leaf. This is true for all d1, so ζ ′ is at Hausdorff distance d ′ from
γ +

0 on Lx0 . However, γ +
0 is also at a bounded distance from ζ0 on Lx0 ; therefore, ζ ′ and

ζ0 are at a finite Hausdorff distance from each other on Lx0 . Hence ζ ′ = ζ0, because they
have the same starting point. As this is true for all convergent subsequences of (ζi), we get
our result for x0 not in R̃.

Before dealing with the remaining case, let us note the following.

Observation 5.8. By the construction of U starting with x in Ã and continuity
of η+ near Ã, we observe that the set U ∪ {η+(z)|z ∈ U} is homeomorphic to
[0, 1] × [0, 1] × [0, 1] inside W = ⋃

y∈λ(Ly ∪ S1(Ly)), which is homeomorphic to a
compact solid cylinder [0, 1] × {theclosedunitdiscD}.

The set U ∪ {η+(z)|z ∈ U} above is saturated by forward flow lines and all the ideal
points contained in this neighborhood are defined by forward flow rays. Hence, we
conclude the following.
(1) If L ∈ F̃ |Ã and p ∈ L, then there exists a neighborhood Np of η+(p) in⋃

L∈F̃ S1(L) such that Np ⊂ η+(M̃) and Np ∩ η−(M̃) = ∅.
(2) Similarly, for q ∈ Lq ∈ R̃, there exists a neighborhood Nq of η−(q) in

⋃
L∈F̃ S1(L)

such that Nq ⊂ η−(M̃) and Np ∩ η+(M̃) = ∅. Moreover, the backward ray γ −
q

starting from q is contained in an infinite cubical neighborhood in M̃ saturated by
backward flow rays.
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To continue the proof of Proposition 5.7, we next assume that x0 ∈ R̃. Suppose that a
subsequence (η+(xi(k))) converges to q where q is not η+(x0). As x0 is in R̃, then Lx0 is
a leaf of the weak stable foliation F̃ws . Hence by Property 2.4 on Lx0 , all the forward flow
rays converge to a single ideal point in S1(Lx0) and all the other ideal points in S1(Lx0) are
ideal points of backward flow rays. As q �= η+(x0), q is defined by a backward ray, that is,
q = η−(z) for some z in Lx0 . By Observation 5.8(2) starting with z in R̃ (notice that z is
in the repeller, not the attractor), there exits a neighborhood V saturated by backward flow
rays around z in

⋃{Ly ∪ S1(Ly)|y ∈ λ′} for some transversal λ′. By Observation 5.8(2),
all limit points are backward ideal points in V and no limit point is a forward ideal point.
This contradicts the fact that the forward rays γ +

i(k) have ideal points in these intervals of
ideal points for k big enough by construction. This contradiction shows that a subsequence
(η+(xi(k))) converging to q �= η+(x0) is not possible, and hence q = η+(x0).

Hence η+ is continuous on M̃. If we consider the flow �t = �−t , then backward
ideal points of �t are forward ideal points of �−t and the continuity of η− follows. This
completes the proof of Proposition 5.7.

6. Flow lines are leafwise quasigeodesic
In this section, we prove a general result of quasigeodesic behavior of some subfo-
liations. This result will imply that in the examples we constructed associated with
non-transitive Anosov flows, the flow lines are uniform quasigeodesics in their respective
two-dimensional leaves. We first consider some general continuity properties.

Definition 6.1. (Continuity properties) Let G be a one-dimensional oriented subfoliation
of a two-dimensional foliation F with Gromov hyperbolic leaves on a 3-manifold M.
Suppose that leaves of G are C1 curves in leaves of F . Suppose that the following three
properties are satisfied.
(1) For each x in M̃ , let � be the leaf of G̃ containing it, and L the leaf of F̃ containing x.

Then in the forward direction (given by the orientation of G̃), the leaf � has a unique
limiting point in S1(L) and this is denoted by η+(x). Similarly, in the negative
direction, there is a unique limiting point in S1(L) denoted by η−(x).

(2) For each x in M̃ , the points η+(x), η−(x) are distinct points in S1(L) (L the leaf of
F̃ containing x).

(3) The functions η+, η− : M̃ → ⋃
L∈F̃ S1(L) are continuous.

Then we say that (F , G) has the continuity properties.

From the foliation G, we can produce a flow with flow lines which are the leaves of G:
for example, just flow forward along leaves of G with speed 1 in the positive direction. Any
reparameterization of the flow produces a time parameter which is quasi-isometric with
this one, so the result on the quasigeodesic behavior of flow lines depends only on G and
not the particular parameterization, or description of G as the flow foliation of a flow.

Notice that the two-dimensional foliation F constructed in §3 with the one-dimensional
subfoliation G by the flow lines of �t satisfies the continuity properties as follows. In
the previous section, we proved the pair (F , G) satisfies the properties (1), (2), and (3)
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of Definition 6.1: property (1) was proved in Lemma 5.3, property (2) was proved in
Corollary 5.6, and property (3) was proved in Proposition 5.7.

The next result is a general result that will imply that the foliations we constructed in §3
are leafwise quasigeodesic foliations.

THEOREM 6.2. Suppose that G̃ is a one-dimensional subfoliation of a two-dimensional
foliation F̃ satisfying the continuity properties of Definition 6.1. Then G̃ is a leafwise
quasigeodesic foliation.

The proof will be attained by the following three results. In the next lemma, we combine
all the results of the previous section to obtain a key property that will be used to show that
all the flow lines are quasigeodesic on their respective leaves of F̃ .

We stress that the quasigeodesic behavior is proved using only the continuity properties,
irrespective of how these continuity properties are obtained. Therefore, Theorem 6.2 is
applicable not only to the examples constructed in §3, but theoretically to many other
situations as well.

To prove Theorem 6.2, again we use a Candel metric. Given x in M̃, let γx be the leaf
of G̃ through it. In addition, let Lx be the leaf of F̃ containing x. Using property (i) of
Definition 6.1, we let η+(x), η−(x) be the unique limiting points of the two rays of γx in
S1(Lx). Notice that they are distinct points in S1(Lx) by property (ii) of Definition 6.1.
Since Lx has a hyperbolic metric, there is a unique geodesic in Lx , denoted by gx , whose
ideal points in S1(Lx) are η+(x), η−(x).

LEMMA 6.3. There exists δ > 0 such that for all x ∈ M̃, we have that

γx ⊂ Nδ(gx),

where gx is the geodesic on Lx connecting η+(x) and η−(x) and Nδ(gx) is the
δ-neighborhood of gx on Lx .

Proof. Suppose that there does not exist any such δ. Then there exists a sequence (xi) in
M̃ with xi in leaves Lxi

of F̃ such that dLxi
(xi , gxi

) > i. Up to deck transformations, there
exists a convergent subsequence of (xi) which we assume is the original sequence, and we
assume xi → x. By property (iii) of Definition 6.1, we know that

η+(xi) → η+(x) and η−(xi) → η−(x).

Since xi converges to x, we assume that all xi are in leaves of F̃ which intersect a fixed
transveral λ to F̃ .

Since η+(xi) converges to η+(x), η−(xi) converges to η−(x), and η+(x) �= η−(x), it
follows that {gxi

} converges to gx . This uses that the topology defined on
⋃

y∈λ(S1(Ly))

is given by the trivialization of the unit tangent bundle to F̃ along λ. By convergence
we mean convergence in the compact open topology. However, this contradicts that
dLxi

(xi , gxi
) converges to infinity, since dLx (x, gx) is finite and the sequence dLxi

(xi , gxi
)

converges to it. This finishes the proof.

We now prove a weak quasigeodesic property of the leaves of G̃ in the leaves of F̃
containing them.
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PROPOSITION 6.4. For any b > 0, there exists a cb > 0 such that if γ is the segment in
a leaf of G̃ connecting x and y with length(γ ) > cb, then dLx (x, y) > b, where Lx is the
leaf of F̃ which contains x.

Proof. Fix b > 0. We do the proof by contradiction. Suppose the statement is not true
for some b > 0. Then for all i ∈ N, there exists two points xi and yi in leaves Li of F̃ ,
with xi , yi in the same flow line defining a flow line segment γi satisfying length(γi) > i

but dLi
(xi , yi) < b. Up to deck transformations and a subsequence, we assume that (xi)

is convergent and xi → x0. Since dLi
(xi , yi) < b, we can similarly assume that (yi) is

convergent and let yi → y0.

CLAIM 2. x0 and y0 are on the same leaf L0 of F̃ .

Proof. If we consider a compact ball Bx0 on L0 containing x0 and a product neighborhood
N(Bx0) with respect to F̃ , then for all large i, Li intersects N(Bx0) and xi ∈ Li ∩ N(Bx0).
If we consider Bx0 sufficiently large, the assumption dLi

(xi , yi) < b for all i forces that yi

has to be contained in N(Bx0). Hence by the product structure on N(Bx0), y0 also has to
lie on L0 as yi → y0.

CLAIM 3. x0 and y0 cannot be on the same flow line in L0.

Proof. If not, then there exists a flow line segment γ connecting x0 and y0 and consider a
compact neighborhood N around γ which has a product structure with respect to the flow
lines. As xi → x0 and yi → y0, the flow segments γi are contained in N for all large i. By
continuity of length of flow lines, length(γi) → length(γ ). However, that is not possible
as length(γi) → ∞ and γ is compact, a contradiction.

CLAIM 4. x0 and y0 cannot be connected by a curve on L0 everywhere transversal to the
flow lines in L0.

Proof. Suppose that there exists a line segment σ on L0 everywhere transversal to the flow
lines on L0 and connecting x0 and y0. By the local product structure of F̃ near σ ∈ L0,
there should be a segment σi in Li connecting xi and yi , and everywhere transversal to
flow lines on Li . Up to taking a sub-segment of γi if necessary and then a sub-segment
of σi , we may assume that γi does not intersect the interior of σi . It follows that the union
of σi and γi bounds a disk Di on Li as their end points are the same. All the flow lines
which enter Di transversally intersecting σi have to exit Di transversally intersecting σi .
The Poincaré–Hopf theorem says that there exists at least one flow line tangent to σi , a
contradiction.

By Lemma 5.5, the leaf space of the flow foliation in L0 is homeomorphic to the reals.
Hence any two distinct flow lines in L0 are connected by a transversal.

This contradiction proves Proposition 6.4.

Now we are ready to prove our final claim.
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PROPOSITION 6.5. The leaves of G̃ are uniformly quasigeodesics in their respective leaves
of F̃ .

Proof. We prove the theorem by contradiction. Recall that we are using a Candel metric in
leaves of F . We assume that the leaves of G̃ are not uniform quasigeodesic on their leaves.
From this assumption, we will construct a sequence of pairs {(xi , yi)} such that xi and yi

are connected by a flow segment γi , where length(γi) → ∞ but dLi
(xi , yi) is bounded.

Here Li is the F̃ leaf containing both xi , yi . However, this will contradict Proposition 6.4.
A very similar result was proved in [FM01], we reconstruct the same arguments in our
specific case.

By our assumption, the leaves of G̃ are not uniform quasigeodesics. We get that for
any K > 0, there exists a segment of a leaf of G̃ with endpoints x, y denoted by γ[x,y],
contained in a leaf of F̃ denoted by Lx , and such that

length(γ[x,y])/dLx (x, y) > 2K and length(γ[x,y]) > K .

For each K, one can find such x, y, Lx , which obviously depend on K, but we omit the
explicit dependence on K for notational simplicity. Consider the geodesic gx = gy on Lx

with ideal points

η+(x) = η+(y) and η−(x) = η−(y) or S1(Lx).

By Lemma 6.3, there exists δ > 0 such that γ ⊂ Nδ(gx), where the neighborhood is in
Lx . This δ is global, it works for any segment in a leaf of G̃ in its respective leaf of F̃ . Let
ρ : Lx → gx be the ‘closest point map projection’, which means ρ(p) is the orthogonal
projection in Lx to gx , a bi-infinite length-minimizing geodesic on Lx . The map is well
defined as the leaves Lx are of constant curvature −1 and so isometric to the hyperbolic
plane: the ‘closest point map’ on to a length-minimizing geodesic is well defined in the
hyperbolic plane. It follows that:

dLx (ρ(x), ρ(y)) ≤ dLx (x, y) ≤ dLx (ρ(x), ρ(y)) + 2δ. (6.1)

Let us assume that dLx (x, y) > 1 + 2δ. Hence, dLx (ρ(x), ρ(y)) > 1 by equation (6.1) and

length(γ[x,y])

dLx (ρ(x), ρ(y))
≥ length(γ[x,y])

dLx (x, y)
≥ 2K > K + K

dLx (ρ(x), ρ(y))
.

Therefore,

length(γ[x,y])

K
> dLx (ρ(x), ρ(y)) + 1 > �dLx (ρ(x), ρ(y))�,

where �a� denotes the integer n such that n − 1 < a ≤ n.
Suppose n0 = �dLx (ρ(x), ρ(y))�, then length(γ[x,y]) > n0K . Also,

n0 − 1 < �dLx (ρ(x), ρ(y))� ≤ n0,

and hence we can construct a sequence {ρ(x) = z0, z1, . . . , zn = ρ(y)} of points in gx ,
such that dLx (zi−1, zi) = 1 for all i < n0 and dLx (zn0−1, zn0) ≤ 1. Next we consider the
sequence x = x0, x1, . . . , xn0 , where xi is the last point on γ[x,y] such that ρ(xi) = zi .
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If γi denotes the flow segment joining xi−1 and xi , we have γ[x,y] = γ1 ∗ γ2 ∗ · · · ∗ γn0 .
Hence,

n0∑
n=1

length(γi) = length(γ[x,y]) > n0K .

By the pigeonhole principle, there exists xi−1 and xi such that length(γ[xi−1,xi ]) > K .
However, from (∗), we get that for all i,

dLx (xi−1, xi) ≤ dLx (ρ(xi−1, xi)) + 2δ = dLx (zi−1, zi)) + 2δ < 1 + 2δ.

As the choice of K > 0 was arbitrary, this proves that the ‘weak quasigeodesic property’
in Lemma 6.4 is not true for b = 1 + 2δ, a contradiction. We conclude that leaves of G̃ are
uniformly quasigeodesic on their respective leaves of F̃ .

This finishes the proof of Proposition 6.5.

7. Conclusion
We now apply the results of this section to the two-dimensional foliation F with a
subfoliation G as constructed in §3. Section 4 shows that every leaf in F is Gromov
hyperbolic when lifted to the universal cover. Proposition 6.5 proves that the flow
foliation (that is, the foliation G) is a leafwise quasigeodesic subfoliation of F . Moreover,
Proposition 5.4 proves that all leaves of F which are not contained in A or R are
non-funnel. This is because of the following: if γa , γb are distinct flow lines in some leaf
L of F̃ which are not in the lift of the attractor or the repeller, then Proposition 5.4 shows
that η+(a) �= η+(b) in S1(L). Applying the same result to negative flow rays, one obtains
that η−(a) �= η−(b) in S1(L). Hence L cannot be a funnel leaf. However, all leaves in A
or R are funnel by Corollary 2.6. This completes the proof of the Theorem 1.1.

Acknowledgement. We thank Rafael Potrie for providing a crucial idea which greatly
simplified the proof of Lemma 3.2.

REFERENCES

[Ano63] D. V. Anosov. Ergodic properties of geodesic flows on closed Riemannian manifolds of negative
curvature. Dokl. Akad. Nauk SSSR 151 (1963), 1250−1252.

[AS67] D. V. Anosov and J. G. Sinaı. Certain smooth ergodic systems. Uspekhi Mat. Nauk 22(5(137)) (1967),
107–172.

[BBY17] F. Béguin, C. Bonatti and B. Yu. Building Anosov flow on 3-manifolds. Geom. Topol. 21 (2017),
1837–1930.

[BFP20] T. Barthelmé, S. Fenley and R. Potrie. Collapsed Anosov flows and self orbit equivalences. Preprint,
2022, arXiv:2008.0654. Comment. Math. Helv., to appear.

[BI08] D. Burago and S. Ivanov. Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamen-
tal groups. J. Mod. Dyn. 2(4) (2008), 541–580.

[Bru93] M. Brunella. Separating the basic sets of a nontransitive Anosov flow. Bull. Lond. Math. Soc. 25(5)
(1993), 487–490.

[Cal00] D. Calegari. The geometry of R-covered foliations. Geom. Topol. 4 (2000), 457–515.
[Cal01] D. Calegari. Foliations and the Geometry of 3-Manifolds (Oxford Mathematical Monographs). Oxford

University Press, Oxford, 2007.
[Cal01b] D. Calegari. Leafwise smoothing laminations. Algebr. Geom. Topol. 1 (2001), 579–585.

https://doi.org/10.1017/etds.2022.55 Published online by Cambridge University Press

https://arxiv.org/abs/2008.0654
https://doi.org/10.1017/etds.2022.55


2650 A. Chanda and S. Fenley

[Can93] A. Candel. Uniformization of surface laminations. Ann. Sci. Éc. Norm. Supér. (4) 26(4) (1993),
489–516.

[CC00] A. Candel and L. Conlon. Foliations. I (Graduate Studies Mathematics, 23). American Mathematical
Society, Providence, RI, 2000.

[Fen94] S. R. Fenley. Anosov flows in 3-manifolds. Ann. of Math. (2) 139(1) (1994), 79–115.
[Fen02] S. R. Fenley. Foliations, topology and geometry of 3-manifolds: R-covered foliations and transverse

pseudo-Anosov flows. Comment. Math. Helv. 77(3) (2002), 415–490.
[FM01] S. Fenley and L. Mosher. Quasigeodesic flows in hyperbolic 3-manifolds. Topology 40(3) (2001),

503–537.
[FW80] J. Franks and B. Williams. Anomalous Anosov flows. Global Theory of Dynamical Systems (Proceed-

ings of an International Conference Held at Northwestern University, Evanston, Illinois, June 18-22,
1979) (Lecture Notes in Mathematics, 819). Springer, Berlin, 1980, pp. 158–174.

[Gro87] M. Gromov. Hyperbolic groups. Essays in Group Theory (Mathematical Sciences Research Institute
Publications, 8). Springer, New York, 1987, pp. 75–263.

[IM90] T. Inaba and S. Matsumoto. Nonsingular expansive flows on 3-manifolds and foliations with circle
prong singularities. Jpn. J. Math. (N.S.) 16(2) (1990), 329–340.

[KH95] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia
of Mathematics and Its Applications, 54). Cambridge University Press, Cambridge, 1995. With a
supplementary chapter by A. Katok and L. Mendoza.

[Pat93] M. Paternain. Expansive flows and the fundamental group. Bol. Soc. Brasil. Mat. (N.S.) 24(2) (1993),
179–199.

[Pla75] J. F. Plante. Foliations with measure preserving holonomy. Ann. of Math. (2) 102(2) (1975), 327–361.
[Sha20] M. Shannon. Dehn surgeries and smooth structures on 3-dimensional transitive Anosov flows. PhD

Thesis, 2020, https://tel.archives-ouvertes.fr/tel-02951219/document.
[Sma67] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc. (N.S.) 73 (1967), 747–817.
[Thu82] W. P. Thurston. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer.

Math. Soc. (N.S.) 6(3) (1982), 357–381.
[Thu97] W. P. Thurston. Three Dimensional Geometry and Topology (Princeton Mathematical Series, 35). Vol.

1. Princeton University Press, Princeton, NJ, 1997.

https://doi.org/10.1017/etds.2022.55 Published online by Cambridge University Press

https://tel.archives-ouvertes.fr/tel-02951219/document
https://doi.org/10.1017/etds.2022.55

	1 Introduction
	2 Preliminaries
	2.1 Basic sets of Anosov flows on 3-manifolds

	3 The foliation F
	3.1 Construction of F
	3.2 Properties of F

	4 Gromov hyperbolicity of the leaves of F
	5 Properties of flow lines
	5.1 The sets U

	6 Flow lines are leafwise quasigeodesic
	7 Conclusion
	Acknowledgements
	References

