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Abstract. Consider a simple Lie algebra g and g C g a Levi subalgebra. Two
irreducible g-modules yield isomorphic inductions to g when their highest weights
coincide up to conjugation by an element of the Weyl group W of g which is also a
Dynkin diagram automorphism of g. In this paper, we study the converse problem:
given two irreducible g-modules of highest weight « and v whose inductions to g
are isomorphic, can we conclude that x and v are conjugate under the action of an
element of W which is also a Dynkin diagram automorphism of g ? We conjecture this
is true in general. We prove this conjecture in type A and, for the other root systems,
in various situations providing u and v satisfy additional hypotheses. Our result can
be interpreted as an analogue for branching coefficients of the main result of Rajan [6]
on tensor product multiplicities.

2010 Mathematics Subject Classification. 05E05, 05E10, 17B20, 17B22.

1. Introduction. Let g be a simple Lie algebra over C and g be a Levi subalgebra
with the same Cartan subalgebra so that g and g have the same integral weight lattice
(all weights considered in this paper are integral). Let u and v be two dominant integral
weights for g. Denote by ¥ (x) and V(v) the associated highest weight g-modules. Let
V(w) 1% and ¥(v) 12 be the g-modules obtained by induction from g. When x and v
are conjugate by an element of the Weyl group W of g which is also a Dynkin diagram
automorphism of g, the modules V(1) T% and V(v) T% are isomorphic; see Proposition

4.4. In this paper, we address the following question: assume ¥/(11) T% and V(v) ¢§ are
isomorphic, can we conclude that © and v are conjugate by an element of the Weyl
group W of g which is also a Dynkin diagram automorphism of g ? We conjecture that
this is true in general and we prove the conjecture in type 4 and in various other cases;
see Theorem 7.4.

It is interesting to reformulate the problem in terms of the (infinite) matrix M =
(mlﬁ) with columns and rows labelled respectively by the dominant weights A of g
and by the dominant weights p of g. Here ml*t denotes the branching coefficient
corresponding to the multiplicity of the irreducible highest weight g-module V(1) in
V() T% (or equivalently the multiplicity of (i) in the restriction of V(1) to g). We
then ask if two rows of the matrix M can be equal. Note that two distinct columns of
M labelled by A and A cannot coincide since this would imply V(1) >~ V(A). Indeed,
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both modules would then have the same weight decomposition and therefore the same
character.

We can also address a similar question for tensor product multiplicities. The
corresponding matrix, say C, has columns and rows labelled by dominant weights of g

the multiplicity of V(1) in V(uV) ® - -- @ V(u®). It was proved by Rajan in [6] (see
also [8] for a shorter proof and an extension to the case of Kac-Moody algebras)
that two rows of C are equal if and only if the associated k-tuples of dominant
weights coincide up to permutation. It is also easy to see that if the columns of
C labelled by A and « coincide, then A =« (take (u", ..., u®)=(1,0,...,0) and
(u(l), e, ,u(k)) =(x,0,...,0)).

Finally, one can also consider the decomposition matrix D associated to the
modular representation theory of the symmetric group in characteristic p. Its columns
and rows are indexed by p-restricted partitions and partitions of n, respectively. The
study of possible identical rows and columns was considered by Wildon in [9]: the
columns of D are distinct and its rows can only coincide in characteristic 2 when the
underlying partitions are conjugate.

In the present paper, we prove that two rows of the matrix M corresponding to
weights conjugate by an element of the Weyl group W of g which is also a Dynkin
diagram automorphism of g coincide. We conjecture that the converse is true and
prove this conjecture in various cases (see Theorem 7.4). We believe that the study of
the matrix M is more complicated than that of the matrix C for two main reasons.
First, there could exist infinitely many nonzero coefficients in a row of M (this is not
the case for C). Second, the possible transformations relating the labels corresponding
to identical rows in M are more complicated than in the case of the matrix C where
they simply correspond to permutations of the k-tuples of dominant weights.

The paper is organised as follows. Section 2 is devoted to some classical background
on representation theory of Lie algebras. In Section 3, we study the relationships
between the roots, the weights and the Weyl chambers of g and g. More precisely, we
study the set of elements in ¥ which stabilise the positive roots of g. In Section 4, we
formulate our conjecture in terms of equality of distinguish functions in the character
ring of g. This permits in Sections 5 and 6 to prove our conjecture when p and v satisfy
some technical conditions; see Corollary 5.5 and Proposition 6.4 Finally, in Section 7,
we prove the conjecture in the case g = gl, using the main result of Rajan [6]. This also
allows us to establish the conjecture when g is a classical Lie algebra of type B,, C, or
D, and when g= gl,.

2. Background on Lie algebras. This section is a recollection of classical result on
representation theory of Lie algebras. We refer to [1] and [3] for a detailed exposition.
Let g be a simple Lie algebra over C with triangular decomposition

i=Poore P

a€R, a€R,

so that b is the Cartan subalgebra of g and R, its set of positive roots. The root system

R =R, u(—R,) of gisrealised in a real Euclidean space E with inner product (-, -).
For any @ € R, we write a" = (5(2) for its coroot. Let S C R, be the subset of simple

roots. The set P of integral weights for g satisfies (8, «") € Z forany 8 € Pand @ € R.
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We write P, = {8 € P|(B8,a") > 0 for all @ € S} for the cone of dominant weights
of g. Let W be the Weyl group of g generated by the reflections s, with « € R, (or
equivalently by the simple reflections s, witha € S). Set C = {x € E | (x,«) > 0 for
alla € S}andcl(C) ={x € E | (x,a¥) > 0 for all « € S}. For any w € W, we set

Co =w(C), cl(Cp)=w'(cl(C)) and PY =PNcl(Cy).

Each set w™!(S) can be chosen as a set of simple roots for R, the corresponding set of
positive roots is then R} = w~(R,). Given w € W, we define the dominance order
<w on P by the following relation: y <,, 8 if and only if 8 — y decomposes as a sum
of roots in RY. When w = 1, we simply write < for the order <;.

Now, consider a subset of simple roots S C S. Write R C R for the parabolic
root system generated by S and R, = RN R, the corresponding set of positive
roots. Let g C g be the Levi subalgebra of g with set of positive roots R, and triangular
decomposition

=P o.ove P o
aeR, aeR,

In particular, g and g have the same Cartan subalgebra. The algebras g and g have the
same integral weight lattice P. Therefore, the weight decomposition of any g-module
is compatible with the weight decomposition of its restriction as a g-module. The Weyl
group W of g is generated by the simple reflections s, with & € S. Denote by P, C P
the set of dominant integral weights of g. We shall also need the partial order < on P
defined by the following relation: y < 8 if and only if 8 — y decomposes as a sum of
roots in R

ExAMPLE 2.1. Consider g = sp;,. We have P = @PZe;,

i=1
Ry={ei—e¢ |1 <i<j<6jUlei+e|l<i<j<6}U{2]|]1=<i=<6},
and
Py=f{x=(x1,....,%) €Z° | x1 = -+ > x6 = 0}.
The Levi subalgebra g C g such that
EJF ={e1 —ex,e; —e3, e —e3tU{es s, eq £ eg, e5 £ g} U {2eq4, 2e5, 2e6},

is then isomorphic to gl; & spg.

Given A € P, we denote by V(1) the finite dimensional irreducible representation
of g with highest weight 1. Let s; be the character of V'(A). This is an element of the
group algebra Z[P] with basis {¢f | B € P}. More precisely

Sy = Z dim V(}\.)/LGH,

HeP

where V(1) is the weight space in V(1) corresponding to ;. Set G = Z[P]". We then
have s; € G, that is s, is symmetric under the action of . We also recall the Weyl
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character formula

ZweW s(w)e“’(’“’/’)‘p

[locr (1 =€)

Sy =

where p = § >_wer, @ Note that, for any w € W and g € P, we have su(p) = &(w)suop
where o is the dot action of the Weyl group defined by w o 8 = w(8 + p) — p.
Using the restriction of V(1) to g we define the branching coefficients mﬁ by

A=
S, = E m, Sy,
nePy

where 5, is the character of the irreducible representation V(w) of g of highest weight
. We introduce the partition function P defined by

[T =27

aeR\R, BepP

Then, the branching coefficient mﬁ can be computed in term of P using the Weyl
character formula (see Corollary 8.2.1 in [3, p. 357]) .

THEOREM 2.2. Let A € P, and . € P,. Then

my, = ) ePw+p) = = p).
welW

where ¢ is the sign representation of W.

3. Dominant weights of g and Weyl chambers. This section is devoted to study
the relationship between the various subsets of roots and weights we have defined. To
this end, we introduce the following subset which will play an important role in this

paper:
U={ue W |uR:)C Ry}

PROPOSITION 3.1. We have

(1)
Po=Ju Py
ueU
(2)
R, = Qu_l(RQ.

(3) Each element w in W admits a unique decomposition under the form w = uw with
ueUandw e W.
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Proof. We prove 1. Let A € Py andu € U. For all @ € R, we have
(), ") = (1, u(@)”) = 0,

since & € Py and u(@) € Ry Tt follows that u™'(1) € Pyand |, pu ' (Py) [« P,.
Next, let y € P,. There exists ' € W such that v/(y) € P,. Let « € R,. Then
(v,a) = (W/(y), v(a)) > 0. If the inequality is strict then we have u/(«) € R,. We set

R.o:={BeR|@u(y)p) >0} CRy,
={BeR|W(y) B) =0},
Ro+:={BeRy|W(y)pB)=0}, Ro—=—Ro+.

Note that, Ry is a subroot system of R and that the simple system associated to Ry 4
consists simply of Ryg+ NS. Also, since u(y) € P, we have R, = R.oU Ry . Let
Wy = (sg | B € Ro). The group W) then acts on R and stabilises both Ry and R..
Since all the roots in Ry are orthogonal to #/(y), we have vi/(y) = u'(y) € P, for
all v € Wy. Now, let u be the element of minimal length in the coset Wyu'. By the
previous argument, we have /(y) € P,. Let us show that u € U. Let « € R,. First if
() € Ry, then so is u(x) since W) stabilises R. o and we are done in this case since
u(a) € R.o C Ry. Second, if #/(«) € Ry, then so is u(«). Let § € Ry N S. Since u is of
minimal length, we have £(ssu) > €(u) (here £ is the length function) and this implies
that u='(8) € R, (see for example [4, Section 1.6]). It follows that #~!(B) is positive
forall 8 € Ry +. Therefore, we cannot have u(w) = —8 € Ry, — with 8 € Ry 4, since this
would imply that u~!'(8) = —a € R_. We have shown that u(«) € R, in both cases,
that is u € U as required.

We prove 2. By definition of U, we have Ry C (,cyu '(Ry). Assume o €
Mucv u~'(R,). We then have u(«) € R, for any u € U. Consider y € P,. By assertion
1, there exists u € U such that y € u~'(P,). We thus have (v, «¥) = (u(y), u(a)¥) > 0
for any y € P,. This implies that « is a positive root of R .

We prove 3. Recall that the stabiliser of p under W is {1}. Consider w € W. There
exists w € W such that w(w~!p) € P,. By assertion 1, there exists u € U such that
uw(w~'p) € P,. Since p is the unique element of the orbit Wp in P, we must have
w = uw. Now, assume that there exist ul, u e U and W), w> € W such that u;w; =
uyw>. We have up = uyw withw = w1w2 € W.Ifw # 1, there exists @ € R, such that
w(a) = —B with B € R,. Then (p, ur(a)") = —(p, ul(,B)V) < O since u;(B) € Ry. This
contradicts the hypothesis uy(a) € R,. hence w = 1, thatis w; = wp and u; = up. [

Denote by E the Q-vector space generated by the roots in R,. Then, we have
EN R, =R,; see [4, Section 1.10]. We will make frequent use of this fact in the rest
of the paper. It is important to notice that this holds because we assumed that S C S.

LEMMA 3.2. Let u € U. Then, u(p) = p if and only if u(R,) = R,

Proof. Assume that there exists @ € R, such that u(e) ¢ R.. Then, since u(a) € R
we have u(a) ¢ E. It follows that there exists a simple root & ¢ R such that u(a) > o;.
On the one hand, since u(R;) C R, we see that u(p) > «;. We also know that p € E.
Therefore, the root «; appears (with a positive coefficient) in the decomposition of
u(p) — p in the basis S. We get that u(p) # p as required. The converse is trivial. [

LEMMA 3.3. Let u € U be such that u(p) # p. Then, u(p) £ p.
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Proof. Since u(R. ) # R, , arguing as in the proof of the previous lemma, we know
that there exists a simple root «; ¢ E such that «; appears with a positive coefficient in
the decomposition of u(p) — p in the basis S. Hence, we cannot have u(p) < p. O

LEMMA 3.4. Let y, y' € P be such that y <g_y'. Then, we have u(y) <g, u(y’) for
allue U.

Proof. By definition y >g_ v’ implies that y — y' is a sum of roots in R... Since,
u(R,) C R, we see that u(y — y’) is a sum of roots in R,. Hence, u(y — y') = u(y) —
u(y’) =g, 0as required.

LEMMA 3.5. Let y € P be such that y ¢ P.. Then, we have u(y) ¢ P, for allu € U.

Proof. Since y ¢ P, there exists « € R, such that (y, ") < 0. It follows that

(), w()") = (y,a”) < 0.

Since u(«) € R, this implies that u(y) ¢ P.. O

4. Induced characters.

4.1. The functions /,,. Givenu € P, write H = char(V'(u) Tg) for the induced
character of V(i) from g to g. We then have

. A
H, = E m,s),.

AP,

Observe there can exist infinitely many weights A such that mz #0. Wheng=1h is

reduced to the Cartan subalgebra, we have R, = ¥ and we set mﬁ =K, ,=dimV(}),
so that

hy, = Z K. 5. (D

APy

Also when g =g, we have H, =s,. So the function H, interpolates between the
functions 4, and s,. Since K, , = Kj ) for any w € W, we have h, = hy,, (for
the usual action of W on P). Moreover, K, , =1 and K, , # 0 if and only if A >
(i.e. A — u decomposes as a sum of simple roots). The sets {s, | A € P, }and {h;, | A €
P, } are bases of G and the corresponding transition matrix is unitriangular for the
order <.

We now define two Z-linear maps H and S by

ZIPl1 - G

e'BI—>S/3

H:{Z[P]—>G

eﬂr—>h,3

andS:{

Set

A=TJa-e

a€Ry
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PROPOSITION 4.1. The maps H and S satisfy the relations
S(e?) = H(AeP) and H(eP) = S(A™1eP),

for any B € P. Therefore, S = H o A and H = S o A~ (by writing for short A and A~
for the multiplication by A and A=" in Z[[P]]).
Proof. The partition function P is defined by
1

A =T =2 = 2P,

aeRy yeP

and we have by definition g = ), Kj gs, where K, g =), e(w)P(w o A — ). This
gives

S(AT' ) =D " P(y)spry-

yeP

Let y € P. Then either sg;, = 0 or there exists A € P and w € W such that w=! o
(B+y)=A, thatis y = w o A — B. This yields sg1, = e(w)s, and in turn we obtain

S(AT' )= D" Y eyPwor =By = Y Ky psi = hy,

rePL weW rePy

as desired. Note that, we have for any U € Z[P], H(U) = S(A~'U). Then if we set
U = AeP, we get the relation H(Aef) = S(eP), as required. O

Define the Z-linear map

— [7[P) - G
i { et — H, -’
Set
A= J] d-eyandv =[]0 -e,
aeR\R, a€R,

PROPOSITION 4.2.

(1) The maps H and S satisfy the relation
H(e") = SA 'eh),
for any . € P. We write for short H =S o N
(2) We have H(e") = H(ver).

Proof. The first assertion is proved as in the previous proof by replacing the
partition function P by P. For the second one, we combine the first part with the
previous proposition. ]

We have, using the Weyl character formula for g:

v=[la-er=3" ee ",

aeR, weW
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where p is the half sum of positive roots of g. By the second assertion of the previous
proposition, we get for all u € P

Hy, =H(") = e@huizu6)
weW

4.2. Irreducible components of R. Now, assume the reductive Lie algebra g
decomposes in the form

=090 d - Dy,

where each gi, Kk =1,...,r is a Lie subalgebra of g with irreducible root system
Ry c Rand R=| [;_, R®. We also assume that we have P = PV @ - .. @ P where
P® is the weight lattice of gi. In particular, each weight u € P, decomposes in the
form o = pu® + -+ + @ with £® € P, We then have additional properties for the
functions H,, we shall need in Section 7.1. For instance

V= H(l—e“)—]‘[ [Ta-e.

acR, aer®

and

H, = 1_[ H (I — e")hymqqpyo.

= (k
k=1 e g

Combining (1) and Proposition 4.1 (for each root system Ry), we get for any k =
1,...,r

l_[ (1 —=e"h U = 2 )L(A w /L<1)+ AR g5

aeR® A epd

where the coefficients K;(,}),W) are those of the inverse matrix of (Kyw o), 1) 0. plo- By
an easy induction, we obtain

H, = Z Z K XONTC );’1 u’)h*“)‘F A0 2)

Awep® APy

4.3. The conjecture. We start with an easy observation.

LEMMA 4.3. Consider u € W. Then the two following statements are equivalent :

(1) u(Ry) =Ry
(2) uis a Dynkin diagram automorphism of g

Proof. When u is a Dynkin diagram automorphism of g, we clearly have u(R,) =
R,. Now, assume u(R,) = R,. Then, we have u(R) = R and u is an automorphism
of the root system R. It is known (see [7]) that Aut(R) = W x Aut(T) where T is the
Dynkin diagram of R i.e. Aut(R) is the semidirect product of W (which is normal
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in Aut(R)) with Aut(T). Since, u(R;) = R, the element u belongs in fact in Aut(T")
(otherwise u would send at least a positive root of R, on a negative root). ]

PROPOSITION 4.4, Let 1, v € F+. Assume that there exists ue€ W such that
u(Ry) = Ry and v = u(w) (or equivalently, i and v are conjugate by a Dynkin diagram
automorphism of g lying in the Weyl group of'g). Then, H, = H,.

Proof. With the previous notation, we have
H, = H( []a- e"’)e“) and H, = H( [Ta- e“)e”).
aeR, aeR,

Since u(R,) = R, we see that u(p) = p and that uWu~' = W (indeed, usyu™" = syq
for all @ € R). Therefore

]_[ (1 —e*)e’ = Z e(w)e PP — Z & (w)e U@ - (7)

aeR, weW weW
— Z 8(w)eu(u+ﬁ—w(ﬁ))'
weW
It follows that
H, = H( > e(w)e“w*ﬂw@”) = D cWhsp-ve) = Y €@ husp-uip = Hy,
weW weW weW
since hyg) = hg forany w € W. g

We conjecture that the converse is true:

CONJECTURE 4.5. Consider 1, v € P.. Then, we have H « = H, if and only if there
exists win W such that u(R,) = R, and v = u(u) or equivalently, 1 and v are conjugate
by a Dynkin diagram automorphism of g lying in the Weyl group of g.

5. Triangular decomposition of /7,,.

5.1. Decomposition on the /-basis. Let u € P, and let weU be such that u €
cl(Cy). Recall that RY = w™!(R}). Since w € U, we have w(R,) C Ry which in turn
implies that R, C RY. It follows that < is finer than <,,, thatisa < B = a <,, B for
alla, B € P.

PROPOSITION 5.1. Let w € U. We have for all i € P,
HI/- = h/,' + Z ahuhx,

rePY
H<pA

where for any A € PY

A = Z e(w).

weW
uto—w(p)eWr
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Proof. Since < is finer than <, we have

Hy=hy+ Y e@huizwe with i <y 1+ 5 — w(p) for w # 1.
weW\{1}

Now foreach w # 1, the orbit of each y = u + o — w(p) intersects PY at one point (say
A) and we can use the relations 4,y = h, forany w € W. Moreover, we then have y <,,
A. We thus obtain u <, u 4+ p — w(p) <, A which gives the unitriangularity of the
decomposition. The coefficients a, , are then obtained by gathering the contributions
in h; for each A € PY. O

REMARK 5.2.

(1) For g =g, the coefficients a; , are the entries of the inverse matrix K~! where
K = (K, ;) uep, - In type A, K is the Kostka matrix. Obtaining a combinatorial
formula for the coefficients of K~! is already a nontrivial problem (see [2] and the
references therein). As far as we are aware, no such description for the coefficients of
K~ exists for other root systems (and thus also for the coefficients a;_,, associated
to a general Levi subalgebra).

(2) We can also deduce from Propositions 3.1 and 5.1 that for any u € U, the set
{H, | » € P} is a basis of G.

5.2. Consequences.

PROPOSITION 5.3. Let yu and v be dominant weights in P, such that H = H,. Then,
there exists t € W such that T(v) = . In particular, if i and v belong to the same closed
Weyl chamber for g, we have t = 1 and p = v.

Proof. Assume that u belongs to P, and v belongs to P, with w,w’ in U.
Let T € W be such that w' = wr. We then have RY = t~!(RY) and P¥' = t~!(PYV).
Moreover, u <, y if and only if 77'(u) <, T7!(y). On the one hand, using
Proposition 5.1, we get

HV = hv + Z Cl)h’vh)\ = hv + Z af—l()t),vhf—l()‘).
reP? rePy
V<y A T(V)<wh

Since hy,g) = hp for all w € W and B € P, this can be rewritten under the form
H, =h, + Z at”(k),vhk-
rEPY

t(V)<wh

On the other hand, we have

HM = h//« + E CZ)L’/,_}Z)L.
rePY
H<wh

So, H, = H, implies that /., = h, by comparing the indices of the basis vectors of
{h,. | » € PY} which are minimal for the order <,,. Hence, u = t(v) as desired. ]
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REMARK 5.4. If H, = H, (i.e. we have v = 0), then u = 0 since n and 0 always
belong to the same closed Weyl chamber.

For any weight 1 € P, define the set
E,={n+p—wp) | we W}

Since the stabiliser of 5 under the action of W is {1}, the cardinality of E, is equal
to that of W. The following corollary shows that the conjecture holds when each of
the sets £, and E, is contained in a closed Weyl chamber. This happens in particular
when p and v are sufficiently far from the walls of the Weyl chambers in which they
appear.

COROLLARY 5.5. Let v and v be two dominant weights in P... Assume that there exist
w € W suchthat E,, C P} andw' € W such that E, C PL‘;’. Then, H, = H, implies that

v=r1(u)and t(Ry) = Ry where t = w™w’.

Proof. All the elements of E,, belong to PY. They thus belong to distinct W -orbits.
Hence, the decomposition of H,, in the basis {h; | A € PY} is

H,=h,+ Z W)y p-w(@)-
weW\{1}

Similarly, the elements of E, belong to distinct W -orbits. Hence, the decomposition of
H, in the basis {h, | A € P¥'} is

HV = hv + Z E(E/)hv-kﬁ—w’(ﬁ)'
w'eW\(1}

Since H, = H,, we see that there exists € W such that t(v) = u by the previous
proposition. Further, we know that t is such that Pi’ = r’l(Pi) thus we have 7(E,) =
E,. Let « € Ry and W = s5,. Then, w(p) — p = & and we see that there exists an
element w’ € W such that (v + &) = u +p — w'(p). In turn, this implies 7(a) = p —
w'(p) as T(v) = u and t(a) is a sum of positive roots in R,. But t(«) also lies in
R, hence t(a) € R,; see Section 3. We have shown that T maps R, onto itself as
expected. ]

6. The functions A/,,. We now give an equivalent formulation of our problem in
terms of parabolic analogues of monomial functions.

6.1. Decomposition on the monomial functions. For any weight y € P, set m, =
e”V) 5o that m,, is the image of ¢” by the symmetrisation operator
wew €7 so that m,, is th fe” by th trisat t

Z[P] — Z[P]"
e —>m,

o

Note that, our function m,, slightly differs from the usual monomial function m, =
7 Lwew € where W, is the stabiliser of y under the action of W. We clearly have
Y
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m,,,) =m, forany w € W. Also, {m, | A € P}}is a basis of G. Given u € P, set
M, =M[[A=e9e") =D e@myizwe).
aeR, weW
LEMMA 6.1.
(1) We have
M, = Z a,,m, with a, , = Z e(w).

rePy weW
utp—w(p)e Wi

(2) Consider u,v € Py. Then, H, = H, if and only if M,, = M,

Proof. Assertion 1 follows from the identity m,,) = m, for any y € P and any
w € W. By Proposition 5.1, the coefficients of the expansion of M, on the basis
{m, | A € P.} are the same as those appearing in the expansion of H, on the basis
{hy | & € PY}}. Assertion 2 follows. Il

6.2. A simple expression for the functions M,. Forany y € P, set
a, = Z e(w)e™ ).
weW
We thus have aw(,) = ¢(w)a, and w(a, ) = e(w)a, forany w € W and Uy(p) = €(Wo)ap
where Wy is the element of maximal length in W.
PROPOSITION 6.2. Let i € P,.
(1) We have
M, = e(W0) Y u@ 7).
ueU
(2) Let A be the unique element lying in {u(i + 2p) | u € U} N P,. Then, we have
M, = e(Wo)e™ + > by e’

yeP
y<A

Proof. We prove (1). We have

M, =" e@myuzam= Y w|e? Y sy ™?

weW welW weW

This gives

M, =" w(e"a ;) =ey) Yy w(ePaz) =eo)y ul > w("7ap) |,

welW welW uelU weWw
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by using Assertion 3 of Proposition 3.1. Hence

M, =e@o) Y ul > " Pw(ag)

ueU weWw

= (o) Y _u @z Y e(@)e” P
uelU weW

= (o) ) ul@4575),
uelU

since Gyp) = &(W)ap.

We prove (2). The monomials e**? and e” are the monomials of highest weight
(with respect to <z ) appearing in the expression of @, and @z, respectively. It follows
that the monomial e#*2” is of highest weight among those appearing in @, ,a,. Thus,
using (1) we get an expression of the form

M, =eo) Yy ule™+ Y Ze

uelU V<pg, n+2p

By Lemma 3.4, v <z, + 2p implies that u(v) < u(i + 2p). Finally, the maximal
weight with respect to < in the set {u(u + 2p) | u € U} is the unique element A lying
in {u( + 2p) | u € U} N P,. Therefore, we have

— \ A
M;ng(w())e + E bA,[Ley7
yeP
y<A

as required. O

6.3. Proof of the conjecture for 1 + 2o dominant.
LEMMA 6.3. Let i € P, be such that i + 2p belongs to P,. Then u € P..

Proof. For any simple root «; € S, we have (u + 2p, o)) > 0 since u + 2p € P..
Also for any simple root o; € S, we have (i, «)’) > 0 since u € P... Now consider oj €
S\ S. Since 2p decomposes as a sum of simple roots in .S, we must have (2p, ocjv) <0.
Indeed for any «; € S, (i, ;) = 0 or is negative since distinct simple roots are always
at an angle greater than 7 /2. Therefore, (u, ozjv) > (u+2p, ozjv) > 0. ]

PROPOSITION 6.4. Let ju, v € P, be such that H, = H, and assume that p + 2p €
P_.. Then, there exists v € U such that v = v(u) and v(R;) = R,.

Proof. By the previous lemma, we see that u € P,. Letv € U be such thatv € PY.
Then by (the proof of) Proposition 5.3, we know that v(v) = . Next Lemma 6.1 implies
that M,, = M, and, in particular, M, and M, have the same maximal monomial with
respect to <. Hence

{u(p +2p) |lue UYN Py = {u(v "' () +2p) | u e Uy N P,
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But i + 2p € P, so we have {u(v~'(u) +2p) | u € U} N Py = {u + 2p}. Hence, there
exists u € U such that u(v='(u) + 2p) = u + 2p. We have

1+ 20 = uw ' (n) +2p)

$

u 'l (w+2p)=v(n)+2p
$

vu ' (u +2p) = p + 2v(p)
¢

v (1 +2) — (1 +2p) = 2(v(p) — D).

Since w4+ 2p € P, we have vu~'(u+2p) — (1 + 2p) < 0. Hence v(p) <p. By
Lemma 3.3, this implies that v(p) = p. Finally by Lemma 3.2, we have v(R,) = R,. [

REMARK 6.5. We will see in the next section (Remark 7.2) that we can have u and
v in the same W-orbit, i + 2p and v 4 2p in the same W-orbit but H,, # H,. So, the
hypothesis u + 2p € P, is crucial in the above proposition.

7. The classical Lie algebras.

7.1. Proof of the conjecture for gl,. We now prove our conjecture in type 4. We
shall work in fact with gl rather than s[,,. The main tool is a duality result between the
branching coefficients mﬁ and some generalised Littlewood—Richardson coefficients
together with the main result of [6]. Each partition A = (A > --- > Ay > 0) withd < n
can be regarded as a dominant weight of gl, by adding » — d coordinates equal to 0.
We will use this convention in this section. For any partition u = () > --- > ug), we
have in fact

S, = Z K\, (3)

A=(r1==21420)

that is, the coefficients appearing in the expansion of s, on the A-basis are inverse
Kostka numbers indexed by pairs (A, u) of partitions with at most d nonzero parts.
When g = gl,,, the #-functions have also an additional property (which does not hold for
the other root systems). Consider 8 = (B, ..., B,) € Z2,, then hg = hg, x --- X hg,.

Recall that the dominant weights of gl, can be regarded as non-increasing
sequences of integers (possibly negative) with length n. We will realise g = gl,,,, ®
--- @ gl,, as the subalgebra of gl, of block matrices with block sizes my, ..., m,.
Now, consider p € P such that g = u® + - + u® where u® e P(f:) as in Section
4.2. Then, each u® is a non-increasing sequence of integers of length my. We will
assume temporary that the coordinates of u are nonnegative so that each u® is a
partition with my, parts. We then have according to (2)

_ -1 -1
HM = E tee E Kx(l)’ﬂ{]) te K)\(r),u(r)h)»‘”-&-m-&-?»“)’

Aep) Anep
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where each 1Y) is a partition. In particular, we have ;0. ;0 = By X - - - X By which
yields

-1
m=TT| & e

i=1 A0 epP

Finally by using (3), we obtain

k
H, = 1_[ Sy -
i=1

We can now prove our conjecture for induced representations of gl,,

ProposITION 7.1. Consider v and v any dominant weights of g. Assume H,, = H,.
Then, there exists a permutation o of {1, ..., n} such that c(R;) = R,.

Proof. By Theorem 2.2, we have mfl = Zaes” e(@)P(e(L + p) — . — p). Set 8 =

(1,...,1) € Z". Since § is fixed by S,, we have for any nonnegative integer a, mﬂé’f =

m} . Observe also that P, is invariant by translation by §. Therefore

E +as § : n+as "w
H,u_+5a = ml\f Sy = m)\_»,_a(; Sh4as = E My Sx+as»
vePy reP, reP,

by setting v = A + ad in the leftmost sum. So, H, = H, if and only if H,, ;.5 = Hy14s-
We can now choose « sufficiently large so that u € 27, and v € Z%,. Decompose
w=pY 4. .4 uandv=0v® ... 40 asin Section 4.2. Forany k =1, ..., r,

set 8 =(1,...,1) € Z™. The similar decompositions of u + aé and v + aé verify
(4 ad)® = pu® 4+ q8® and (v + ad)® = v® 4+ a8® for any k =1, ..., r. We thus
obtain

k k

1_[ Sp)4ast) = 1_[ Sy 4 qsk) -

i=1 i=1

Now by the main result of [6], since the partitions u® + a8® and v® + as® appearing
above have positive parts, we know that the set of partitions

(u® 4+ a8® k=1,...r} and P® +as® k=1,...7),

should coincide. There, thus exists a permutation 7 € S, such that u® 4 as® =
V(O 4 45 H) The permutation T preserves the lengths of the partitions (recall the
partitions considered here have positive parts) so ny = m. ) and % = §C® for any
k=1,...,r.Weobtain u® = v@®) Foranyk =1,...,rsetl, = {me_1 +1,...,m)}
(with my = 0}. Then, Iy and I have the same cardinality because my = mq ).
Let o € S, be such that o(my_; +j) = mgy—1 +j for any je {1,...,k} and any
ke {l,...,r}. Then, o is a Dynkin diagram automorphism of g. We have o () = v
and o(R,) = R, as desired. O

REMARK 7.2. Observe that we can have u and v in the same W-orbit, u + 2o and
v + 2p in the same W-orbit but H, # H,. Consider for example g = gly ® gl, in glg
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andu =(5,2,2,14,3)andv = (5,4,3,1]2,2). Wehave2p = (3,1,—-1,-3| 1, -1)
sou+2p=(8,3,1,-2|52)andv+2p =(8,5,2,—-2| 3, 1) belong to the same W-
orbit. By the previous proposition, we have H,, # H,. We cannot apply Proposition
6.4 since neither u + 2p or v 4+ 2p belong to P..

7.2. Polarisation. Assume g = 505, , 5p,, Or §0y, and g = gl,. Each dominant
weight 1 € P, defines a pair of partitions (s, u—) of length < n obtained by ordering
decreasingly the positive and negative coordinates of u, respectively. Recall also that
to each partition A of length < n corresponds a dominant weight of P, . The branching
coefficients m;\t were obtained by Littlewood (see [S]). They can be expressed in terms
of the Littlewood—Richardson coefficients as follows :

v A _
Zy,(S Cuypn-Cys for g = s0,,,1,
P v by _
my, =12, 5 i€ o for g = sp,,,
v by _
Zy,s Crs.n-C) 25y for g = so0,,,

where y and § runs over the set of partitions with length < n and (25)* is the conjugate
partition of 2§.

PROPOSITION 7.3. Conjecture 4.5 is true for g = 505, 1, §p,, or 502, and g = gl,,.

Proof. Consider 1 and v in P such that H, = H,. We have m), = m], for any
A € P,. For any partition A, write |A| the size of A, that is the sum of its parts. Observe
first that mﬁ =0 when |A| < |u4| 4+ |n—]|. Also, when |A| = |y | + |u—| in the above
branching coefficients, we get § =¥,y = A and mﬁ = cﬁML for g = s0,,, 1, 59y, Or
502;,.

Assume |py | + [u-| < |vy| +[v_|. Thenforr = uy + u_,wehavem) = ¢, , =
1 whereas m* = 0 since |A| = || + |u—| < [vi] + |v_|. So we obtain a contradiction.
Similarly, we cannot have |uy | + [u—| > |vi| 4+ |v_|. Therefore ||+ |u_| = |vy| +
|v_|. Then for any A such that x| = [py | + (| = [vy| + [v_|, wehave ), , = o
By the main result of [6], we obtain the equality of sets {u ., u_} = {vy, v_}. When u, =
vy and u_ = v_, wehave u = v and the conjecture holds. When u, = v_and u_ = vy,

we have 1 = —wyv where wy is the longest element of W that is, the permutation of
{1,...,n} such that wy(k) =n —k + 1. Since —wy € W and —wo(R,) = R, we are
done. O

‘We now summarise our results.
THEOREM 7.4. Consider i, v € FJF‘

(1) When u and v are conjugate under the action of a Dynkin diagram automorphism
of g lying in W, we have H,, = H,.

(2) Conversely, if we assume H, = H,, then u and v are conjugate under the action of
a Dynkin diagram automorphism lying in W when one of the following hypotheses
is satisfied.

e 1 and v belong to the same Weyl chamber of g (in which case u = v ),
o the sets E, = {u+p —w(p) |weW)and E, = {v+p —w(p) | w e W} are
entirely contained in a Weyl chamber,
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e u+2porv+2p belongs to Py,
e g=gl,
® 0 =150y,,,5pP,, or 50y, and g = gl,.
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