ON PROJEGTIVE-SYMMETRIC SPACES

BANDANA GUPTA
(received 25 April 1963)

Introduction

This paper deals with a type of Riemannian space $V_{n}(n \geqq 2)$ for which the first covariant derivative of Weyl's projective curvature tensor

$$
\begin{equation*}
W_{i j k}^{\mathrm{h}}=R_{i j k}^{\mathrm{k}}-\frac{1}{n-1}\left(\delta_{k}^{\mathrm{A}} R_{i j}-\delta_{j}^{\mathrm{h}} R_{i k}\right) \tag{1}
\end{equation*}
$$

is everywhere zero, that is,

$$
\begin{equation*}
W_{i k, l}^{n}=0 \tag{2}
\end{equation*}
$$

where comma denotes covariant differentiation with respect to the metric tensor $g_{i j}$ of V_{n}. Such a space has been called a projective-symmetric space by Gy. Soós [1]. We shall denote such an n-space by ψ_{n}. It will be proved in this paper that decomposable Projective-Symmetric spaces are symmetric in the sense of Cartan. In sections 3, 4 and 5 non-decomposable spaces of this kind will be considered in relation to other well-known classes of Riemannian spaces defined by curvature restrictions. In the last section the question of the existence of fields of concurrent directions in a ψ_{n} will be discussed.

1. Scalar curvature of a $\boldsymbol{\psi}_{\boldsymbol{n}}$

Gy. Soòs [1] has proved that for every $\psi_{n}(n>2)$

$$
\begin{equation*}
R_{i j, k}-R_{i k, j}=0 \tag{1.1}
\end{equation*}
$$

From the identities of Bianchi we have

$$
R_{i j, k}-R_{i k, j}+g^{k m} R_{m i k j, \pi}=0
$$

In virtue of (1.1) this reduces to

$$
g^{\lambda m} R_{m i k i, n}=0
$$

or

$$
\frac{1}{2} R_{, j}=0 .
$$

Hence R is a constant.

For a ψ_{2},

$$
\begin{align*}
R_{h i j k, m} & =g_{h k} R_{i j, m}-g_{h j} R_{i k, m} \\
& =\frac{R_{, m}}{2}\left(g_{n k} g_{i j}-g_{h j} g_{i k}\right) . \tag{1.2}
\end{align*}
$$

From (1.2) it follows that in a ψ_{2} the scalar curvature R is a constant if and only if $R_{h i j k, m}=0$.

It is known that for a V_{2}

$$
R_{h i j k}=-\frac{R}{2}\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right)
$$

Therefore, in a V_{2}

$$
\begin{aligned}
W_{h i 4 k} & =R_{h i j k}-\frac{R}{2}\left(g_{n k} g_{i j}-g_{h j} g_{i k}\right) \\
& =0 .
\end{aligned}
$$

This shows that every V_{2} is a ψ_{2}.
We can therefore state the following theorem:
Theorem 1. Every V_{2} is a ψ_{2}. The scalar curvature of a $\psi_{n}(n>2)$ is a constant but that of $a \psi_{2}$ is, in general, not so. $A \psi_{2}$ is of constant scalar curvature if and only if it is symmetric in the sense of Cartan.

2. Decomposable $\boldsymbol{\psi}_{\mathbf{n}}$

A Riemannian space V_{n} is said to be decomposable if it can be expressed as a product $V_{r} \times V_{n \rightarrow r}$ for some r, i.e., if coordinates can be found so that its metric takes the form

$$
\begin{equation*}
d s^{2}=\sum_{\alpha_{1}, \beta_{1}=1}^{r} g_{a_{1} \beta_{1}} d x^{a_{1}} d x^{\beta_{1}}+\sum_{\alpha_{2}, \beta_{2}=r+1}^{n} g_{\alpha_{2} \beta_{2}} d x^{\alpha_{2}} d x^{\beta_{2}} \tag{2.1}
\end{equation*}
$$

where the $g_{\alpha_{1} \beta_{1}}$ are functions of $x^{1}, x^{2}, \cdots x$ only and the $g_{\alpha_{2} \beta_{2}}$ are functions of $x^{r+1}, x^{r+2} \cdots x^{n}$ only. Greek letters with subscript 1 are taken to have the range 1 to r and those with subscript 2 to have the range $r+1$ to n. The two parts of (2.1) are the metrics of V_{r} and $V_{n \rightarrow r}$ and are called decomposition spaces of V_{n}. We now suppose that a ψ_{n} which is not of constant non-vanishing curvature is a product space $V_{n \rightarrow r} \times V_{r}$. The curvature restriction mentioned above is necessary, because, as proved by Ficken [2], a space of constant non-vanishing curvature cannot be decomposable. Now,

$$
\begin{align*}
W_{\alpha_{1} \beta_{2} \gamma_{1} \delta_{2}} & =R_{\alpha_{1} \beta_{2} \gamma_{1} \delta_{2}}-\frac{1}{n-1}\left(g_{\alpha_{1} \delta_{2}} R_{\beta_{2} \gamma_{1}}-g_{\alpha_{1} \gamma_{1}} R_{\beta_{2} \delta_{2}}\right) \tag{2.2}\\
& =\frac{1}{n-1} g_{\alpha_{1} \gamma_{2}} R_{\beta_{2} \delta_{2}}
\end{align*}
$$

because, the components of the metric tensor, the curvature tensor and the Ricci tensor of V_{n} are zero unless all subscripts of the Greek letters are alike. Therefore

$$
\begin{equation*}
W_{\alpha_{1} \beta_{2} \gamma_{2} \delta_{2}, \lambda_{2}}=\frac{1}{n-1} g_{\alpha_{1} \gamma_{1}} R_{\beta_{2} \delta_{2}, \lambda_{2}} \tag{2.3}
\end{equation*}
$$

In virtue of (2) it follows from (2.3) that

$$
R_{\beta_{2} \delta_{2}, \lambda_{2}}=0
$$

Similarly we have

$$
R_{\alpha_{1} \gamma_{1}, \lambda_{1}}=0
$$

Therefore

$$
R_{\alpha_{2} \beta_{2} \gamma_{2} \delta_{2}, \lambda_{2}}=0 \quad \text { and } \quad R_{\alpha_{1} \beta_{1} \gamma_{1} d_{1}, \lambda_{1}}=0
$$

So the decomposition spaces are symmetric in the sense of Cartan and therefore their product is so. Hence we have the following theorem.

Theorem 2. A decomposable projective-symmetric space is symmetric in the sense of Cartan.

Henceforth by a ψ_{n} we shall mean a non-decomposable ψ_{n}.

3. Three-dimensional projective-symmetric spaces

For a ψ_{3} (1.1) holds and R is constant. Therefore

$$
\begin{aligned}
R_{i j k} & =R_{i j, k}-R_{i k, j}+\frac{1}{2(n-1)}\left(g_{i k} R_{, j}-g_{i j} R_{, k}\right) \\
& =0
\end{aligned}
$$

Hence a ψ_{3} is conformally flat.
For a V_{3} the curvature tensor has the form

$$
R_{h i j k}=g_{h j} H_{i k}-g_{n k} H_{i j}+g_{i k} H_{h j}-g_{i j} H_{n k}
$$

where

$$
H_{i j}=-\left(R_{i j}-\frac{R}{4} g_{i j}\right)
$$

Hence for a ψ_{3}

$$
\begin{align*}
R_{n i j k, l} & =g_{h j} H_{i k, i}-g_{n k} H_{i j, l}+g_{i k} H_{h j, l}-g_{i j} H_{h k, l} \tag{3.1}\\
& =\frac{1}{2}\left(g_{h k} R_{i j, l}-g_{h j} R_{i k, l}\right)
\end{align*}
$$

Since in a ψ_{3}, R is constant

$$
H_{i j, i}=-R_{i j, i}
$$

Therefore from (3.1) we have

$$
-\left(g_{A j} R_{i k, i}-g_{n k} R_{i j, i}+g_{i k} R_{h j, l}-g_{i j} R_{i k, l}\right)=\frac{1}{2}\left(g_{n k} R_{i j, l}-g_{A j} R_{i k, i}\right)
$$

Multiplying both sides by $g^{i k}$ and summing for i and k we get

$$
\frac{1}{2}\left(R_{A j, l}-g_{h j} R_{, l}\right)=-R_{A j, l}
$$

whence

$$
R_{\lambda, l}=0
$$

Therefore from (3.1) it follows that the space is symmetric in the sense of Cartan. We can therefore state the following theorem.

Theorem 3. Every ψ_{3} is a conformally flat symmetric space.

4. Conformally-flat $\psi_{n}(n \geqq 4)$

We now consider a $\psi_{n}(n \geqq 4)$ and suppose that it is conformally flat. Then

$$
\begin{align*}
R_{n i j k, l} & =g_{i j} H_{i k, l}-g_{n k} H_{i j, l}+g_{i k} H_{n j, i}-g_{i j} H_{n k, l} \\
& =\frac{1}{n-1}\left(g_{\lambda k} R_{i j, l}-g_{n j} R_{i k, l}\right) \tag{4.1}
\end{align*}
$$

where

$$
\begin{equation*}
H_{i j}=-\frac{1}{n-2}\left[R_{i j}-\frac{R}{2(n-1)} g_{i j}\right] . \tag{4.2}
\end{equation*}
$$

Since R is constant,

$$
H_{i j, i}=-\frac{1}{n-2} R_{i j, i}
$$

Hence from (4.1) we have

$$
-\frac{1}{n-2}\left(g_{n j} R_{i k, i}-g_{n k} R_{i j, i}+g_{i k} R_{k j, i}-g_{i j} R_{n k, i}\right)
$$

$$
\begin{equation*}
=\frac{1}{n-1}\left(g_{A k} R_{i j, i}-g_{A j} R_{i k, z}\right) \tag{4.3}
\end{equation*}
$$

Multiplying both sides of (4.3) by $g^{\mathbf{k}}$ and summing for i and k we have

$$
\frac{n}{n-1} R_{n j, 2}=0
$$

whence

$$
R_{k i, l}=0
$$

Therefore from (4.1) it follows that the space is symmetric in the sense of Cartan.

Let us now suppose that the rank of the matrix $\left(\left(H_{i j}\right)\right)$ is n where $H_{i j}$ is given by (4.2).

Then there are uniquely determined quantities $H^{i s}$ such that

$$
H^{n j} H_{n k}=\delta_{k}^{j}, \quad H^{h j} H_{k j}=\delta_{k}^{n}
$$

Suppose that there exists a non-zero vector λ_{l} such that

$$
\begin{equation*}
\lambda_{l} R_{h i j k}+\lambda_{j} R_{h i k l}+\lambda_{k} R_{h i l j}=0 \tag{4.4}
\end{equation*}
$$

Then

$$
\begin{align*}
& \lambda_{l}\left(g_{h j} H_{i k}-g_{\lambda k} H_{i j}+g_{i k} H_{h j}-g_{i j} H_{h k}\right) \\
+ & \lambda_{j}\left(g_{n k} H_{i l}-g_{A l} H_{i k}+g_{i l} H_{h k}-g_{i k} H_{h l}\right) \tag{4.5}\\
+ & \lambda_{k}\left(g_{h l} H_{i j}-g_{h j} H_{i l}+g_{i j} H_{h l}-g_{i l} H_{h i}\right)=0 .
\end{align*}
$$

Multiplying both sides of (4.5) by $H^{i j} H^{h k}$ and summing for i, j, h, k we get

$$
\begin{equation*}
\lambda_{1} g_{\lambda k} H^{n k}=\lambda_{k} g_{n l} H^{a k} \tag{4.6}
\end{equation*}
$$

Again multiplying (4.5) by $H^{h j}$ and summing for h and j we get in virtue of

$$
(n-3)\left(g_{i 1} \lambda_{k}-g_{i k} \lambda_{l}\right)=0
$$

whence

$$
\begin{equation*}
g_{i i} \lambda_{k}=g_{i k} \lambda_{l} \tag{4.7}
\end{equation*}
$$

From (4.7) it follows that

$$
(n-1) \lambda_{2}=0
$$

whence

$$
\lambda_{l}=0
$$

Thus there exists no non-zero vector λ_{l} such that (4.4) holds. The ψ_{n} therefore satisfies the following conditions

$$
\text { i) } R_{k i j k, l}=0
$$

and

$$
\text { ii) } \lambda_{l} R_{h i j k}+\lambda_{j} R_{k i k l}+\lambda_{k} R_{n t l j} \neq 0
$$

for a non-zero vector λ_{2}.
Hence it is a symmetric space of the first kind according to Hlávaty [3]. Therefore we have the following theorem.

ThEOREM 4. A conformally flat $\psi_{n}(n \geqq 4)$ is symmetric in the sense of Cartan. If further, the rank of the matrix $\left(\left(H_{i j}\right)\right)$ where $H_{i j}$ is given by (4.2), be n then the ψ_{n} is a symmetric space of the first kind.

5. Recurrent and Ricci-recurrent $\psi_{n}(n \geqq 4)$

Let a ψ_{n} be a recurrent space i.e. a non-flat space in which the Riemann curvature tensor satisfies the relation

$$
\begin{equation*}
R_{i j k, m}^{n}=\lambda_{m} R_{i j k}^{n} \tag{5.1}
\end{equation*}
$$

for a non-zero vector λ_{m}.
Then

$$
\begin{aligned}
W_{i j k, m}^{h} & =R_{i j k, m}^{n}-\frac{1}{n-1}\left(\delta_{k}^{h} R_{i j, m}-\delta_{j}^{h} R_{i k, m}\right) \\
& =\lambda_{m}\left[R_{i j k}^{n}-\frac{1}{n-1}\left(\delta_{k}^{n} R_{i j}-\delta_{j}^{h} R_{i k}\right)\right] \\
& =\lambda_{m} W_{i j k}^{n}
\end{aligned}
$$

or

$$
\begin{equation*}
\lambda_{m} W_{i j k}^{h}=0 \tag{5.2}
\end{equation*}
$$

Since $\lambda_{m} \neq 0$ it follows from (5.2) that

$$
\begin{equation*}
W_{i j k}^{h}=0 \tag{5.3}
\end{equation*}
$$

As the space under consideration is not flat, (5.3) leads to a contradiction since it would require ψ_{n} to be a space of constant Riemannian curvature. Hence a ψ_{n} cannot be a recurrent space.

Next we suppose that a ψ_{n} is a Ricci-recurrent space, i.e. a space in which the Ricci tensor $R_{i j}(\neq 0)$ satisfies the relation

$$
\begin{equation*}
R_{i j, m}=\lambda_{m} R_{i j} \tag{5.4}
\end{equation*}
$$

for a non-zero vector λ_{m}.
In virtue of (2) and (5.4) we get

$$
\begin{equation*}
R_{h i j k, m}=\lambda_{m}\left(R_{h i j k}-W_{h i j k}\right) \tag{5.5}
\end{equation*}
$$

Multiplying both sides of (5.5) by $g^{h k}$ and summing for h and k we have

$$
R_{i j, m}=\lambda_{m} R_{i j} .
$$

We can therefore state the following theorems:
Theorem 5. A non-flat $\psi_{n}(n \geqq 4)$ cannot be a recurrent space.
Theorem 6. A necessary and sufficient condition that a $\psi_{n}(n \geqq 4)$ be a Ricci-recurrent space specified by a non-zero vector λ_{m} is that (5.5) holds.

Let us now suppose that a $\psi_{n}(n \geqq 4)$ is a Ricci-recurrent space with λ_{i} as its vector of recurrence. Then from (1.1) we have

$$
\lambda_{k} R_{i j}=\lambda_{j} R_{i k}
$$

Hence

$$
\begin{equation*}
R_{i j}=s \lambda_{i} \lambda_{j} \quad(s \neq 0) \tag{5.6}
\end{equation*}
$$

where s is a scalar factor of proportionality. Therefore

$$
\begin{equation*}
R=g^{i j} R_{i j}=s g^{i j} \lambda_{i} \lambda_{j} . \tag{5.7}
\end{equation*}
$$

It is known that in an irreducible Ricci-recurrent space the scalar curvature is zero. Hence from (5.7) we have

$$
s g^{i j} \lambda_{i} \lambda_{j}=0
$$

whence

$$
g^{i j} \lambda_{i} \lambda_{j}=0 \quad \text { because } s \neq 0
$$

The vector of recurrence is therefore a null vector. Again from (5.4)

$$
\begin{aligned}
R_{i j, m l} & =\lambda_{m} R_{i j, l}+\lambda_{m, l} R_{i j} \\
& =\lambda_{l} \lambda_{m} R_{i j}+\lambda_{m, l} R_{i j} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
R_{i j, m l}-R_{i j, l m}=R_{i j}\left(\lambda_{m, l}-\lambda_{l, m}\right) . \tag{5.8}
\end{equation*}
$$

It has been proved by Gy. Soós [1] that in a ψ_{n}

$$
R_{i j, m l}-R_{i j, l m}=0
$$

Hence from (5.8) we have

$$
R_{i j}\left(\lambda_{m, l}-\lambda_{l, m}\right)=0 .
$$

Since $R_{i j} \neq 0$ we get

$$
\lambda_{m, l}-\lambda_{l, m}=0
$$

Thus we have the following theorem:
Theorem 7. In a Ricci-recurrent $\psi_{n}(n \geqq 4)$, the rank of the Riccitensor is 1 and the vector of recurrence is a null vector and the gradient of a scalar.
6. Existence of fields of concurrent directions in a $\boldsymbol{\psi}_{\boldsymbol{n}}(\boldsymbol{n}>2)$

The question of the existence of fields of concurrent directions in a Riemannian space was discussed by Shirokov [4]. He proved that if in a

Riemannian space with metric tensor $g_{i j}$ there exists a field of concurrent directions then the directions are determined by the equation

$$
\begin{equation*}
v_{i}=g_{i j} . \tag{6.1}
\end{equation*}
$$

Let us now suppose that in a $\psi_{n}(n>2)$ a vector v_{i} determines a field of concurrent directions. Then (6.1) will hold. From (6.1) we have

$$
\begin{equation*}
R_{t i j k} v^{k}=0 \tag{6.2}
\end{equation*}
$$

Since

$$
\begin{gather*}
W_{t i j k}=R_{t i j k}-\frac{1}{n-1}\left(g_{t k} R_{i j}-g_{i j} R_{i k}\right) \tag{6.3}\\
W_{t i j k} v^{k}=R_{t i j k} v^{k}-\frac{1}{n-1}\left(g_{t k} R_{i j} v^{k}-g_{i j} R_{i k} v^{k}\right) \\
=-\frac{1}{n-1} g_{t k} R_{i j} v^{k} .
\end{gather*}
$$

Differentiating both sides of (6.4) covariantly we get

$$
\begin{equation*}
W_{t i j k, 2} v^{k}+W_{t i j k} v_{, i}^{k}=-\frac{1}{n-1} g_{i k}\left(R_{i j, i} v^{k}+R_{i j} v_{, i}^{k}\right) \tag{6.5}
\end{equation*}
$$

In virtue of (2) and (6.1) it follows from (6.5) that

$$
\begin{equation*}
W_{u i j l}=-\frac{1}{n-1} g_{t k} R_{i j, i} v^{k}-\frac{1}{n-1} R_{i j} g_{t i} \tag{6.6}
\end{equation*}
$$

Making use of (6.3) we get from (6.6)

$$
\begin{equation*}
R_{t i j i}+\frac{1}{n-1} g_{t j} R_{i 1}=-\frac{1}{n-1} g_{t k} R_{i j, v} v^{k} \tag{6.7}
\end{equation*}
$$

Multiplying both sides of (6.7) by $g^{d j}$ and summing for i and j we have

$$
R_{t l}+\frac{1}{n-1} R_{t l}=0 \quad \text { because } R \text { is constant }
$$

Hence $R_{t i}=0$.
Therefore from (6.6) and (6.3) we have

$$
R_{t i j k}=0
$$

We can therefore state the following theorem:
Theorem 8. In a non-flat $\psi_{n}(n>2)$ there cannot exist a field of concurrent directions.

In conclusion, I acknowledge my grateful thanks to Dr. M. C. Chaki who kindly suggested the problem and helped me in the preparation of this paper.

References

[1] Soós, Gy., Uber die Geodätischen Abbildungen von Riemannschen Räumen auf ProjectivSymmetrische Riemannsche Räume, Acta Math. Acad. Sci. Hung. 9 (1958), 359-361.
[2] Hlavatý, V., Rigid motion in a Riemannian space V_{n}. II. A regular V_{n}. Rend. Circolo Matematico Palermo, (2) 9 (1960), 15-16.
[3] Ficken, F. A., The Riemannian and affine differential geometry of product spaces, Annals of Mathematics (2), 40 (1939), 892-913.
[4] Schirokov, P., On the concurrent directions in Riemannian spaces, Bull. Physico-Math. Soc. Kazan. (3) 8 (1934-35), 77-87 (Russian).

Department of Pure Mathematics
Calcutta University.

