
JFP 17 (2): 207–214, 2007. c© 2007 Cambridge University Press

doi:10.1017/S0956796806006204 First published online 4 January 2007 Printed in the United Kingdom

207

Type sharing constraints and undecidability

PHILIPPE NARBEL

LaBRI, University of Bordeaux 1, 351, Cours de la Libération, 33405 Talence, France

(e-mail: narbel@labri.fr)

Abstract

Let A be a set of modules and parameterized modules including type sharing constraint

specifications. We prove that determining the set of the effective modules described by A is

undecidable. As a consequence, type sharing constraints are proved to be not always avoidable

by constructive transformations.

1 Introduction

When composing strongly typed components, explicit coherence type constraints,

i.e. type sharing constraints, are sometimes necessary to ensure static type ana-

lysis (MacQueen, 1986; Harper et al., 1987; Harper & Mitchell, 1993). Incrementally

constructed systems can then be safely implemented from compatible components.

However, type sharing constraints may also make difficult the understanding of

a software architecture that includes parameterized components like ML functors.

If C is the set of the components which can be obtained from such an architecture

by instantiating its parameterized components, one may indeed wonder whether C
fulfills some programmer’s needs. For instance, one could ask whether C contains

components satisfying a given signature, or whether C contains components with

coherent types that can be composed together. In the general case, we show that

these questions are undecidable. The proof of this result does not rely on a particular

ML-like type semantics, but only on the use of simple type sharing constraints. As

such, this result can also be related to general software reuse frameworks like generic,

parameterized or generative programming (Goguen, 1984; Krueger, 1992; Czarnecki

& Eisenecker, 2000; Gibbons & Jeuring, 2003).

A consequence of this undecidability result is that explicit type sharing constraints

cannot always be eliminated by constructive transformations applied to the com-

ponents (a question already addressed (MacQueen, 1986; Jones, 1996; Harper, 2002;

Harper & Pierce, 2005)). Type sharing specifications are thus irreducible, while they

are known to induce many complications in the language semantics (Milner et al.,

1987).

2 Basics

We first recall some basic facts about ML module systems. Signatures are types and

also interfaces for the implemented modular components. For instance, here is the

https://doi.org/10.1017/S0956796806006204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006204

208 P. Narbel

Fig. 1. A representation of the set A of modules, functors, and signatures as given in the text.

Each vertex corresponds to a signature: simple vertices for module signatures, and vertices

with “handles” for functor signatures. Each parameter signature is linked to the handle of

its functor, which is in turn linked to the result signature. Each vertex-signature contains

all of the components in A which satisfy it. The dotted arcs denote compatibility (subtype)

relationships. The labeled handle of ORDER COMPOSE (a constrained version of ORDER PAIR)

indicates its involved type sharing constraint. Applying the available functors yields new

components which can also take their place in the vertices.

classic example about the ordered integers in SML (Paulson, 1992):

s i g n a t u r e ORDER = s i g s t r u c t u r e Int_O : ORDER = s t r u c t
type t t ype t = int
v a l leq : t ∗ t −> bool v a l leq (x , y) = . . . (∗ some orde r ∗)

end ; end ;

Functors are module functions – parameterized modules – with typed parameters.

For example, here is a functor generating new ordered sets of pairs out of two

ordered sets:

f u n c t o r Pair_Lex (O1 : ORDER) (O2 : ORDER) = s t r u c t
type t = O1 . t ∗ O2 . t
fun leq ((x1 , y1) , (x2 , y2)) = . . .

(∗ l e x i c o g r a p h i c o rde r ove r p a i r s u s i n g O1 . l e q and O2 . l e q ∗)
end ;

A generic ML architecture is a collection of modules, functors and signatures.

Such an architecture may evolve by applying functor expressions. Full libraries can

be designed following this technique (Biagnioni et al., 2001; Harper, 2002; Narbel,

2005). For instance, developing further the above example, we give here a sketch of

an “order machine” which generates many different ordered sets from other ones.

The following functor List_Lex generates lexicographic orders over lists of ordered

data, and the functor Short_Lex generates shortlex orders over structures having a

length function (see figure 1):

f u n c t o r List_Lex (O : ORDER) = s t r u c t
type t = O . t list
v a l length = List . length
fun leq (l1 , l2) = . . . (∗ l e x i c o g r a p h i c o rde r u s i n g O . l e q ∗)

end ;

https://doi.org/10.1017/S0956796806006204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006204

Type sharing constraints and undecidability 209

s i g n a t u r e ORDER_LEN = s i g
type t
v a l leq : t ∗ t −> bool
v a l length : t −> int

end ;

f u n c t o r Short_Lex (O : ORDER_LEN) = s t r u c t
type t = O . t
fun leq (l1 , l2) = . . . (∗ s h o r t l e x u s i n g O . l e q and O . l e n g t h ∗)

end ;

Functor signatures can also be described in an explicit way in some ML dialects, e.g.

OCaml and Moscow ML. For instance, here are signatures for the above functors:

s i g n a t u r e ORDER_TRANSF = f u n c t o r (O : ORDER) −> ORDER ;
s i g n a t u r e ORDER_PAIR = f u n c t o r (O1 : ORDER) −>

f u n c t o r (O2 : ORDER) −> ORDER ;
s i g n a t u r e ORDER_TRANSF_LEN = f u n c t o r (O : ORDER) −> ORDER_LEN ;
s i g n a t u r e ORDER_LEN_SIMPL = f u n c t o r (O : ORDER_LEN) −> ORDER ;

Sometimes functors need type sharing constraints, i.e. explicit type equalities to

ensure type soundness of their bodies. A typical case occurs when the elements of

the functor parameters are composed, necessarily imposing type coherence:

s i g n a t u r e OP = s i g f u n c t o r Mix (s t r u c t u r e M1 : OP and M2 : OP
t ype t s h a r i n g type M1 . t = M2 . t) = s t r u c t
v a l f : t −> t fun g x = M1 . f (M2 . f x)

end ; end ;

Type sharing constraints in ML can also be expressed by directly adding type

equations to signatures. Here is a functor which generates the product order by

composing two orders:

f u n c t o r Prod_Order (O1 : ORDER) (O2 : ORDER where t ype t = O1 . t) =
s t r u c t

type t = O1 . t
fun leq (x , y) = O1 . leq (x , y) anda l so O2 . leq (x , y)

end ;

This functor matches a constrained version of ORDER_PAIR, and it can also take its

place in the order machine (see figure 1). The whole example illustrates the fact that

architectural complexity can be obtained with few generic components.

3 The undecidability of type sharing constraints

Given an ML architecture A as above, what can be generated from it? For instance,

let F be a functor with two parameters X1, X2 such that X1 must satisfy ORDER.

Then, one could ask whether A would be able to generate orders for X1 that are

type-coherent with the arguments of X2. In a global setting, when type sharing

constraints are involved, this kind of question is undecidable. In order to prove it in

a general context, we first define a skeletal typed module language syntax derived

from TypModL (Harper et al., 1987; Leroy, 1996) and restricted to our needs, i.e.

structures, first-order functors, signatures and generative type declarations. We add

https://doi.org/10.1017/S0956796806006204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006204

210 P. Narbel

signature names, tuples of types, and n-ary functors. Let t range over type names, x

over structure names, y over signature names, f over functors names:

Programs : m → ε | structure x = s; m

| functor f {(xi : S)}+ = s; m

| signature y = S ; m

Structure expressions : s → ps | struct d end | f {(s)}+

Structure paths : ps → x | ps.x

Structure bodies : d → ε | c; d

Definitions : c → type t = T (type binding: non generative)

| datatype t (type creation: generative)

Signature expressions : S → y | sig D end

Signature bodies : D → ε | C; D

Specifications : C → type t

| sharing type pt = p′
t (type constraint)

Type expressions : T → pt | (T)

| T1{∗ Ti}∗ (tuples of types)

Type paths : pt → t | ps.t

A type definition type t = T defines t as a synonym for the type expression T ,

and type generativity occurs only for datatype definitions. A usual “stamp-based”

semantics can be applied (Milner et al., 1987; Leroy, 1996).

Theorem

Let A be a set of signatures, modules, and parameterized modules including type

sharing constraints. It is undecidable to determine whether or not a signature S0

can be instantiated from A. More generally, it is undecidable to determine the set

of components that can be generated from A.

Proof

We apply a reduction of the unsolvable dominoes Post’s correspondence problem.

Recall that this problem is the following: Let D = {Di = (upi
downi

)}i=1,...,m be a

set of dominoes where upi and downi are words over some finite alphabet Σ.

The question is to find a sequence of dominoes (
upi1

downi1
)(

upi2
downi2

)...(
upin

downin
), such that:

upi1upi2 ...upin = downi1downi2 ...downin . The existence of such a solution is known to

be undecidable (Davis & Weyuker, 1985).

We prove here that for each domino set D, there exists a collection of modules

and functors for which the signature S0 instantiation problem is solvable iff the

correspondence problem with D is solvable. The basic elements of the reduction are

the following: For each letter a in the domino alphabet Σ, we define a distinct type:

da ta type a = A

These “type-letters” can be concatenated into words by using the type product. The

word w = s1s2...sn, with si ∈ Σ, is represented by:

t ype t_w = s1 ∗ (s2 ∗ . . . (. . . ∗ sn)) . . .)

We impose right associativity so that words have a unique type representation. Recall

indeed that the Cartesian product of types is not associative, e.g. (a ∗ b) ∗ c �= a ∗ (b ∗ c).

https://doi.org/10.1017/S0956796806006204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006204

Type sharing constraints and undecidability 211

Fig. 2. A representation of the Post reduction architecture. The labeled “handle” of the

functor signature indicates the type sharing constraints between its two parameters.

Next, these words can be concatenated together by functors. Let w = s1s2 . . . sn be a

word and let w′ be another word denoted by a type t contained in some module.

Then, the “concatenating functor” to obtain ww′ is:

s i g n a t u r e TYPE = s i g type t end

f u n c t o r F_w (M : TYPE) = s t r u c t
type t = s1 ∗ (s2 ∗ . . . (. . . ∗ (sn ∗ M . t)) . . .)

end

Now, dominoes are represented as instances of the following signatures:

s i g n a t u r e DOMINO_UP = s i g s i g n a t u r e DOMINO_DOWN = s i g
type domino_seq t ype domino_seq
t ype up t ype down

end end

For each domino Di = (s1s2 ...sn
t1t2 ...tm

) ∈ D, we define a distinct type:

da ta type d_i = Dom_i

We also define two modules and two concatenating functors (see figure 2):

s t r u c t u r e Di_Up = s t r u c t
type domino_seq = d_i
t ype up = s1 ∗ (s2 ∗ . . . (. . . ∗ sn) . . .)

end

s t r u c t u r e Di_Down = s t r u c t
type domino_seq = d_i
t ype down = t1 ∗ (t2 ∗ . . . (. . . ∗ tm) . . .)

end

f u n c t o r F_Di_Up (D : DOMINO_UP) = s t r u c t
type domino_seq = D . domino_seq ∗ d_i
t ype up = s1 ∗ (s2 ∗ . . . (. . . ∗ (sn ∗ D . up)) . . .)

end

f u n c t o r F_Di_Down (D : DOMINO_DOWN) = s t r u c t
type domino_seq = D . domino_seq ∗ d_i
t ype down = t1 ∗ (t2 ∗ . . . (. . . ∗ (tm ∗ D . down)) . . .)

end

https://doi.org/10.1017/S0956796806006204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006204

212 P. Narbel

Next, we define a particular functor over a composition of modules satisfying

DOMINO_UP and DOMINO_DOWN:

f u n c t o r Check (D1 : DOMINO_UP)
(D2 : s i g type domino_seq

t ype down
s h a r i n g type D1 . up = down
s h a r i n g type D1 . domino_seq = domino_seq

end) = s t r u c t
. . . (∗ s a t i s f y i n g S 0 ∗)

end

The signature of D2 is a constrained version of DOMINO_DOWN which makes use of

elements in D1 (the parameter sequence is assumed to define nested environments).

Considering the above components as the architecture A, what are the con-

ditions so that Check can be applied to instantiate S0? According to the type

sharing constraints, this can happen either if some modules Di Up and Di Down

are such that Di Up.up = Di Down.down, or if there are some functor applica-

tion sequences D1 = F Di1 Up (F Di2 Up (... (F Din Up (Di Up))...) and D2 =

F Di1 Down (F Di2 Down (... (F Din Down (Di Down))...) such that D1.up is

equal to D2.down, that is, sj1 * (sj2 * (... * sjk))...) = th1
* (th2

* (... * thk))...).

These equalities necessarily mean that sji = thi for every i = 1...k. Moreover, the

equality D1.domino seq = D2.domino seq ensures the synchronization of the up

and down parts of the dominoes, so that the application sequence induces a well-

defined domino sequence. Therefore, Di1Di2...DinDi must be a solution of the Post’s

problem over D. Conversely, if there is a solution of the Post’s problem, the above

architecture emulates it by a sequence of F Di Up’s and F Di Down’s applications. The

reduction is complete. ♦

Note that this proof can be simplified in the case that no type synchronization is

required. Indeed, consider the following signature:

s i g n a t u r e DOMINO_CONSTR = s i g
type up
t ype down
s h a r i n g type up = down

end

Dominoes can be directly instances of the signature:

s i g n a t u r e DOMINO = s i g
type up
t ype down

end

Thus, the reduction is simplified by defining for each domino Di = (s1s2 ...sn
t1t2 ...tm

) ∈ D:

s t r u c t u r e Di = s t r u c t
type up = s1 ∗ (s2 ∗ . . . (. . . ∗ sn) . . .)
t ype down = t1 ∗ (t2 ∗ . . . (. . . ∗ tm) . . .)

end

f u n c t o r F_Di (D : DOMINO) = s t r u c t
type up = s1 ∗ (s2 ∗ . . . (. . . ∗ (sn ∗ D . up)) . . .)
t ype down = t1 ∗ (t2 ∗ . . . (. . . ∗ (tm ∗ D . down)) . . .)

end

https://doi.org/10.1017/S0956796806006204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006204

Type sharing constraints and undecidability 213

Here, similarly to the above proof, the reduction amounts to check the existence of

some functor application sequence producing an instance of DOMINO_CONSTR.

Note also that the above undecidability result does not hold if type sharing

constraints do not occur in A ∪ S0. Indeed, let S be the set of signatures in A ∪ S0,

let M be the set of modules in A, and F be its set of functors. Assume that for

each component in M ∪ F there is some corresponding signature in S. The set of

all the components satisfying S0 can be described by a context-free grammar (see

also (Batory & O’Malley, 1992; Czarnecki & Eisenecker, 2000)): the non-terminals are

the signatures in S and the terminals are the components in M ∪ F. The production

rules are first: S2 → S1, with S1, S2 ∈ S if S1 is compatible (a subtype) with S2;

second, RES → SF(S1)(S2)...(Sn) if (S1, S2, . . . , Sn) → RES is a functor signature in S;

and third, S1 → M1 if S1 ∈ S and M1 ∈ M ∪ F, such that M1 satisfies S1. Denote

by L(S0) the language defined with these rules with start symbol S0 ∈ S. One can

check that this language consists exactly of all the components with signature S0

which can be generated from A. Now, it is well-known that L(S0) = ∅ is decidable

(see e.g., (Davis & Weyuker, 1985)).

Therefore, type sharing constraints are at the root of the above undecidability

result, and they occur in a natural way when composing well-typed components.

They also imply many complications in the ML semantics (Milner et al., 1987).

General techniques have been described to avoid them (MacQueen, 1986; Harper,

2002; Harper & Pierce, 2005): the idea is to express abstractions with regard to the

components that need type sharing constraints so that type equivalences become true

by construction. However, these transformations are not always possible without

changing the meaning of a program:

Corollary

Let A be a set of signatures, modules, and parameterized modules. Then, the type

sharing constraints occurring in A cannot always be eliminated in a constructive

way.

Proof

We just have seen that the signature instantiation problem is decidable when no type

sharing constraints occur. Hence, the constraints in A cannot always be eliminated

by constructive transformations without contradicting the above theorem. ♦

References

Biagioni, E., Harper, R. & Lee, P. (2001) A network protocol stack in Standard ML. Higher

Order Symbol. Comput. 14(4), 309–356.

Batory, D. & O’Malley, S. (1992) The design and implementation of hierarchical software

systems with reusable components. ACM Trans. Softw. Eng. Meth. 1(4), 355–398.

Czarnecki, K. & Eisenecker, U. W. (2000) Generative Programming. Addison Wesley.

Davis, M. D. & Weyuker, E. J. (1985) Computability, Complexity and Languages. Academic

Press.

Gibbons, J. & Jeuring, J. (2003) Generic Programming. IFIP Working Conference on Generic

Programming. Kluwer Academic.

Goguen, J. (1984) Parameterized programming. IEEE Trans. Softw. Eng. SE-10(5), 528–543.

https://doi.org/10.1017/S0956796806006204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006204

214 P. Narbel

Harper, R. (2002) Programming in Standard ML. Carnegie Mellon University. Lecture Notes.

Harper, R. & Mitchell, J. (1993) On the type structure of Standard ML. ACM Trans. Program.

Lang. Syst. 15(2), 211–252.

Harper, R., Milner, R. & Tofte, M. (1987) A type discipline for program modules. Colloquium

on Functional and Logic Programming and Specifications (CFLP) on TAPSOFT ’87,

pp. 308–319. Springer-Verlag.

Harper, R. & Pierce, B. C. (2005) Design considerations for ML-style module systems. In:

B. C. Pierce, editor, Advanced Topics in Types and Programming Languages, pp. 293–345.

MIT Press.

Jones, M. P. (1996) Using parameterized signatures to express modular structure. Proceedings

23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pp. 68–78.

Krueger, C. (1992) Software reuse. ACM Computing Surveys, 24, 131–183.

Leroy, X. (1996) A syntactic theory of type generativity and sharing. Journal of Functional

Programming, 6(5), 667–698.

MacQueen, D. (1986) Using dependent types to express modular structure. Proceedings 13rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 277–

286.

Milner, R., Tofte, M., Harper, R. & MacQueen, D. (1987) The Definition of Standard ML

(Revised). MIT Press.

Narbel, Ph. (2005) Programmation fonctionnelle, générique et objet (Une introduction avec le

langage OCaml). Vuibert, Paris.

Paulson, L. C. (1997) ML for the Working Programmer. Cambridge University Press.

https://doi.org/10.1017/S0956796806006204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006204

