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The Asymptotics of the Higher
Dimensional Reidemeister Torsion for
Exceptional Surgeries Along Twist Knots

Anh T. Tran and Yoshikazu Yamaguchi

Abstract. We determine the asymptotic behavior of the higher dimensional Reidemeister torsion
for the graph manifolds obtained by exceptional surgeries along twist knots. We show that all irre-
ducible SL2(C)-representations of the graph manifold are induced by irreducible metabelian rep-
resentations of the twist knot group. We also give the set of the limits of the leading coeõcients in
the higher dimensional Reidemeister torsion explicitly.

1 Introduction

_e purpose of this paper is to observe the asymptotic behavior of the higher dimen-
sional Reidemeister torsion for graph manifolds. In particular, we are interested in
graph manifolds whose SL2(C)-representations of the fundamental groups are de-
scribed by certain subsets of the SL2(C)-representations of hyperbolic knot groups.
A closed orientable irreducible 3-manifold M is called a graph manifold if there

exists disjoint incompressible tori T2
1 , . . . , T2

k in M such that each component of
M ∖ (T2

1 ∪ ⋅ ⋅ ⋅ ∪ T2
k ) is a Seifert ûbered space, and the whole spaceM does not admit

any Seifert ûbration. It has been shown in [Yam] that the higher dimensional Reide-
meister torsion for a Seifert ûbered space grows exponentially, and its logarithm has
the same order as the dimension of representations. It is natural to expect that we
have the same growth order in the case of a graph manifold. In this paper, we deter-
mine the growth order and the limit of the leading coeõcient in the sequence given
by the logarithm of the higher dimensional Reidemeister torsion for certain graph
manifolds. We will see the diòerence in the limit of the leading coeõcient between
our graph manifolds and the Seifert ûbered spaces studied in [Yam]. In the study of
exceptional surgeries along a hyperbolic knot, the problem of ûnding incompressible
tori that cut the resulting manifold into Seifert ûbered spaces has been investigated.
For example there exists a complete list of exceptional surgeries along two–bridge
knots [BW01]. _e torus decomposition of the resulting graphmanifolds is also given
in [Pat95,CT13,Ter13].
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When a manifold is obtained by a surgery along a knot, its fundamental group is
given by a quotient group of the knot group. _erefore, we can pull-back SL2(C)-rep-
resentations from the fundamental group of the resulting manifold to the knot group
(for details, see Section 2.2). _e SL2(C)-representation space of a hyperbolic knot
group can be regarded as a parameter space for deformations of the hyperbolic struc-
ture of the knot exterior. Since exceptional surgeries along a hyperbolic knot yield
non–hyperbolicmanifolds, the resultingmanifolds induce SL2(C)-representations of
the hyperbolic knot group that correspond to degenerate hyperbolic structures. We
are also motivated to see the asymptotic behavior of the higher dimensional Reide-
meister torsion when we choose an SL2(C)-representation for a hyperbolic 3-man-
ifold that is diòerent from the holonomy representation. Here the holonomy rep-
resentation is an SL2(C)-representation corresponding to the complete hyperbolic
structure. We wish to investigate the asymptotic behavior of the higher dimensional
Reidemeister torsion for degenerate hyperbolic structures through the SL2(C)-rep-
resentations induced by an exceptional surgery.
For our purpose, we choose hyperbolic twist knots (see Fig. 2) with 4-surgeries.

According to the torus decomposition in [Pat95], in the set of exceptional surgeries
along two–bridge knots, only 4-surgeries along hyperbolic twist knots yield graph
manifolds consisting of two Seifert ûbered spaces that include a torus knot exterior.
More precisely, 4-surgery along a twist knot Kn illustrated in Figure 2 yields the graph
manifold M consisting of the torus knot exterior of type (2, 2n + 1), which will be
denoted by T(2, 2n + 1), and the twisted I-bundle over the Klein bottle. We consider
the asymptotic behavior of the higher dimensional Reidemeister torsion for M. When
we choose a homomorphism ρ from π1(M) into SL2(C), we also have a sequence of
homomorphisms σ2N ○ ρ from π1(M) into SL2N(C) by the composition with the
irreducible representations σ2N of SL2(C) into SL2N(C). Our main theorem is stated
as follows.

_eorem (_eorem 4.4 and Corollary 4.5) _e growth of log ∣Tor(M; σ2N ○ ρ)∣ has
the same order as 2N for every irreducible SL2(C)-representation ρ of π1(M). _e limits
of the leading coeõcients are expressed as

{ lim
N→∞

log ∣Tor(M; σ2N ○ ρ)∣
2N

∣ ρ is irreducible} =

{
1
pk

( log ∣∆T(2,2n+1)(−1)∣ − log 2) ∣ pk > 1, pk is a divisor of ∣∆Kn(−1)∣} ,

where ∆K(t) is the Alexander polynomial of a knot K.
In particular, the minimum in the limits of the leading coeõcients is given by

1
∣∆Kn(−1)∣

( log ∣∆T(2,2n+1)(−1)∣ − log 2) .

We will prove our main theorem using the following procedures. First, we will
see that all irreducible SL2(C)-representations ρ of π1(M) are induced by irreducible
metabelian representations ρ of a twist knot group π1(EKn). Here, EKn is the knot
exterior of a twist knot Kn . Concerning the decomposition of M as the union of
ET(2,2n+1) and the twist I-bundle N(Kb) over the Klein bottle Kb, the restriction
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of ρ to π1(ET(2,2n+1)) is abelian. On the other hand, the restriction to π1(N(Kb)) is
irreducible. We can also compute the Reidemeister torsion for M and ρ by the product
of the Reidemeister torsions for ET(2,2n+1) andN(Kb) in the JSJ decomposition ofM.
We will obtain the limits of the leading coeõcients in our main theorem from the
observation about the asymptotic behavior of the Reidemeister torsion for the torus
knot exterior ET(2,2n+1) and abelian representations given by the restrictions of ρ. We
remark that, since ∣∆K(−1)∣ is always odd, these limits diòer from the limit of the
leading coeõcient for the exterior of the torus knot T(2, 2n + 1) and an irreducible
SL2(C)-representation in [Yam], which is given by (1− 1/2− 1/q′) log 2 with a divisor
q′(> 1) of 2n + 1. _e maximum of (1− 1/2− 1/q′) is equal to −χ where χ is the Euler
characteristic of the base orbifold in the Seifert ûbration of the exterior T(2, 2n + 1).
From the viewpoint of hyperbolic structures, 4-surgery along a hyperbolic twist

knot yields degenerate hyperbolic structures of the twist knot exterior. In this paper,
we see that such degenerate hyperbolic structures are given by irreducible metabelian
representations in the SL2(C)-representation space of a twist knot group. _e above
_eorem (_eorem 4.4 and Corollary 4.5) and the results in [MFP14,Por] imply that,
in the case of a hyperbolic twist knot exterior, the growth order of the higher dimen-
sional Reidemeister torsion for any irreducible metabelian representation decreases
from that for the holonomy representation. Note that the Reidemeister torsion under
our convention is the inverse of that of [MFP14] (for more details, see [Por]). We will
observe that this degeneration occurs for any knot in the subsequent paper [TY]. In
other words, we will observe that the growth order of the higher dimensional Rei-
demeister torsion for any irreducible metabelian representation of a hyperbolic knot
group is less than that for the holonomy representation.

2 Preliminaries

2.1 The Higher Dimensional Reidemeister Torsion

For the Reidemeister torsion, we follow the notation and deûnition used in [Yam]. For
the details and related topics, we refer the reader to the survey articles [Mil66,Por] by
J. Milnor and J. Porti or the book [Tur01] by V. Turaev. We need a homomorphism
from the fundamental group into SL2(C) to observe the Reidemeister torsion for a
manifold. _roughout this paper, a homomorphism from a group H into a linear
groupG will be referred to as aG-representation ofH. _e symbol σn denotes the right
action of SL2(C) on the vector space Vn , consisting of homogeneous polynomials
p(x , y) of degree n − 1, deûned as

σn(A) ⋅ p(x , y) = p(x′ , y′), where (
x′
y′) = A−1

(
x
y) .

It is known that this action induces a homomorphism from SL2(C) into SLn(C),
which is referred to as the n-dimensional irreducible representation of SL2(C). For
simplicity, we use the same symbol σn for the n-dimensional irreducible representa-
tion of SL2(C). Wemainly use the 2N-dimensional irreducible representation σ2N . If
A ∈ SL2(C) has eigenvalues ξ±1, then σ2N(A) has eigenvalues ξ±1, ξ±3 , . . . , ξ±(2N−1).
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_is is due to the action

σ2N(A) ⋅ (x2N−1−i y i
) = ξ−2N+1+2i

(x2N−1−i y i
) with A = (

ξ 0
0 ξ−1)

on the standard basis {x2N−1 , x2N−2 y, . . . , xy2N−2 , y2N−1} of V2N .

Deûnition 2.1 LetW be a ûnite CW-complex and let ρ be an SL2(C)-representation
of π1(W). _e twisted chain complex C∗(W ;Vn) with coeõcients in Vn twisted by
ρ is deûned as a chain complex that consists of

C i(W ;Vn) = Vn ⊗σn○ρ C i(W̃ ;Z),

where W̃ is the universal cover ofW and C i(W̃ ;Z) is a le� Z[π1(W)]-module.

We assume that each twisted chain module C∗(W ;Vn) is equipped with a ûxed
basis c i given by v j ⊗ ẽ ik where v j is a vector in a basis of Vn and ẽ ik is a li� of an
i-dimensional cell e ik in W .

Deûnition 2.2 Suppose that the twisted chain complex C∗(W ;Vn) is acyclic, i.e.,
Im ∂ i = ker ∂ i−1 for all i. Each chain module C i(W ;Vn) has the following decompo-
sition:

C i(W ;Vn) = ∂ i+1B̃ i+1 ⊕ B̃ i ,

where B̃ i is a li� of Im ∂ i . _en we will denote by Tor(W ; σn ○ ρ) the n-dimensional
Reidemeister torsion forW and ρ, which is given by the following alternating product:

(2.1) ∏
i≥0
det(∂ i+1b̃

i+1
∪ b̃

i
/c i

)
(−1)i+1

,

where b̃
i
is a basis of B̃ i , c i is the ûxed basis of C i(W ;Vn) and (∂ i+1b̃

i+1
∪ b̃

i
/c i) is

the base change matrix from c i to ∂ i+1b̃
i+1

∪ b̃
i
.

_ere are several choices in the deûnition of the n-dimensional Reidemeister tor-
sion. For example, there are many choices of a li� of each cell e ik . It is known that
the Reidemeister torsion does not depend on the choice of a li� ẽ ik for SLn(C)-repre-
sentations. Let us mention the well-deûnedness of the Reidemeister torsion without
proofs. We refer the reader to [Por,Yam] for the details.

Remark 2.3 _ealternating product (2.1) is independent of a choice of a li� of Im ∂ i .
_e acyclicity of the twisted chain complex forW implies that the Euler characteristic
ofW must be zero. In this case, Tor(W ; σn ○ ρ) is also independent of a choice of a
basis of Vn . It is known that Tor(W ; σn ○ ρ) does not depend on the ordering and
orientation of cells in c i when n is even. If n is odd, then the sign of Tor(W ; σn ○ ρ)
depends on the ordering and orientation of cells in c i in general. _is is one reason
why we restrict our attention to 2N-dimensional ones.

We give an example of 2N-dimensional Reidemeister torsion that will be needed
in this paper.
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Figure 1: a cell decomposition of Kb (le�) and a li� to K̃b (right)

Example 2.4 Suppose that the Klein bottle Kb is decomposed as in Fig. 1 and ρ is
an SL2(C)-representation of π1(Kb). _e fundamental group has the presentation
π1(Kb) = ⟨x , y ∣ yx = xy−1⟩. _e twisted chain complex C∗(Kb;Vn) is expressed as

0→ C2(Kb;Vn) = Vn
∂2
Ð→ C1(Kb;Vn) = Vn ⊕ Vn

∂1
Ð→ C0(Kb;Vn) = Vn → 0

∂2 = (
1 − Y

−XY − 1) , ∂1 = (X − 1 Y − 1) ,

where X = σn ○ ρ(x) and Y = σn ○ ρ(y). By the relation x−1 yx = y−1, the SL2(C)-
representation ρ is classiûed into the following three cases, up to conjugation:
(a) ρ(y) = ±1 and ρ(x) is arbitrary,
(b) ρ(y) = (

η 0
0 η−1 )(η /= ±1) and ρ(x) = ( 0 −1

1 0 ) ,

(c) ρ(y) = ( ±1 ω
0 ±1 )(ω /= 0) and ρ(x) = ( ±

√

−1 ω′

0 ∓

√

−1
) .

We can express the 2N-dimensional Reidemeister torsion Tor(Kb; σ2N ○ ρ) as

(2.2) Tor(Kb; σ2N ○ ρ) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

det(1 − Y)

det(Y − 1)
det(Y − 1) /= 0,

det(−XY − 1)
det(X − 1)

det(Y − 1) = 0.

Note that the le� edge in Figure 1 is moved to the right one by the covering transfor-
mation of yx, since the starting point of the le� edge is moved to that of the right edge
by yx ∈ π1(Kb).

We will use the following gluing formula of the 2N-dimensional Reidemeister tor-
sion. _is is an application of theMultiplicativity property of the Reidemeister torsion
to a torus decomposition of a 3-manifold. In the case of the 2N-dimensional Reide-
meister torsion, we can determine the sign in the gluing formula easily. For the details
on applying the Multiplicativity property to a decomposition along a torus, we refer
to [Yam, Subsection 2.3 and Section 3] and the references given there.

Lemma 2.5 (Consequence of theMultiplicativity property for a decomposition along
a torus) Suppose that a compact 3-manifold M is the union M1 ∪T2 M2 and each M i
is given a CW-structure such that both of them induce the same CW-structure of T2.
If an SL2(C)-representation ρ of π1(M) induces the acyclic complexes C∗(M1;V2N),
C∗(M2;V2N), and C∗(T2;V2N), then the twisted chain complex C∗(M;V2N) deûned
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by ρ is also acyclic, and the 2N-dimensional Reidemeister torsion Tor(M; σ2N ○ ρ) is
expressed as

Tor(M; σ2N ○ ρ) = Tor(M1; σ2N ○ ρ)Tor(M2; σ2N ○ ρ).

Remark 2.6 Usually we have the equality that

Tor(M; σ2N ○ ρ)Tor(T2; σ2N ○ ρ) = Tor(M1; σ2N ○ ρ)Tor(M2; σ2N ○ ρ)

as a consequence of theMultiplicativity property. It is known that Tor(T2; σ2N ○ρ) = 1
if it is deûned.

2.2 SL2(C)-representations of Twist Knot Groups

We review several results concerning SL2(C)-representations of the fundamental
groups of our graph manifolds. We write EK for the knot exterior of a knot K, which
is obtained by removing an open tubular neighbourhood of K from S3. We mainly
consider the n-twist knot Kn , illustrated in Figure 2. _e horizontal twists are right-
handed if n is positive and le�-handed if n is negative. Under our convention, the

Figure 2: a diagram of Kn

1-twist knot K1 is the ûgure-eight knot.
It is known that Kn is a hyperbolic knot and that 4-surgery along Kn yields a graph

manifold M when n /= 0,−1. _e fundamental group π1(M) has the following pre-
sentation.

Proposition 2.7 ([Ter13, Proposition 2.2]) _e graph manifold M consists of a torus
knot exterior ET(2,2n+1) and the twisted I-bundle over the Klein bottle. _e fundamental
group has presentation

(2.3) π1(M) = ⟨a, b, x , y ∣ a2
= b2n+1 , x−1 yx = y−1 , µ = y−1 , h = y−1x2

⟩,

where µ = b−na and h correspond to a meridian and a regular ûber of the torus knot
exterior (with the Seifert ûbration), respectively.

Since π1(M) is isomorphic to the quotient group π1(EKn)/⟪m4ℓ⟫, where m and
ℓ are a meridian and a preferred longitude on ∂EKn , Proposition 2.7 shows that the
quotient π1(EKn)/⟪m4ℓ⟫ may be expressed as (2.3). We denote by ρ the induced
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homomorphism from π1(M) into SL2(C):

π1(EKn)
ρ //

��

SL2(C)

π1(M).
ρ

99

Deûnition 2.8 An SL2(C)-representation ρ of a group H is referred to as irre-
ducible if the invariant subspaces of C2 under the action of ρ(H) are only {0} and
C2. An SL2(C)-representation ρ is called reducible if it is not irreducible. We also call
ρ abelian if the image ρ(H) is an abelian subgroup in SL2(C).

Remark 2.9 _e image of π1(EKn) under ρ coincides with that of π1(M) under ρ.
Hence, ρ is irreducible if and only if ρ is irreducible.

Remark 2.10 We have seen the classiûcation of SL2(C)-representations of π1(Kb)
in Example 2.4. Case (a) consists of abelian representations; Case (b) consists of irre-
ducible ones, and Case (c) consists of reducible and non–abelian ones.

Deûnition 2.11 We write R(X) for the set of homomorphisms from π1(X) into
SL2(C). We call R(X) the SL2(C)-representation space of π1(X). _e symbol
Rirr(X) denotes the subset of irreducible representations in R(X).

_e pull-back by the quotient induces an inclusion from R(M) into R(EKn). We
can regard the representation spaceR(M) as a subset inR(EKn). From this viewpoint,
R(M) is expressed as

R(M) = { ρ ∈ R(EKn) ∣ ρ(m4ℓ) = 1} .

Deûnition 2.12 An SL2(C)-representation of a group H is calledmetabelian if the
image ρ([H,H]) of the commutator subgroup is an abelian subgroup of SL2(C).

Note that all second commutators of H are sent to the identity matrix under every
metabelian SL2(C)-representation ρ.

Lemma 2.13 Every irreducible metabelian representation of π1(EKn) is contained in
R(M).

Proof Since a preferred longitude is contained in the second commutator subgroup
of a knot group, all metabelian representations send a preferred longitude to 1. It was
shown in [Nag07, Proposition 1.1] that any irreducible metabelian representation of a
knot group sends a meridian to a trace-free matrix in SL2(C), which has eigenvalues
±
√
−1. Hence the matrix corresponding to a meridian has order 4.

For any knot K, we can express the set of irreducible metabelian representations
as the union of (∣∆K(−1)∣ − 1)/2 conjugacy classes, where ∆K(t) is the Alexander
polynomial of K. If K is a twist knot Kn , then we have the following representatives
of conjugacy classes. Here we suppose that π1(EKn) has a presentation π1(EKn) =
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⟨α, β ∣ ωnα = βωn⟩, where α, β are meridians and ω = βα−1β−1α. A twist knot
Kn has (∣4n + 1∣ − 1)/2 conjugacy classes, since its Alexander polynomial is given by
−nt2 + (2n + 1)t − n.

Proposition 2.14 ([NY12, _eorem 3] for Kn) _e set of irreducible metabelian rep-
resentations of π1(EKn) consists of (∣4n+ 1∣− 1)/2 conjugacy classes. _e representatives
are given by the following ρk (k = 1, . . . , (∣4n + 1∣ − 1)/2):

ρk(α) = (

√
−1 −

√
−1

0 −
√
−1

) , ρk(β) = (

√
−1 0

−uk
√
−1 −

√
−1

) , uk = −4 sin2 kπ
4n + 1

.

3 Representation Spaces for Resulting Graph Manifolds

Let M be the graphmanifold obtained by 4-surgery along a hyperbolic twist knot Kn .

3.1 R(M) as a Subspace of R(EKn)

We determine the SL2(C)-representation space R(M) as a subset in R(Kn).

Proposition 3.1 Every irreducible representation of π1(M) into SL2(C) is induced by
an irreducible metabelian one of π1(EKn), i.e.,

Rirr
(M) = { ρ ∈ R(EKn) ∣ ρ is irreducible metabelian} .

Proof By Lemma 2.13, it is suõcient to show that if any irreducible representation ρ
of π1(EKn) factors through the quotient group π1(EKn)/⟪m4ℓ⟫, then ρ is metabelian.
When M±1 denote the eigenvalues of ρ(m), the trace M + M−1 of ρ(m) must be
zero by Lemmas 3.2 and 3.3. Since Kn is a two–bridge knot, it follows from [NY12,
Lemma 23] that ρ must be a metabelian representation.

Lemma 3.2 If an irreducible representation ρ ∈ R(EKn) factors through π1(M),
then the eigenvalue M satisûes that AKn(M

−4 ,M) = 0, where AKn(L,M) is the
A-polynomial of Kn .

Proof _eA-polynomial AKn(L,M) gives the deûning equation of R(∂EKn). Since
the peripheral group π1(∂EKn) is an abelian group, we can assume that the images of
ρ(m) and ρ(ℓ) are upper triangularmatrices whose diagonal entries areM±1 andL±1

respectively. _en we can rewrite the constraint that ρ(m4ℓ) = 1 as L = M−4. _e
lemma follows.

Lemma 3.3 _e A-polynomial of Kn for L =M−4 is expressed as

AKn(M
−4 ,M) =

⎧⎪⎪
⎨
⎪⎪⎩

M−8n(M +M−1)2n n > 0,
M−8∣n∣+3(M +M−1)2∣n∣−1 n < 0.

Proof Since the knot Kn is the mirror image of J(2,−2n) in [HS04], the A-polyno-
mial AKn(L,M) coincides with AJ(2,−2n)(L,M−1). Hence, we have that

AKn(M
−4 ,M) = AJ(2,−2n)(M

−4 ,M−1
).
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By induction and the recursive formula in [HS04, _eorem 1], one can show that

AJ(2,2n)(M
−4 ,M−1

) =

⎧⎪⎪
⎨
⎪⎪⎩

M−8n+3(M +M−1)2n−1 n > 0,
M−8∣n∣(M +M−1)2∣n∣ n < 0.

_e lemma then follows.

3.2 The Restrictions to Seifert Pieces

We will see the restriction of ρ ∈ Rirr(M) to the fundamental group of each
Seifert piece. Recall that the graph manifold M is the union the torus knot exterior
ET(2,2n+1) and the twisted I-bundle N(Kb) over the Klein bottle Kb. _e funda-
mental group π1(M) contains the twist knot group π1(EKn) and the torus knot group
π1(ET(2,2n+1)). Wewill distinguish the pairs ofmeridian and longitude for these knots
by using (m, ℓ) for the twist knot Kn and (µ, λ) for the torus knot T(2, 2n + 1).

Proposition 3.4 For every ρ ∈ Rirr(M), the restriction of ρ to π1(ET(2,2n+1)) is
abelian.

Proof It was shown by [Ter03, _eorem 1.2] that a twist knot Kn bounds a once-
puncturedKlein bottle whose boundary slope is 4. We can think of loops in ET(2,2n+1)
as loops outside a non-orientable spanning surface of Kn in EKn . A loop γ outside a
non–orientable spanning surface of Kn has an even linking number with Kn . Write
γ ∈ π1(EKn) as

γ = mℓk(γ ,Kn)(m− ℓk(γ ,Kn)γ).
Note that ℓk(γ,Kn) is an even integer and m− ℓk(γ ,Kn)γ is a commutator. By Propo-
sition 3.1, one can see that ρ is induced by an irreducible metabelian representation
ρ of π1(EKn). Since ρ sends m2 and the commutator subgroup to −1 and an abelian
subgroup, respectively, the image of π1(ET(2,2n+1)) by ρ is contained in the abelian
subgroup.

In general, any abelian representation of a knot group π1(EK) is determined, up
to conjugation, by the eigenvalues of the matrix corresponding to a meridian. _is
follows from the fact that any abelian representation factors through the abelianiza-
tion π1(EK) → H1(EK ;Z), and H1(EK ;Z) is generated by the homology class of a
meridian of K.

Lemma 3.5 For every ρ ∈ Rirr(M), the restriction to π1(ET(2,2n+1)) is determined
by the eigenvalues of ρ(µ) up to conjugation. Here, µ is a meridian of T(2, 2n + 1).

Remark 3.6 By conjugation, we can assume that the ρ(a), ρ(b), and ρ(y) are
diagonal matrices and ρ(x) is ( 0 1

−1 0 ) for any ρ ∈ Rirr(M). _is is due to the fact that
ρ(a), ρ(b), and ρ(y) = ρ(µ)−1 are contained in the same maximal abelian subgroup
in SL2(C). _us, every ρ ∈ Rirr(M) itself is determined by the eigenvalues of ρ(µ)
up to conjugation.

Furthermore, the set of eigenvalues is determined as follows.
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Proposition 3.7 Suppose that ρk ∈ R(Kn) is an irreducible metabelian representation
in Proposition 2.14 and µ is a meridian of the torus knot in presentation (2.3). Let ξ±1

k
be the eigenvalues of ρk(µ). _en the set {ξ±1

k ∣ k = 1, . . . , (∣4n + 1∣ − 1)/2} is given by

{ e±θ
√

−1
∣ θ = π(2 j − 1)/∣4n + 1∣, j = 1, . . . , (∣4n + 1∣ − 1)/2} .

Proof Let p be ∣4n + 1∣. We regard elements of π1(ET(2,2n+1)) as the products m2rγ
where r ∈ Z and γ is a commutator of π1(EKn), as in the proof of Proposition 3.4.
It follows from [Yam13, Proposition 2.8] that the eigenvalues of ρk(γ) are p-th roots
of unity. Since ρk(m2) = −1 and p is odd, one can see that for the generators a and
b ∈ π1(ET(2,2n+1)),

ρk(a)
p
= ±1 and ρk(b)

p
= ±1.

By the relation a2 = b2n+1, we can conclude that ρk(b)
p
= 1. On the other hand, we

can see that ρk(a)
p
= −1, since the image of π1(ET(2,2n+1)) by ρk contains −1 and p

is odd. Hence the eigenvalues ξ±1
k of ρk(µ) = ρk(b

−na) satisfy that ξ±p
k = −1. We can

exclude the case that ρk(µ) = −1 by the irreducibility of ρk .
_ere exist at least (∣4n+1∣−1)/2 distinct pairs of eigenvalues by Proposition 3.1 and

Remark 3.6. On the other hand, there exist at most (∣4n+ 1∣− 1)/2 distinct pairs in the
set of 2p-th roots of unity to be the eigenvalues ξ±1

k of ρk(µ) (k = 1, . . . , (∣4n+1∣−1)/2).
_is proves Proposition 3.7.

Corollary 3.8 _e order of ρk(µ) is given by 2pk where pk divides ∣∆Kn(−1)∣ =
∣4n + 1∣.

We next turn to the restriction to π1(N(Kb)).

Proposition 3.9 For every ρ ∈ Rirr(M), the restriction of ρ to π1(N(Kb)) is irre-
ducible.

Proof Following the notation of Proposition 2.7, we denote by x and y the generators
of π1(N(Kb)). Note that tr ρ(y) = tr ρ(µ)−1, since µ = y−1 in the presentation (2.3).
Proposition 3.7 shows that tr ρ(y) /= ±2. Note that π1(N(Kb)) is isomorphic to
π1(Kb). Under the identiûcation between π1(N(Kb)) and π1(Kb), the restriction
of ρ to π1(N(Kb)) is an SL2(C)-representation of the type given in Example 2.4(b),
and hence is irreducible.

4 Asymptotic Behavior of Reidemeister Torsion for Graph
Manifolds

Wewill consider the limit of the leading coeõcient in the asymptotic behavior of Rei-
demeister torsion. We use the symbols ξ±1

k to denote the eigenvalues of ρk(µ). Wewill
compute the higher dimensional Reidemeister torsion and its asymptotic behavior for
M from the decomposition of a graph manifold.
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Proposition 4.1 Let ρk be an irreducible metabelian representation. _en the Reide-
meister torsion Tor(M; σ2N ○ ρk) is expressed as

Tor(M; σ2N ○ ρk) =
N

∏
i=1

∆T(2,2n+1)(ξ2i−1
k )∆T(2,2n+1)(ξ−2i+1

k )

(ξ2i−1
k − 1)(ξ−2i+1

k − 1)
.

Proof Applying Lemma 2.5 to the decomposition M = ET(2,2n+1)∪N(Kb), we have
that

Tor(M; σ2N ○ ρk) = Tor(ET(2,2n+1); σ2N ○ ρk)Tor(N(Kb); σ2N ○ ρk).

By Proposition 3.4 and Corollary 3.8, the restriction ρk to π1(ET(2,2n+1)) is an abelian
representation such that the matrix ρk(µ) corresponding to a meridian has an even
order. Our claim follows from Lemmas 4.2 and 4.3.

Lemma 4.2 _e Reidemeister torsion Tor(N(Kb); σ2N ○ ρk) is equal to 1 for all N.

Proof By the homotopy equivalence betweenN(Kb) andKb, Tor(N(Kb); σ2N○ρk)

coincides with Tor(Kb; σ2N ○ ρk). _e Reidemeister torsion Tor(Kb; σ2N ○ ρk) is
given by equation (2.2). _e eigenvalues of σ2N ○ ρk(y) = σ2N ○ ρk(µ)

−1 are given by
ξ∓(2i−1)
k (i = 1, . . . ,N). Proposition 3.7 shows that the orders of ξ±1

k are even. Hence,
σ2N ○ ρk(y) does not have the eigenvalue 1 for any N . Hence, Example 2.4 shows that

Tor(N(Kb); σ2N ○ ρk) = Tor(Kb; σ2N ○ ρk) =
det(1 − Y)

det(Y − 1)
= 1

for any N .

Lemma 4.3 Let φ be an abelian representation of a knot group π1(EK) that sends a
meridian to a matrix with eigenvalues ξ±1. If ξ is not a (2r − 1)-root of unity for any
r ∈ N, then the Reidemeister torsion Tor(EK ; σ2N ○ φ) is expressed as

Tor(EK ; σ2N ○ φ) =
N

∏
i=1

∆K(ξ2i−1)

ξ2i−1 − 1
∆K(ξ−2i+1)

ξ−2i+1 − 1

for all N.

Proof Since φ is abelian, φ factors through H1(EK ;Z), and we can assume that φ
sends all meridians to thematrix ( ξ ∗

0 ξ−1 ) up to conjugation. _en Tor(EK ;φ) is given
by

∆K(ξ)∆K(ξ−1)

(ξ − 1)(ξ−1 − 1)
.

_is formula follows from a computation similar to that in [Yam07, proof of Propo-
sition 3.8]. which shows how to compute the Reidemeister torsion of EK for a rep-
resentation sending all meridians to upper triangular matrices with diagonal entries
ξ and ξ−1. A computation similar to that in [Yam07, proof of Proposition 3.8] shows
that Tor(EK ;φ) is a fraction whose numerator is given by the product of єξn

′

∆K(ξ)
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and єξ−n′∆K(ξ−1), where є ∈ {±1} and n′ ∈ Z. _e denominator of Tor(EK ;φ) is
expressed as

det((ξ ∗

0 ξ−1)) − 1) = (ξ − 1)(ξ−1
− 1).

Note that the sign term τ0 of [Yam07, Proposition 3.8] is dropped from our deûnition
of Tor(EK ; σ2N○φ) since the Reidemeister torsion has no sign ambiguity for SL2N(C)-
representations.

_e SL2N(C)-representation σ2N ○ φ is decomposed into the direct sum ⊕N
i=1φ i ,

where φ i is an abelian representation sending a meridian to an SL2(C)-matrix with
eigenvalues ξ±(2i−1). For the direct sumof representations, the Reidemeister torsion is
given by the product of those for each direct summand φ i . _is implies our claim.

_eorem 4.4 Let ρk be an irreducible SL2(C)-representation of π1(M), which sends
µ to a matrix of order 2pk where pk is a divisor of p = ∣∆Kn(−1)∣. _en the growth
order of log ∣Tor(M; σ2N ○ ρk)∣ is equal to 2N. Moreover, the convergence of the leading
coeõcient is expressed as

(4.1) lim
N→∞

log ∣Tor(M; σ2N ○ ρk)∣

2N
=

1
pk

( log ∣∆T(2,2n+1)(−1)∣ − log 2) .

Proof It is suõcient to show that the le�-hand side of (4.1) converges to the right-
hand side. By Proposition 4.1, the le�-hand side of (4.1) turns out to be

lim
N→∞

log ∣Tor(M; σ2N ○ ρk)∣

2N

= lim
N→∞

1
2N

N

∑
i=1

log ∣∆T(2,2n+1)(ξ2i−1
k )∆T(2,2n+1)(ξ

−(2i−1)
k )∣

+ lim
N→∞

1
2N

N

∑
i=1

log ∣(ξ2i−1
k − 1)(ξ−2i+1

k − 1)∣−1 .

_e eigenvalues ξ±1
k are primitive 2pk-th roots of unity as in Propositions 3.7 and 3.8.

It follows from [Yam, Proposition 3.9] that the second term in the right-hand side
converges to −(log 2)/pk . Note that we can ignore the indeterminacy of a factor t j
( j ∈ Z) in the Alexander polynomial in the computation of the ûrst term. _e ûrst
term is rewritten as

lim
N→∞

1
2N

N

∑
i=1

log ∣∆T(2,2n+1)(ξ2i−1
k )∆T(2,2n+1)(ξ

−(2i−1)
k )∣

= lim
N→∞

1
N

N

∑
i=1

log ∣∆T(2,2n+1)(ξ2i−1
k )∣

=
1
pk

pk

∑
i=1

log ∣∆T(2,2n+1)(ξ2i−1
k )∣

=
1
pk

log
pk

∏
i=1

∣∆T(2,2n+1)(ξ2i−1
k )∣

(4.2)
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by the symmetry that ∆K(t) = t j∆K(t−1) ( j ∈ Z) and [Yam, Lemma 3.11]. _e
Alexander polynomial ∆T(2,2n+1)(t) is given by (t2n+1 + 1)/(t + 1). We have seen
that pk is a divisor of p in Corollary 3.8. Since gcd(p, 2n + 1) = 1, we can see that
gcd(2pk , 2n + 1) = 1. From this, we see that the denominator coincides with the nu-
merator in the product of ∣∆T(2,2n+1)(ξ2i−1

k )∣ except for i = (pk + 1)/2; i.e., we have
that

∏
1≤i≤pk ,

i /=(pk+1)/2

∣∆T(2,2n+1)(ξ2i−1
k )∣ = ∏

1≤i≤pk ,
i /=(pk+1)/2

∣ξ(2i−1)(2n+1)
k + 1∣
∣ξ2i−1

k + 1∣
= 1.

_e right-hand side of (4.2) is thus (log ∣∆T(2,2n+1)(−1)∣)/pk . Hence, the le�-hand
side of (4.1) is (log ∣∆T(2,2n+1)(−1)∣ − log 2)/pk .

It follows from Proposition 3.7 that the integer pk , which gives the order of ρ(µ)
by 2pk , runs over all divisors of ∣∆Kn(−1)∣ except for 1.

Corollary 4.5 _e set of the limits of the leading coeõcients is given by

(4.3) {
1
pk

( log ∣∆T(2,2n+1)(−1)∣ − log 2) ∣ pk > 1, pk is a divisor of ∣∆Kn(−1)∣} .

In particular, the minimum in the set (4.3) is given by

( log ∣∆T(2,2n+1)(−1)∣ − log 2)/∣∆Kn(−1)∣ = ( log ∣2n + 1∣ − log 2)/∣4n + 1∣.
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