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Abstract. We present optical photometry of the eclipsing supersoft 
source, CAL 87. We find the eclipse structure to be stable over ~ 4 y, de­
rive an improved ephemeris of T0 = HJD 2450111.5144(3)+0.442674(7)£, 
and see new structure in the light curve morphology. 

1. MACHO Project Photometry 

We show in Fig. 1 optical photometry of the eclipsing supersoft source, CAL 87, 
obtained via the MACHO project from 1992 Aug - 1996 May (see Alcock et 
al. 1996). The broad primary eclipse is ~ 0.2 mag deeper in the blue, and 
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Figure 1. The blue and red MACHO light curves of CAL 87. The 
data are folded and averaged into 50 phase bins. 

a shallower secondary dip is seen in both passbands at <fi ~ 0.5. The latter 
probably results from obscuration of the irradiated face of the donor star (van 
den Heuvel et al. 1992). The B — R colour (not plotted) shows pronounced 
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Figure 2. SAAO high speed white light curve of CAL 87. Note the 
obvious structure at <fi ~ 0.82 — 0.87 and <j> > 1.1. 

reddening through the primary eclipse, and also marginal evidence for a slight 
reddening centred on <f> ~ 0.55. Examination of the yearly data-sets from 1992-
1996 failed to reveal any significant changes in the orbital period or overall 
morphology, although the step in the egress at <j> ~ 1.1 (see also Fig. 2) sometimes 
seemed more pronounced. We derive P — 0.442676 ± 0.000007 d from the 
complete dataset in each filter, consistent with previous measurements (e. g. 
Schmidtke et al. 1993). 

2. High speed photometry 

Fig. 2 displays a white light curve of a single eclipse, consisting of continuous 
10 — 20 s integrations, obtained with the UCT CCD and SAAO 1.9 m telescope. 
We derive an ephemeris of T0 — HJD 2450111.5144(3) for the time of minimum 
light. The extended ingress and kink at <p ~ 0.82 — 0.87 may be explained by 
variable obscuration by the thickened accretion disc rim (Callanan et al. 1989; 
Armitage & Livio 1996; Alcock et al. 1996). A turn-over is observed in the 
egress for <j> > 1.1. This is similar to the variability seen in Z Cha (Cook & 
Warner 1984), caused by the presence of a hot spot on the disc. In CAL 87, 
an analogous component may be the strongly irradiated inner-surface of the 
accretion disc bulge. 
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