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ALGEBRAIC HOMOTOPY THEORY 

J. F. JARDINE 

0. Introduction. Kan and Miller have shown in [9] that the homotopy 
type of a finite simplicial set K can be recovered from its i£-algebra of 
0-forms A°K, when R is a unique factorization domain. More precisely, 
if Sf is the category of simplicial sets and s/ is the category of i^-algebras 
there is a contravariant functor 

with 

A°X = y (z ,v ) , 
the simplicial set homomorphisms from X to the simplicial i^-algebra V , 
where 

Vn = R[xo . . . * „ ] / ( Z) x< — 1j , w è 0, 

and the faces and degeneracies of V are induced by 

(xj j < i 
di%j = \0 j = i 

\Xj-i j > i 

and 

i Xj j < i 

X i -\- X i+i J = I 

xj+1 j > i, 
respectively. Of course, if R = Q, A°X is just the 0-forms portion of the 
deRham complex A*X which is used in rational homotopy theory (see 
[4]), and it certainly seems appropriate to call this more general A0 the 
0-forms functor as well (as is done in [9]). There is a contravariant 
functor 

with w-simplices of F°B defined by 

(F°B)n = j / ( B , Vn) , n ^ 0, 
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ALGEBRAIC HOMOTOPY THEORY 303 

for the i^-algebra B, and the obvious faces and degeneracies induced by 
those of V. This functor is a close relative of Sullivan's spatial realization 
of a differential algebra [14] and, as in that situation, there is a natural 
bijection 

y(X, F°B) ^^(B,A°X), 

making F° and A0 adjoint on the right. What is actually proved in [9] is 
that the corresponding natural map (i.e., the unit of the adjunction) 

is a weak (homotopy) equivalence of Sf if the simplicial set K is finite 
in the sense that it has only finitely many non-degenerate simplices, and 
if the ring of definition R of A0 and F° is any unique factorization domain. 

The discussion is begun in § 1 by showing that this map r) is not a weak 
equivalence in general in the case where R is a finite field. This answers 
the (obvious) question posed in [9] in their " Remark 1.2". The discussion 
requires a mild excursion into the theory of ultrafilters, for which [3] is 
an excellent general reference. 

Starting from the Kan-Miller result, one could ask for a closed model 
structure (in the sense of [12]) on the i^-algebra category <$/ in such a 
way that A0 and F° wTould induce an equivalence of the corresponding 
homotopy categories. § 2 of this paper is concerned with repairing the 
set-theoretic damage done by § 1 to this idea via a passage to the pro-
category pro *$/. The principal results can be paraphrased as follows: 

(1) There are functors A : ¥ —• pro srf and P: pro s/ —> if such that 
(a) A and P are adjoint on the right, and 
(b) there are natural isomorphisms 

(i) ÂK ^ A°K for K finite, and 
(ii) PB ^ F°B for i^-algebras B. 

(2) pro s$ is a closed model category in such a way that A and F induce 
an equivalence of Ho (pro s/) with the ''usual" homotopy category 
H o ( y ) . 

F and A are closely related to F° and A0 respectively. It appears to be 
most fruitful not to think of F° or F a s a realization of some kind, but 
rather as a good analogue of the ordinary singular functor (to see this 
apply the Spec functor to the case of F°). Thus, one calls F the algebraic 
singular functor, and Â the algebraic realization functor. 

In § 3 a few easy observations are noted in an effort to convince the 
reader that the connection between this homotopy theory and traditional 
algebraic geometry is somewhat subtle. This phenomenon is a source of 
hope for future applications of that which follows. 
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1. Some set theory. Let k be a finite field and l e t j / be the correspond­
ing category of ^-algebras. Explicitly, for a simplical set X the natural 
map, 

77: X - > F>A°X 

is defined by 

v(x) = joA\ix):A«X->Vn 

for x £ Xn and w è 0, where ix: An —> X classifies x and j : A°An —• V„ is 
the obvious isomorphism. Ambiguously, write 

X = I I A°in^, 

where X is an infinite set. There is an obvious natural isomorphism 

d:A°X-> n *. 

where px o 6 — T?(X) for all x £ X. 
Now recall that if I is an ideal of IXrex k, then the assignment to I of 

the set 

F (I) = {/ Ç &{X)\J is the set of zeros of some F Ç / } , 

induces an order-preserving bijective correspondence between ideals of 
FLcx & a n d filters on X. If an ideal Q C n*€x k is prime it is easily shown 
that F(Q) has the property that for all J <Z X, either J £ F(Q) or 
X - J £ F(Q). It follows [3, p. 20] that F(Q) is an ultrafilter, whence Q 
is a maximal ideal. This essentially proves 

LEMMA 1.1. Every n- simplex of ^°(T1XGX k) ^S degenerate for positive n. 

It follows from Lemma 1.1 that, if 77: X —» F°A°X is a weak equiv­
alence, then the function 

77*: X —> J / ( [ ] ^ X £, &) 

is a bijection, where 77* (x) = px, the projection to the xth factor. This is 
because 77* is just 71-0(77) after a few identifications have been made. But 
77* cannot be surjective, in view of 

PROPOSITION 1.2. Let k be a finite field and let X be an infinite set with 
cardinality a. Then card (^/([^xex k, k)) = 22<x. 

Proof. The rational points s/(A, k) of any ^-algebra A can be identified 
with the collection of ideals I C A satisfying the property that for all 
x Ç A there is a unique a £ k such that x — a G J. If i f is any maximal 
ideal of r izex &> if 2 £ n*€x »̂ a n d if ai . . . aff is a list of the elements 
of kf then 

(z — ax) . . . (z - a j = 0, 
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and so there is an i such that z — a{ £ M. Moreover, this i is unique 
since 0 $ F(M). Thus, the rational points of Yix^x k are precisely its 
maximal ideals. According to a standard theorem [3, p. 108] there are 22" 
non-principal ultrafilters in SP(X). Thus, there are 22<x rational points of 
Yl*ex k outside of the image of ??*, which has cardinality a. The lemma 
follows. 

One can see that T?* is not onto more easily by observing that ©x(=x k 
is an ideal of IXrex >̂ an<^ that a nY maximal ideal containing it cannot 
be the kernel of a projection. 

It is possible to sketch what happens when k is a countable field. An 
ultrafilter FÇ_&{X) is ^-complete if for every countable partition 
X = J_Jnew Xn of X there is a unique n such that Xn £ F. 

Using Theorem 3.13 of [3, Chapter 6] one can show that the rational 
points of f l ^ x ^ a r e precisely the co-complete ultrafilters of &(X). It 
follows that 77* is not a bijection if and only if there is a non-principal 
co-complete ultrafilter in &(X). The question of the existence or non­
existence of such "measurable cardinals" X (i.e., sets X having a non-
principal co-complete ultrafilter in &{X)) is a venerable unsolved 
problem of analysis. Much more can be said; see [3] and [6]. 

2. The pro-category. This section contains the main results of this 
paper. Some terminology is established at the outset, but no attempt is 
made for the exposition to be self-contained. The reader who finds a 
paucity of detail here should consult the Appendix of [1]. 

Recall that a pro-object in s$ (i.e., an object of the category pro se) 
is a contravariant functor T: I —• se, where / is a small filtered category 
(see [1, p. 154]). Given another pro-object S: J —» se, a pro-map 
0: T —> 5 is an element of the set 

lim lims/(T i t Sj). 

stf is a full subcategory of pro s/ in such a way that for A £ stf, 

pro s/(T, A) = lim_>iS/(TitA). 

This is a set of equivalence classes of maps 0: 1\ —* A; the class that $ 
represents is denoted by [0]. Thus, a pro-map </>: T —• S can be thought 
of as a collection of the simpler kinds of pro-maps 

<t>j: T - > Sjt j G J, 

such that for each /3: f —•> j in / , the diagram 

T \SP 

<t>? 
'S< 
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commutes in the sense that 

<t>j' = [Sfi O T ] , 

if r represents 0y. This information is summarized by saying that a 
sequence of maps 

<t>j'> TiU) ~~> ̂ ' ' i £ »̂ 

represents the pro-map <t> if (ambiguously) 

[</>,] = 0, for every j G J. 

With this terminology it is convenient to say, given another pro-object 
U: K —» s/ and a sequence of maps 

\l/k: Sm -> Uk, fe € i£, 

representing the pro-map ^: S —> £/, that the sequence of compositions 

Ti{j{k)) > Sj(k) > ukJ k e K , 

represents the composite \f/ o <p: T —-> f/ in pro J^. 
Now we describe J . For I ^ y , let ^ (X) be the small filtered 

category which has all finite subcomplexes K of X as objects and all 
inclusions between them as morphisms. The contravariant functor 

ÂX: #~{X) -> s/ 

is defined on morphisms i: K —» L by 

ÂX(i) = A°(i): A°L->A°K. 

If/: X —> F is a simplicial map and i£ is a finite subcomplex of X then 
f(K) is a finite subcomplex of Y. L e t / | x : i£ —* f(K) be the restriction 
of / to K. Then it is easy to see that the sequence 

A°(f\K): A°(f(K)) -> A°K, K £ &(X), 

represents a pro-map Âf: A Y —» ÂX, and that the assignment f *-> Âf 
determines a contravariant functor Â: y —> pro J3^. It is worth noting 
that 4̂ is the right Kan extension of the restriction of the composition 

A0 

to the full subcategory Ĵ ~ of finite simplicial sets, along the inclusion of 

F: pro stf —> y is easier to define. For T £ pro J^, F r is the simplicial 
set with w-simplices defined by 

(FT)n = p r o j / ( r , V n ) , » è 0, 
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and faces and degeneracies induced by those in V. Obviously FA = F°A 
for A Ç s/j and it is straightforward to show 

LEMMA 2.1. There is a natural map f: A°X —> ÂX for X G S/*, with 
fK = A°(i): A°X ->A°Kfor K G ^(X), where i is the inclusion of K 
in X. f is an isomorphism of pro <$/ if X is finite; in this case f~l is repre­
sented by lA°x-

There is a natural map 

*: pro s/(T, AX) -+y(X, FT) 

such that, for g: T —> ÂX, and x £ Xn, n ^ 0, ^g(#) is the composition 

In fact, we have 

PROPOSITION 2.2. \(/ is a natural bijection, so A and F are adjoint on the 
right. 

Proof. By definition, if X Ç j ^ 7 and T: J —> ja/ is a pro-object, then 

pro j / ( r , AX) = lim lim J / ( 7 \ - , A°K), 

the limits being taken over K Ç ^(X) and ^ G / . But there is a natural 
isomorphism 

lim l imj / (7 \ , 4°20 ^ lim l i m ^ (#, F°7\), 

in view of the adjointness of A0 and F°, and a natural map 

lim \imy(Ky F*Tt) ^y(X, £ r ) 

which is gotten by taking colimits. This map / is an isomorphism in view 
of the fact that 

\im^y{K, F°Tt) ^y{K, FT) 

for each finite K. It is an exercise to show that \p is the composition of 
the isomorphisms / and </>. 

Statement (1) of the introduction has now been established. The 
essence of (2) appears to be 

LEMMA 2.3. Consider the situation 
A 

/ - * — 
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where A and B are R-algebras, B is a unique factorization domain, / is 
a non-zero ideal of A, and h is a non-zero multiplicative R-module homo-
morphism. Then there is a unique R-algebra homomorphism ft#: A —* B 
extending h. 

Remark. This is a generalization of a Lemma of [9]. In fact, the main 
result of that paper will be obtained here as a corollary of Lemma 2.4. 

Proof of Lemma 2.3. Choose u £ / such that h(u) 5* 0. Then, for all 
x £ A, there is a ffx £ B such that 

h{xu) = pxh(u). 

In effect, if ft(xw) = 0 then obviously (3X = 0, and if h(xu) 9e 0 then 
use the equations 

h(xu)k = h(xku)h(u)k-\ ^ 2 , 

as in [9], Moreover, since B is an integral domain $x is unique. Observe 
that if there is another v € I such that h(v) 7e 0, with corresponding 
identity 

h(xv) = yxh(y), 

then 

@xh(u)h(v) = h(xuv) = yxh(v)h(u), 

and so /^ = 7^. Now define a function h*: A -* B by ft*(#) = /3X. 
Clearly ft* is i?-linear and extends h. h*(xy) = h*(x)h*(y) if h*(x) 9^ 0 
and h#(y) 9e 0 since 

PxvHu) = h(xyu) = @xh(yu) = i3x&yh(u). 

If, for example, fe(yw) = 0 then /3y = 0 and so 0 ^ = 0, while 

h(xyu)h(u) = h(xu)h(yu) = 0, 

implies that h(xyu) = 0, and so 0^ = 0. Finally, ft* is unique from the 
equations 

ft(xw) = h*(xu) = ft*(x)ft#(w) = h*{x)h{u). 

Some technical lemmas for pro J3^ will now be listed. 

LEMMA 2.4. L ^ I be a small filtered category and consider the pullback 
diagram 

X S L ^ y 

• I 
W YZ 
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in the category s/10 of contr avariant functors I —» s/, where of. Yt —» Zt 

is surjective for every i £ / . Let B £ se be a unique factorization domain. 
Then the diagram 

pro s/(Z,B) 

5*1 

-* pro J/(W,B) 

10* 

pro s/(Y, B) 2 — • pro j / (A\ B) 

is a pushout of sets. 

Proof. Suppose that there is a commutative diagram of sets, 

pro J / ( Z , B)-

5*1 

+ pro Jzf(W,B) 

f 
-* £ p r o j / ( F , £ ) -

Take a pro-map <£: X —» 13 and let 

i£* = ker {ô,-: F* -» Z<} = ker {£*: Xt 

Then: 

Wi}. 

(i) If there is a representative </>*: Xi —> B oî <t> such that <t>i(Ki) 
then there is a unique pro-map \p: W —> B such that ^0 = 0. 

0, 

(ii) If there is no representative <£t of <£ which kills Kit then there is a 
unique pro-map 77: Y —> B such that 77a = <£. 

To see (i), observe that fit: Xt —> W* is surjective, since it is the pull-
back of a surjective map with kernel Kf. Thus, there is a unique 
\pi\ Wi—±B such that \p$i = 0*. Set ^ = [^]. The uniqueness of ^ 
follows from the fact that £ is an epi of pro stf (see Lemma 2.5). For (ii) 
consider the diagram 

By Lemma 2.3 there is a unique t]f. F* —> B such that i^a* = <£*. Lemma 
2.3 also guarantees that r? = [77,-] is independent of the choice of repre-
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sentative <t>t of 0, and that y\ is the unique pro-map such that 77a = <j>. 
Now, in order to get a commutative diagram 

proJ^(Z, B) -+pro,Sïf(W, B) 

p r o j / ( F , B) -- > p r o j / ( X , 5) 

we are obliged to define 

*(*) 
Ig(iA) if <£ satisfies (i) 
1/(97) if <t> satisfies (ii). 

Thus it is clear that all that has to be done in order to finish the proof 
of the Lemma is to show that da* = f and 0/3* = g, but this a straight­
forward case check. 

COROLLARY 2.4.1. Let 

be a pullback diagram of R-algebras in which ô is surjective and let the 
R-algebra B be a unique factorization domain. Then the diagram 

s/(Z, B)-

8*' 

-> s/(W, B) 

1/3* 

s/(Y,B) j-^^.B) 

is a pushout of sets. 

Thus, since every V„ = R[xx . . . x„] is a unique factorization domain, 
we have 

COROLLARY 2.4.2. (Kan, Miller). The natural map 

n: K-* F>AaK 

is a weak equivalence if K is a finite complex. 
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The missing link in Lemma 2.4 was 

LEMMA 2.5. (i) Take X, Y: I —• se in pro s/ and let w: X —> Y be a 
natural transformation such that Tf. Xt —» Yt is surjective for every i £ I. 
Then w represents an epimorphism of pro s/. 

(ii) In every pullback diagram 
a 

in pro se with it as above, p is epi. 

Proof. ( i )Take/ , g: Y~>A,A £ J / , with/*- = git, and let/,-: F , - > 4 , 
gj/: F t ' —* 4̂ represent / and g respectively. There is a commutative 
diagram 

so that/zFa:i = gi> Ya2 a n d / = g. This argument suffices for the general 
case. 

(ii) Suppose that T is the pro-object T: J —» *$/. By Section 3 of the 
Appendix of [1], there is a small filtered category Mp, cofinal functors 
0: M$ —> / , ^: M"/3 —> / , a natural transformation (3*: T<t> —» F/s and a 
commutative diagram 

T — • F 

can can 

> F^ 

in pro se, where the vertical arrows are canonical isomorphisms repre­
sented by identity maps. Moreover, the diagram 

can can 
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commutes in pro se, where wx// is represented by the obvious natural 
transformation. Thus, by [1, A.4.1] our pullback is isomorphic to the 
pullback 

of séM^. 7r^m: Xxpm —> Y\pm is surjective for every m £ Mp, so p' is an 
epi of pro srf by (i). 

It is necessary at this point to briefly recall the construction of filtered 
inverse limits in pro se from [1, A.4.4]. Let / be a small filtered category 
and consider a contravariant functor T: J —> pro s/. In particular, we 
have T(j): I(j) —» s/ for every j Ç J. Let K be the category having as 
objects all pairs (j, i) with j £ / and i £ I(j), and such that a morphism 
(«i </0: 0> i) ~~* (/> ^) consists of an arrow a: j —> f of J, together with 
an J^-morphism <j>: T(f) t> —> T(j) t representing T(a)i. K is small and 
filtered. Let L: K —» s/ be the pro-object which is defined on morphisms 
by L(a, <t>) = <j). The pro-maps TJI L —> T(j) with (TI^)* represented by 
lr(»< form a limiting cone in pro s/. 

As an example, take At G J2^, where the z ranges over some index 
set X. The product of the AJs in pro s/, denoted by f ^ ^ x Au is the 
functor 

P: ^(X) -> s/, 

where S^{X) denotes the finite subsets of X considered as a small filtered 
category, and with 

P(K) =UieKAL iovK e ^(X), 

this finite product being taken in se. 

LEMMA 2.6. For T: J —» pro se as above, if T(a): T(f) —> T(j) is an 
epi of pro s/ for every a: j —> f of 7, then the maps 

TTJ\ L -» T(j), j G Jy 

are also epi in pro s/. 

Proof. Take / , g: T(j) —> A, with A Ç s/, such that /7r; = g7r;, and 
let/*: rO')* —* A and g^: T(j)i> —* A represent / and g respectively. By 
using the filtered condition on / if necessary we can assume that there 
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is a commutative diagram in se of the form 

But <$> and \p both represent Ta, sofTa = gTa a n d / = g. This argument 
suffices again for the general case. 

COROLLARY 2.6.1. For T with L as in 2.6 and A £ s/, 

pro s/{LyA) = pro j / ( l i m Tj} A) ^ lim pro s/(TjyA). 

pro j / ( h m T„ ^ ) = U pro *s/(Tjt A), 

since every map L —> A is represented by a map P(i) «• —* A of J^. 

COROLLARY 2.6.2. Let B Ç s^ be an integral domain. Then 

pro ^(Ut,i A{, B) ^Uiei^(A„B) 

naturally. This isomorphism is natural in B as well. 

The reader will recall [12, 13] that specifying a closed model structure 
for a category C requires the définition of three classes of maps, called 
fibrations, cofibrations, and weak equivalences respectively, such that 
the following axioms are satisfied: 

CM1. C is closed under finite direct and inverse limits. 

/ g 
CM2. Given U —> T —•> 5 in C, if any two of g,f and g of are weak 

equivalences, then so is the third. 
CM3. If / is a retract of g (in the category of arrows of C) and g is a 

cofibration, fibration, or weak equivalence, then so i s / . 
CM4. Given a solid arrow diagram 

U >T 
I * i 
I ' i 
I ' I 

i\ / \P 

F' >s 
where i is a cofibration and p is a fibration, then a dotted arrow exists 
making the diagram commutative if either i or p is a weak equivalence. 
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CM5. Any m a p / may be factored as 
(0 f — pi where i is a cofibration and a weak equivalence and p is a 

fibration, and 
00 / = QJ where j is a cofibration and g is a fibration and a weak 

equivalence. 

It should be pointed out that the notions of trivial fibration and 
cofibration, and right and left lifting property have their customary 
meanings here (see [12]). Now say that, in pro s/: 

(1) / : T —> S is a cofibration if / has the left lifting property with 
respect to all maps of the form 

A°(i): AQ(An) -> ,4°(Afc
w), « è l O ^ B w , 

(2) / : T —> S is a weak equivalence provided that Ff is a weak equiv­
alence of «y, and 

(3) / : 7̂  —> 5 is a fibration if/ has the right lifting property with respect 
to all cofibrations which are also weak equivalences. 

Then we have 

THEOREM 2.7. With these definitions, pro se is a closed model category. 

Proof. CM1 comes from [1,A.4.2]. CM2 and CM3 are trivial. One 
shows first of all that the factorization axiom CM5 (ii) holds. Take 
/ : T —> S and consider the set of all diagrams D of the form 

Form the pullback 

Si-

o-] 

So = S-

pr 

*A°(ànD) 

AH 

+ A»(AkD
nD) 

-•ru-u^) 
where jQ ^4°^is the obvious natural transformation. All of the maps 
occurring in Yl AH are surjective and so a i js epi by 2.5. 2.6, together 
with the Kan-Miller result, ensures that fi(^[ AH) is a trivial cofibration 
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of «y. Thus, by 2.4, so is F<j\. Let/ i : r —» Si be the unique map such that 

7 \ 

/o = / - • fU°(A>) 

0"! ru« 
So = S 

OS*) 
- •n^°(A^) 

commutes, and now iterate the construction to produce a tower of maps 

. . . —>• 0 3 —> 0 2 —» 0 1 —» 0 0 — o , 

together with a cone 

/,: r -> S„ * è 0. 

Let vSoo = lim<_* 5Z-, with limiting cone 

wt: S^ -> S,, i è 0. 

Then / has a factorization / = 71-0/00, where fœ is the unique map induced 
by the fu i ^ 0. fœ is a cofibration, since any 0: Sœ —> ^4°( A^w) factors 
through some 5m, according to the construction of filtered inverse limits 
in pro sé. It is easy enough to see that 7r0 has the right lifting property 
with respect to all cofibrations, so in particular 7r0 is a fibration. Finally, 
one uses 2.6 to show that Ar0 is a trivial cofibration of S^, and so 7r0 is a 
weak equivalence as well as a fibration. The factorization CM5 (i) is 
obtained similarly, by using the fact tha t / : T —» S is a trivial cofibration 
of pro CQ/ if and only if / has the left lifting property with respect to all 
maps of the form 

AH: A°(An) -> A°(dàn), n è 0, 

where, by convention, d A0 = <j>. The nontrivial part of CM4 is a standard 
consequence of the construction used for the proof of CM5 (ii). 

This section is concluded with 

THEOREM 2.8. F and A induce an equivalence of Ho ( 5 0 with Ho (pro s/). 

Proof. We begin by showing that the unit of the adjunction, 

fjx: X -> FAX, 

is a weak equivalence for arbitrary X £ $f, First of all, one uses the 
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naturality of the map / of 2.1 together with the fact that f)x(x) is the 
composition 

AX i î î » ÂAn £-+ A°An -L+ V„, 

to show that there is, for every X 6 Sf, a commutative diagram 

X ^—^FÂX 

Ff 

f 

F°AQX = FA°X 

Thus, by 2.1 and 2.4.2, fjx is a weak equivalence for finite X Ç Sf. For 
the general case, X can be regarded as a filtered colimit 

X = lim 2£ 

i n ^ , and by 2.6.1 

F i X = lim FAR. 

Thus, rjx: X —» F^IX is a weak equivalence, since it is a "filtered colimit'' 
of weak equivalences fjK: K —» FÂK, K G ^(X). Now, the counit of 
the adjunction 

eV T -^ AFT 

is a weak equivalence of pro J ^ by the triangle identity 

r 6 f O 7} p T = i-FT' 

A preserves weak equivalences since r\ is a natural weak equivalence, and 
F preserves weak equivalences by definition. The theorem follows easily. 

3. Some observations and questions. As pointed out in the intro­
duction, the relationship between this homotopy theory and affine 
algebraic geometry over an algebraically closed field k is still mysterious, 
even though they live together, so to speak, within a pro-category. The 
usual homotopical analysis of a closed model category involves finding 
a convenient class of fibrant cofibrant objects, like CW complexes in the 
topological setting, which invades every weak equivalence class. This has 
not yet been done here. Neither is there a reasonable working model for 
a homotopy between two maps in pro s/, even though such a thing is 
formally defined. The problem of finding such a model seems to defy 
ordinary geometric intuition. 

Vx 
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A possible reason for this problem is that very natural constructions 
coming from the simplicial category quickly take one outside the realm 
of algebras which are finitely generated over k. One might like to believe 
that for every finite K £ Sf, A°K is a finitely generated ^-algebra. This 
is certainly the case if K is an oriented simplicial complex. However, let 
S71 be the simplicial n-sphere for w ^ 1. It is defined, of course, by the 
requirement that the following diagram should be a push-out of $f \ 

dAn • * 

An • £ » 

Then we have 

PROPOSITION 3.1. A°Sl is finitely generated as a k-algebra, but A°Sn is 
not even Noetherian for n è 2. 

Proof. It is easy to check, using the fact that A0 takes pushouts to 
pullbacks, that 

A°S* = k + (T), 

where k + (T) is the smallest subalgebra of k[xi . . . xn] containing the 
principal ideal (T), and where 

T = xi. . .xA 1 — ]T xA . 

If n — 1, then we have the situation 

where k[xi] is an integral extension of A°S1 and is finitely generated over 
k. Then, by [2, p. 81] A°S1 is finitely generated over k. If n ^ 2, let Im 

be the ideal of A0^ generated by the set {T, x{T . . . , XimT), for m ^ 0. 
If Xiw+1T £ Im then x^T has the form 

xm+iT= £ (ai+fiT)xiiT 

in A 0 ^ , where at £ k and/* Ç &[xi . . . xn], so 

m 

2=0 

in k[xi . . . x j . Thus, either 

m 

i=0 
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and a polynomial in %\ is divisible by T in k[xu . . . , xn], or 

m m 

(ii) 23 fi%i = 0 and Xim+1 = ^ a*xi\ 

Each is obvious nonsense, so Im+i 2 Im for every m ^ 0, and ^ S " is 
not Noetherian. 

Incidentally, this proposition provides a counterexample to a lemma 
of [8, p. 194], which is incorrect as stated. 

It also appears that it is quite difficult to determine what is measured 
by the homotopy groups and even by the path components of the 
simplicial set FA, for an algenra A of finite type over k. For example, 
think of a curve A as being an integral domain over k subject to the 
conditions 

(i) A is finitely generated as a ^-algebra, and 
(ii) the transcendance degree of A over k is 1. 

For any such object A the ^-scheme Spec (A) is connected in the sense 
that its underlying topological space is irreducible. However, the Laurent 
polynomial ring k[x, x -1] is a curve and it is easily seen that 

Fiklx^x-1}) = k*, 

where k* denotes the units of k considered as a discrete simplicial group. 
Clearly then, a distinction must be made between curves A over k which 
are connected in the geometric sense and those which are path-connected 
in the sense that TTQ(FA) = *. The example k[x, x~l] also makes it clear 
that path-connectedness is not a local property. Perhaps this is the 
reason for the apparent unnaturalness of the following classification 
result. 

PROPOSITION 3.2. The path-connected curves over k are precisely the 
non-trivial subalgebras of the polynomial ring k[x\], up to isomorphism. 

Proof. The Noether Normalization Lemma [2, p. 69] guarantees that 
there are no curves which have only one rational point. Thus, if A is 
connected then there are distinct rational points e, 77: A —> K, together 
with a 1-simplex ir: A —» &[xi] such that d0Tr = e and diir = 77. The image 
im 7T is not &, so im w is a curve over k. But then the kernel of TT is 0 by 
[15, p. 101], and so A ~ im ir. On the other hand, if we have a subalgebra 

k Ç A C k[xi], 

then k[xi] is an integral extension of A, and so every rational point of A 
extends over k[xi] since k is algebraically closed. k[xi] is obviously path-
connected, so A is path-connected as well. 
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It is the case, however, that interesting computations of some homotopy 
groups of FA for an algebra A of finite type over k can be carried out if 
one assumes that A has some additional structure, such as that of a Hopf 
algebra over k. This will be the subject of a future paper. 
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