ON A PROBLEM OF PONGSRIIAM ON THE SUM OF DIVISOR[S](#page-0-0)

RUI-JIN[G](https://orcid.org/0000-0003-1885-8710) WANG[®]

(Received 21 February 2024; accepted 18 May 2024)

Abstract

For any positive integer *n*, let $\sigma(n)$ be the sum of all positive divisors of *n*. We prove that for every integer *k* with $1 \le k \le 29$ and $(k, 30) = 1$,

$$
\sum_{n\leq K}\sigma(30n) > \sum_{n\leq K}\sigma(30n+k)
$$

for all $K \in \mathbb{N}$, which gives a positive answer to a problem posed by Pongsriiam ['Sums of divisors on arithmetic progressions', *Period. Math. Hungar*. 88 (2024), 443–460].

2020 *Mathematics subject classification*: primary 11A25; secondary 11N25.

Keywords and phrases: arithmetic functions, monotonicity, sum of divisors function.

1. Introduction

For any positive integer *n*, let $\sigma(n)$ be the sum of all positive divisors of *n*. We always assume that *x* is a real number, *m* and *n* are positive integers, *p* is a prime, p_n is the *n*th prime and $\phi(n)$ denotes the Euler totient function. Jarden [\[4,](#page-5-0) page 65] observed that $\phi(30n + 1) > \phi(30n)$ for all $n \leq 10^5$ and later the inequality was calculated to be true up to 10^9 . However, Newman [\[8\]](#page-5-1) proved that there are infinitely many *n* such that $\phi(30n + 1) < \phi(30n)$ and the smallest one is

$$
\frac{p_{385}p_{388}\prod_{j=4}^{383}p_j-1}{30},
$$

which was given by Martin [\[7\]](#page-5-2). For related work, see $[3, 5, 6, 9, 11]$ $[3, 5, 6, 9, 11]$ $[3, 5, 6, 9, 11]$ $[3, 5, 6, 9, 11]$ $[3, 5, 6, 9, 11]$ $[3, 5, 6, 9, 11]$ $[3, 5, 6, 9, 11]$ $[3, 5, 6, 9, 11]$ $[3, 5, 6, 9, 11]$. It is certainly natural to consider the analogous problem for the sum of divisors function. Recently, Pongsriiam [\[10,](#page-5-8) Theorem 2.4] proved that $\sigma(30n) - \sigma(30n + 1)$ also has infinitely many sign changes. He found that $\sigma(30n) > \sigma(30n + 1)$ for all $n \leq 10^7$ and posed the following problem.

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

PROBLEM 1.1 [\[10,](#page-5-8) Problem 3.8(ii)]. Is it true that

$$
\sum_{n\leq K}\sigma(30n) > \sum_{n\leq K}\sigma(30n+1)
$$

for all $K \in \mathbb{N}$?

Recently, Ding *et al.* [\[2\]](#page-5-9) solved several problems of Pongsriiam. Inspired by their ideas, we answer affirmatively the above Problem [1.1.](#page-1-0) In fact, we prove a slightly stronger result.

THEOREM 1.2. *For every integer k with* $1 \le k \le 29$ *and* $(k, 30) = 1$,

$$
\sum_{n\leq K}\sigma(30n) > \sum_{n\leq K}\sigma(30n+k)
$$

for all $K \in \mathbb{N}$.

2. Estimations

Let

$$
\beta_0 = \sum_{d=1}^{\infty} \frac{B_0(d)}{d^2},
$$

where $B_0(d)$ denotes the number of solutions, not counting multiplicities, of the congruence 30*m* ≡ 0 (mod *d*). For every integer *k* with $1 \le k \le 29$ and $(k, 30) = 1$, let

$$
\beta_k = \sum_{d=1}^{\infty} \frac{B_k(d)}{d^2},
$$

where $B_k(d)$ denotes the number of solutions, not counting multiplicities, of the congruence $30m + k \equiv 0 \pmod{d}$. By the Chinese remainder theorem, both $B_0(d)$ and *B_k*(*d*) are multiplicative. Note that for $p \nmid 30$, we have $B_0(p^{\alpha}) = 1$ and $B_k(p^{\alpha}) = 1$ for any positive integer α . It is obvious that $B_0(p^{\alpha}) = p$ and $B_k(p^{\alpha}) = 0$ for $p = 2, 3, 5$ and any positive integer α . It follows that $B_0(d) \leq 30$ and $B_k(d) \leq 1$ for any positive integer *d*. By [\[1,](#page-5-10) Theorem 11.7] and

$$
\frac{\pi^2}{6} = \zeta(2) = \prod_p \frac{1}{1 - p^{-2}},
$$

we have

$$
\beta_0 = \prod_p \left(1 + \frac{B_0(p)}{p^2} + \frac{B_0(p^2)}{p^4} + \cdots \right) = \frac{5}{3} \frac{11}{8} \frac{29}{24} \prod_{p \nmid 30} \frac{1}{1 - p^{-2}} = \frac{319\pi^2}{1080}
$$

and

$$
\beta_k = \prod_p \left(1 + \frac{B_k(p)}{p^2} + \frac{B_k(p^2)}{p^4} + \cdots \right) = \prod_{p \nmid 30} \frac{1}{1 - p^{-2}} = \frac{8\pi^2}{75}.
$$

It can be checked that there are large oscillations of the error terms which influence the main terms if one tries to calculate the sums in Problem [1.1](#page-1-0) directly. Therefore, we first manipulate the weighted sums and then transform them to the original sums via summations by parts.

We always assume that $x \ge 1000$, $1 \le k \le 29$, $(k, 30) = 1$ in the following lemmas.

LEMMA 2.1. *We have*

$$
\sum_{m\leq x} \frac{\sigma(30m)}{30m} = \beta_0 x + g(x),
$$

where

$$
-30\log 30x - 32 < g(x) < 30\log 30x + 32.
$$

PROOF. By the definition of $B_0(d)$,

$$
\sum_{m \le x} \frac{\sigma(30m)}{30m} = \sum_{m \le x} \sum_{d|30m} \frac{1}{d} = \sum_{d \le 30x} \frac{1}{d} \sum_{\substack{30m \equiv 0 \pmod{d} \\ 30m \equiv 0 \pmod{d}}} 1
$$

$$
= \sum_{d \le 30x} \frac{B_0(d)}{d} \left(\frac{x}{d} + \alpha_0(x, d)\right)
$$

$$
= x \sum_{d \le 30x} \frac{B_0(d)}{d^2} + \sum_{d \le 30x} \frac{B_0(d)}{d} \alpha_0(x, d)
$$

$$
= \beta_0 x - x \sum_{d > 30x} \frac{B_0(d)}{d^2} + \sum_{d \le 30x} \frac{B_0(d)}{d} \alpha_0(x, d)
$$

$$
= \beta_0 x + g(x),
$$

where $-1 \leq \alpha_0(x, d) \leq 1$ and

$$
g(x) = -x \sum_{d>30x} \frac{B_0(d)}{d^2} + \sum_{d\leq 30x} \frac{B_0(d)}{d} \alpha_0(x, d).
$$

By [\[1,](#page-5-10) Theorem 3.2],

$$
0 \le \sum_{d>30x} \frac{B_0(d)}{d^2} \le 30 \sum_{d>30x} \frac{1}{d^2} \le 30 \left(\frac{1}{30x} + \frac{30x - [30x]}{(30x)^2} \right)
$$

and

$$
0 \le \sum_{d \le 30x} \frac{B_0(d)}{d} \le 30 \sum_{d \le 30x} \frac{1}{d} < 30(\log 30x + 1).
$$

It follows that

$$
-30\log 30x - 32 < g(x) < 30\log 30x + 32.
$$

This completes the proof of Lemma [2.1.](#page-2-0)

 \Box

LEMMA 2.2. *We have*

$$
\sum_{m\leq x}\frac{\sigma(30m+k)}{30m+k}=\beta_kx+h_k(x),
$$

where

$$
-\log(30x+k)-2 < h_k(x) < \log(30x+k)+2.
$$

PROOF. By the definition of $B_k(d)$,

$$
\sum_{m \le x} \frac{\sigma(30m+k)}{30m+k} = \sum_{m \le x} \sum_{d|30m+k} \frac{1}{d} = \sum_{d \le 30x+k} \frac{1}{d} \sum_{\substack{30m+k \equiv 0 \pmod{d} \\ \text{odd}}} 1
$$
\n
$$
= \sum_{d \le 30x+k} \frac{B_k(d)}{d} \left(\frac{x}{d} + \alpha_k(x,d)\right)
$$
\n
$$
= x \sum_{d \le 30x+k} \frac{B_k(d)}{d^2} + \sum_{d \le 30x+k} \frac{B_k(d)}{d} \alpha_k(x,d)
$$
\n
$$
= \beta_k x - x \sum_{d > 30x+k} \frac{B_k(d)}{d^2} + \sum_{d \le 30x+k} \frac{B_k(d)}{d} \alpha_k(x,d)
$$
\n
$$
= \beta_k x + h_k(x),
$$

where $-1 \leq \alpha_k(x, d) \leq 1$ and

$$
h_k(x) = -x \sum_{d > 30x+k} \frac{B_k(d)}{d^2} + \sum_{d \le 30x+k} \frac{B_k(d)}{d} \alpha_k(x, d).
$$

By [\[1,](#page-5-10) Theorem 3.2],

$$
0 \le \sum_{d>30x+k} \frac{B_k(d)}{d^2} \le \sum_{d>30x+k} \frac{1}{d^2} \le \frac{1}{30x+k} + \frac{30x+k-[30x+k]}{(30x+k)^2}
$$

and

$$
0 \le \sum_{d \le 30x+k} \frac{B_k(d)}{d} \le \sum_{d \le 30x+k} \frac{1}{d} < \log(30x+k) + 1.
$$

It follows that

$$
-\log(30x+k)-2 < h_k(x) < \log(30x+k)+2.
$$

This completes the proof of Lemma [2.2.](#page-3-0)

LEMMA 2.3. *We have*

$$
\sum_{m \le x} \sigma(30m) > 15\beta_0 x^2 - 2000x \log 30x.
$$

 \Box

PROOF. Let

$$
S(x) = \sum_{m \le x} \frac{\sigma(30m)}{30m}.
$$

By [\[1,](#page-5-10) Theorem 3.1],

$$
\sum_{m \le x} \sigma(30m) = \sum_{m \le x} 30m(S(m) - S(m - 1))
$$

= 30[x]S([x]) - $\sum_{m \le x-1} (30(m + 1) - 30m)S(m) - 30S(0)$
> 30(x - 1)($\beta_0 x - 30 \log 30x - 32$) - 30 $\sum_{m \le x-1} (\beta_0 m + 30 \log 30m + 32)$
> 30 $\beta_0 x^2 - 900x \log 30x - 960x - 15\beta_0 x^2 - 900x \log 30x - 960x$
- 30 $\beta_0 x + 900 \log 30x + 960$
> 15 $\beta_0 x^2 - 2000x \log 30x$.

This completes the proof of Lemma [2.3.](#page-3-1)

LEMMA 2.4. *We have*

$$
\sum_{m \le x} \sigma(30m + k) < 15\beta_k x^2 + 100x \log(30x + k).
$$

PROOF. Let

$$
T_k(x) = \sum_{m \le x} \frac{\sigma(30m+k)}{30m+k}.
$$

By [\[1,](#page-5-10) Theorem 3.1],

$$
\sum_{m \le x} \sigma(30m + k) = \sum_{m \le x} (30m + k)(T_k(m) - T_k(m - 1))
$$

= (30[x] + k)T_k([x]) - $\sum_{m \le x-1} (30(m + 1) + k - 30m - k)T_k(m)$
< $(30x + k)(\beta_k x + \log(30x + k) + 2) - 30 \sum_{m \le x-1} (\beta_k m - \log(30m + k) - 2)$
< $30\beta_k x^2 + 30x \log(30x + k) + 60x - 15\beta_k (x - 2)^2 + 30x \log(30x + k) + 60x + k\beta_k x + k \log(30x + k) + 2k$
 $< 15\beta_k x^2 + 100x \log(30x + k).$

This completes the proof of Lemma [2.4.](#page-4-0)

 \Box

 \Box

$R.-J.$ Wang [6] $[6]$

3. Proof of Theorem [1.2](#page-1-1)

PROOF OF THEOREM [1.2.](#page-1-1) For every integer *k* with $1 \le k \le 29$, $(k, 30) = 1$, by Lemmas [2.3](#page-3-1) and [2.4,](#page-4-0)

 \sum $\sum_{m\leq x} \sigma(30m) > 15\beta_0 x^2 - 2000x \log 30x > 15\beta_k x^2 + 100x \log(30x + k) > \sum_{m\leq x}$ $\sum_{m\leq x} \sigma(30m+k)$

provided that $x \ge 1000$. It is easy to verify that

$$
\sum_{m\leq K}\sigma(30m) > \sum_{m\leq K}\sigma(30m+k)
$$

for every positive integer $K < 1000$ and for every integer *k* with $1 \le k \le 29$ and $(k.30) = 1$. by programming. This completes the proof of Theorem 1.2. $(k, 30) = 1$, by programming. This completes the proof of Theorem [1.2.](#page-1-1)

Acknowledgements

The author would like to thank the referee and Yuchen Ding for their helpful suggestions.

References

- [1] T. M. Apostol, *Introduction to Analytic Number Theory* (Springer-Verlag, New York, 1976).
- [2] Y. Ding, H. Pan and Y.-C. Sun, 'Solutions to some sign change problems on the functions involving sums of divisors', Preprint, 2024, [arXiv:2401.09842.](https://arxiv.org/abs/2401.09842)
- [3] P. Erdős, 'On a problem of Chowla and some related problems', *Math. Proc. Cambridge Philos. Soc.* 32 (1936), 530–540.
- [4] D. Jarden, *Recurring Sequences* (Riveon Lematematika, Jerusalem, 1973).
- [5] M. Kobayashi and T. Trudgian, 'On integers *n* for which $\sigma(2n + 1) \geq \sigma(2n)$ ', *J. Number Theory* 215 (2020), 138–148.
- [6] F. Luca and C. Pomerance, 'The range of the sum-of-proper-divisors function', *Acta Arith.* 168 (2015), 187–199.
- [7] G. Martin, 'The smallest solution of φ (30*ⁿ* ⁺ ¹) < φ(30*n*) is ... ', *Amer. Math. Monthly* ¹⁰⁶ (1999), 449–451.
- [8] D. J. Newman, 'Euler's φ function on arithmetic progressions', *Amer. Math. Monthly* ¹⁰⁴ (1997), 256–257.
- [9] P. Pollack and C. Pomerance, 'Some problems of Erdős on the sum-of-divisors function', *Trans. Amer. Math. Soc. Ser. B* 3 (2016), 1–26.
- [10] P. Pongsriiam, 'Sums of divisors on arithmetic progressions', *Period. Math. Hungar*. 88 (2024), 443–460.
- [11] R.-J. Wang and Y.-G Chen, 'On positive integers *n* with $\sigma_l(2n+1) < \sigma_l(2n)$ ', *Period. Math. Hungar.* 85 (2022), 210–224.

RUI-JING WANG, School of Mathematical Sciences, Jiangsu Second Normal University, Nanjing 210013, PR China e-mail: wangruijing271@163.com