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Introduction

This paper deals with a type of Riemannian space Vn(n ^ 2) for which
the first covariant derivative of Weyl's projective curvature tensor

is everywhere zero, that is,

(2) n*,« = o
where comma denotes covariant differentiation with respect to the metric
tensor go of Vn. Such a space has been called a projective-symmetric
space by Gy. Soos [1]. We shall denote such an »-space by y>n. It will be
proved in this paper that decomposable Projective-Symmetric spaces are
symmetric in the sense of Cartan. In sections 3, 4 and 5 non-decomposable
spaces of this land will be considered in relation to other well-known classes
of Riemannian spaces defined by curvature restrictions. In the last section
the question of the existence of fields of concurrent directions in a y>n

will be discussed.

1. Scalar curvature of a tpa

Gy. Sods [1] has proved that for every ipn{n > 2)

(1.1) Rijf*-RiKt = 0.

From the identities of Bianchi we have

In virtue of (1.1) this reduces to

or

R, = o.
Hence R is a constant.
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For a v>2»

From (1.2) it follows that in a ̂ >s the scalar curvature R is a constant if and
only if Rhm>m = 0.

It is known that for a Fa

Rhitk = —g

Therefore, in a F 2

" hilk = "»M* « (£**£« ghfgik)

= 0.

This shows that every F2 is a y>2.
We can therefore state the following theorem:

THEOREM 1. Every F g is a y>2. The scalar curvature of a ipn(n > 2)
is a constant but that of a y>z is, in general, not so. A y>2 is of constant scalar
curvature if and only if it is symmetric in the sense of Cartan.

2. Decomposable xpn

A Riemannian space Vn is said to be decomposable if it can be expressed
as a product F r x Fn_, for some r, i.e., if coordinates can be found so that its
metric takes the form

(2.1) <fc*= J Ujx**x**x+ 2 l*j ******

where the ga^ are functions of as1, a:2, • • • xr only and the gatfii are functions of
af+1, zT+i • • • x" only. Greek letters with subscript 1 are taken to have the
range 1 to r and those with subscript 2 to have the range r+1 to «. The two
parts of (2.1) are the metrics of Vr and FB_, and are called decomposition
spaces of Vn. We now suppose that a y>n which is not of constant non-vanishing
curvature is a product space Fn_, x F r . The curvature restriction mentioned
above is necessary, because, as proved by Ficken [2], a space of constant
non-vanishing curvature cannot be decomposable. Now,

(2.2)
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because, the components of the metric tensor, the curvature tensor and the
Ricci tensor of Vn are zero unless all subscripts of the Greek letters are alike.
Therefore

(2-3) ^ . r , * . . * . = ^ZI *-*,**•..*.•

In virtue of (2) it follows from (2.3) that

Similarly we have

RBS A = 0 .

Therefore
Ra B y > A = ° a n d R* B V t A = 0-

So the decomposition spaces are symmetric in the sense of Cartan and
therefore their product is so. Hence we have the following theorem.

THEOREM 2. A decomposable projective-symmetric space is symmetric
in the sense of Cartan.

Henceforth by a y>n we shall mean a non-decomposable y>n.

3. Three-dimensional projective-symmetric spaces

For a y>3 (1.1) holds and R is constant. Therefore

Rm Rtt,kRik,i+T}7T (gikR,j2(«—1)

= 0.

Hence a y>3 is conformally flat.
For a F 3 the curvature tensor has the form

where

Hence for a rp3

= UghkR

Since in a %» R is constant
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Therefore from (3.1) we have

— {g*iRik,l—ih*Rii,l+gi*Rhi,l— guRhk,l) = $(8h*Rti,t— ghiRik,l)-

Multiplying both sides by g*k and summing for i and k we get

whence

*«.« = <>•
Therefore from (3.1) it follows that the space is symmetric in the sense of
Cartan. We can therefore state the following theorem.

THEOREM 3. Every y>a is a conformally flat symmetric space.

4. Conformally-flat %pa (a ^ 4)

We now consider a fi,(» ^ 4) and suppose that it is conformally flat.
Then

i
= Z (gkkRii,l—ghjRik.l)

H—1

where

Since R is constant,

Hence from (4.1) we have

— ~ 5 (gMRik,l—ghkRU,l+gtkRh1.l—gitR*k.l)
(4-3) n~2

= - — f (SkkRti,i—gktRtk,i)-
ft 1

Multiplying both sides of (4.3) by gik and summing for • and k we have

whence
R

M.i = 0.
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Therefore from (4.1) it follows that the space is symmetric in the sense of
Cart an.

Let us now suppose that the rank of the matrix ((Hti)) is n where Hu

is given by (4.2).
Then there are uniquely determined quantities H" such that

Suppose that there exists a non-zero vector Xt such that

(4.4) A|K«*»+Ai*M«+A»tfMM = °-

Then

(4.5)

+K{gHiHtl-iMHn+giiHhl-gtlHh)) = 0.

Multiplying both sides of (4.5) by HiSHhk and summing for *, /, h, k we get

(4-6) * ig» f l " = A,fo,fl».

Again multiplying (4.5) by Hhi and summing for h and / we get in virtue of

(n-3)(gtlh-giM = 0
whence

(4.7)

From (4.7) it follows that
(»—1)A, = 0

whence
A, = 0.

Thus there exists no non-zero vector Xt such that (4.4) holds. The y>n therefore
satisfies the following conditions

i) RM*,i = 0,
and

for a non-zero vector A,.
Hence it is a symmetric space of the first kind according to HIAvaty [3].

Therefore we have the following theorem.

THEOREM 4. A conformally flat y>n(n 2; 4) is symmetric in the sense of
Carton. If further, the rank of the matrix ((Hti)) where Htl is given by (4.2),
be n then the y>n is a symmetric space ofHhe first kind.
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5. Recurrent and Ricci-recurrent tpa (n =£ 4)

Let a ^ n b e a recurrent space i.e. a non-flat space in which the Riemann
curvature tensor satisfies the relation

(5.1) KHk,m = AmKiSk

for a non-zero vector Xm.
Then

rxzh jfh
tjK.m tjK.m

[ i -i

m- —^ k »- i «)J

or

(5.2) XmW*iik = 0.

Since Am ̂  0 it follows from (5.2) that

(5.3) W%h = 0.

As the space under consideration is not flat, (5.3) leads to a contradiction
since it would require ipn to be a space of constant Riemannian curvature.
Hence a ipn cannot be a recurrent space.

Next we suppose that a y>n is a Ricci-recurrent space, i.e. a space in
which the Ricci tensor -RW(T^ 0) satisfies the relation

for a non-zero vector Xm.
In virtue of (2) and (5.4) we get

(5-5) RM*,m = K{RMik-Whm).

Multiplying both sides of (5.5) by ghk and summing for h and k we have

We can therefore state the following theorems:

THEOREM 5. A non-flat y>n{n 2; 4) cannot be a recurrent space.

THEOREM 6. A necessary and sufficient condition that a y>n(n 2g 4) be a
Ricci-recurrent space specified by a non-zero vector Xm is that (5.5) holds.
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Let us now suppose that a y>n(n Sg 4) is a Ricci-recurrent space with
A, as its vector of recurrence. Then from (1.1) we have

Hence

(5.6) Rtj = sA,.A, (s =£ 0)

where s is a scalar factor of proportionality.
Therefore

(5.7) R = g"Rii = sg"ilii.

It is known that in an irreducible Ricci-recurrent space the scalar curvature
is zero. Hence from (5.7) we have

sg»XiX, = 0
whence

i = ° because s ̂  0.

The vector of recurrence is therefore a null vector. Again from (5.4)

Therefore

(5-8) Rii,ml — Rii,lm = RiMm,l—Km)-

It has been proved by Gy. Sods [1] that in a ipn

Rii,ml — Rii,lm= °-

Hence from (5.8) we have

^«(^m,l~^«,m) = 0.

Since Rit ̂ 0 we get

Am,l Al,m — "•

Thus we have the following theorem:

THEOREM 7. In a Ricci-recurrent y>n(n S 4), the rank of the Ricci-
tensor is 1 and the vector of recurrence is a null vector and the gradient of a
scalar.

6. Existence of fields of concurrent directions in a rpa (n > 2)

The question of the existence of fields of concurrent directions in a
Riemannian space was discussed by Shirokov [4]. He proved that if in a
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Riemannian space with metric tensor git there exists a field of concurrent
directions then the directions are determined by the equation

(61) v t = ga.

Let us now suppose that in a y>n{n > 2) a vector v( determines a field
of concurrent directions. Then (6.1) will hold. From (6.1) we have

(6.2) Rtijkv* = 0.

Since

(6.3) Wtm = Rtiik L . (gtkR{j-gtlRik)
f% — JL

(6.4)

Wtmv* = i? ( M t t ) * -_ i_ (gtkR(iv*-g,,Rikv*)

Differentiating both sides of (6.4) covariantly we get

ft—

In virtue of (2) and (6.1) it follows from (6.5) that

(6.6) Wim = -J—gtk Rtilv*- - L Riigtl.
n—x n—x

Making use of (6.3) we get from (6.6)

(6.7) 2? l l

Multiplying both sides of (6.7) by g" and summing for t and / we have

Rtl-\ Rfl = 0 because R is constant.
n—1

Hence Rtl = 0.
Therefore from (6.6) and (6.3) we have

Ruut = 0.

We can therefore state the following theorem:

THEOREM 8. In a non-flat y>n (n > 2) there cannot exist a field of concurrent
directions.
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In conclusion, I acknowledge my grateful thanks to Dr. M. C. Chaki
who kindly suggested the problem and helped me in the preparation of this
paper.
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