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ABSTRACT. A snowmelt model is used for the weekly forecast of daily discharges in the Kaunas
reservoir, Lithuania. The results are used to feed a risk-based decision-making model developed by the
first author for dam operation during floods. Physically based calibration of a degree-day model is
carried out and coupled with flow routing using Nash’s instantaneous unit hydrograph theory.
Temperature forecast is used as the driving variable. Due to the relative smoothness of snowmelt over
time and the considerable basin size, the model provides acceptable results. Kalman filtering is then
used to merge the estimates from the snowmelt model with those from an ARIMA flow model, resulting
in better forecasting than that using each method alone. Uncertainty analysis of the snowmelt-model
results is then carried out, showing considerable influence of the main parameter degree-day and of soil
moisture conditions. Therefore these must be accurately estimated for forecasting purposes during

flood events.

1. INTRODUCTION

On 18 January 2006 the European Commission proposed a
directive aiming to reduce the impact of flooding upon
human health, the environment and infrastructure. Under
the proposed directive, the member states would first need to
carry out a preliminary assessment to identify the river basins
and associated coastal areas at risk of flooding. A keystone
for risk evaluation and management in hydropower plants is
flood forecasting. The largest Lithuanian hydropower system
consists of the Kaunas hydropower plant and the Kruonis
hydro-pump storage power plant, both taking water from the
Kaunas reservoir, located on the longest Lithuanian river, the
Nemunas. This is a transnational basin, covering 97 928 km?
in four countries, Lithuania, Belarus, Poland and Russia
(Kaliningrad district), and flowing into the Curonian lagoon
(Lithuanian part of the Baltic Sea). The main functions of the
reservoir are flood control and hydropower generation, but
also recreation, water transportation and fishing. The biggest
floods in the Nemunas river originate from snowmelt,
usually occurring in early spring. Usually the temperature
rises abruptly, with waterproof frozen soil to a depth of 40—
50cm and sometimes even as deep as 100cm, resulting in
rapid snowmelt and runoff therein. The first author devel-
oped a risk-based decision-making model for the Kaunas
hydropower system, requiring the forecast of the incoming
daily discharges with a lead time up to 7 days (Simaityte and
others, 2006). A model, herein named D-IUH, is presently
being developed to account for snowmelt, which was not
incorporated in the statistical approaches for flood forecast-
ing. A degree-day model is calibrated and coupled with flow
routing via Nash’s instantaneous unit hydrograph (IUH)
theory. The temperature forecast is used as a driving variable
to feed the degree-day model. Data fusion based on a
Kalman filter can be carried out with a standard auto-
regressive integrated moving average (ARIMA) model. This
allows improved forecast of flow discharges. Uncertainty
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analysis is then carried out for different lead times from
1 day to 1 week, to specify the parameters that require more
accurate estimation.

2. CASE STUDY

The Kaunas reservoir system is sketched in Figure 1. The
Kaunas reservoir takes water from the Nemunas river basin,
covering an area of 45800 km? in Lithuania and Belarus.
The average annual flow in the Nemunas at Kaunas is
287 m?s™'. The average flooding period in the Nemunas river
ranges from 6 March to 9 May, with greatest flows between
24 and 30 March. The river daily flow database for the period
1920-2001 was investigated, and showed that the greatest
floods occur in spring, requiring in practice the analysis of
spring data for flood forecasting. The annual flood series
(AFS), i.e. the series of the greatest annual floods, showed a
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Fig. 1. Kaunas hydropower system.


https://doi.org/10.3189/172756408787814988

34

Real-time flood forecast model |

Degree-day ARIMA flow
snowmcl:]l model rn(l)del
- »

i Temperature forecast | | River flow forecast
| using ARIMA 7T for1-7 days
1
\ 4

River flow forecast
for 1-7 days
T
\ 4

Kalman filtering

1
River flow real-time
forecast for 1-7

Fig. 2. The Nemunas river real-time flood forecast scheme.

mean value of 953 m’s™', with the biggest flood in 1958,
when a peak of 3450 m?s™" was observed on 24 April. Other
relevant events are 2060 m®>s™' in 1979, and 2330m>s™" in
1931. Another 30 events with peaks over 1000m*s™" were
also observed.

The flood-forecasting system presented here is based on a
general scheme as given in Figure 2.

3. METHODOLOGY
3.1. D-IUH runoff model

A runoff model was developed based on the degree-day and
IUH (see, e.g., Chow and others, 1988). The degree-day
approach is designed to simulate and forecast daily flow in
mountain basins where snowmelt is a major runoff factor
(e.g. the snowmelt-runoff model (SRM; Martinec, 1975)).
However, with respect to the typical degree-day approach,
here a more refined description of the watershed dynamics is
introduced using the IUH technique. Remotely sensed
imagery is typically used to evaluate the snow-covered area
(e.g. Martinec, 1975) for the SRM. Because the greatest
observed flood events used here date back to the period
1958-79, no remotely sensed imagery was available (the
26 greatest events occurred before 1990; the highest peak
thereafter, occurring in 1994, was 1070 m* s7). It was there-
fore assumed that the river basin was homogeneously
covered in snow during snowmelt. This is reasonable be-
cause the watershed presents a flat aspect. Snow-cover
conditions are assessed here using snowpack data from
gauging stations. The most important input in the SRM is the
depth of meltwater in a given day n, i.e. snow water
equivalent (SWE), which is expressed as:

SWE, = a(T, — To) (1)

with a a degree-day factor, indicating the snowmelt depth
resulting from 1 degree-day (cm °C™'d™"), T, the mean daily
air temperature (°C) and Ty the threshold air temperature for
snowmelt (here set to 0°C based on snow data analysis). In
general, the value of the degree-day factor varies during the
melt period because of changes in the snow properties,
which influence the melting process and should therefore be
estimated from the observed snow data. However, here a
constant value of a was found to represent the snowmelt
process well.

The IUH is defined as the direct runoff hydrograph
resulting from a unit volume of excess rainfall of constant
intensity and uniformly distributed over the drainage area.
The present model calculates the net snowmelt equivalent
using the Soil Conservation Service curve number (SCS-CN;
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Table 1. D-IUH model. Calibration for 1979 and validation for 1970
and 1958. Italic indicates parameters set a priori for validation.
‘Rank’ is position of gpeak in the AFS. Tis the relative sample return
period

Year Qpeak Rank T a SWE..x CN 3 k  MAPE
m>s™ years cmd™'°C'  mm days %
1958 3450 1 126 0.23 180 62 1.92 416 8
1979 2060 3 31 0.23 108 68 1.92 416 10
1970 1560 12 7 0.23 95 59 1.92 4.16 12
e.g. Gupta, 2001):
(SWEn*’a)Z 1
SWE, n = {(SWE,,I3+S) , i SWE, > , (2)
0, if SWE, < I,

where SWE,, \ is the the net snowmelt depth (mm), I, = ¢Sis
the initial abstraction, with ¢ as a calibration coefficient
(here 0.2) and S = 254(100/CN—1) the maximum specific
volume that can be stored in the ground, and CN a curve
number representing soil permeability. In this case, the Nash
model (see, e.g., Chow and others, 1988) was used for [UH
evaluation, which is expressed as a two-parameter gamma
distribution function:

u(t) = % exp (—é) (3)

with 3 a shape parameter, k a scale parameter and I'(3) the
complete gamma function.

Then, considering the IUH as the response of a linear
system to an instantaneous impulse of unit volume of
precipitation, the flow routing in the basin can be evaluated
using the convolution integral:

q(t) = /0 u(t —7) SWE, n(7) dr (4)

with u(f) the instantaneous unit hydrograph and 7 a dummy
variable used for integration. Having the estimated flow-
routing values, the daily flood discharge Q(t) (m*s™) is
calculated as:

Ao q(t)
Q(t) = To0086200 Qo(t) (5)

with A the drainage area (km?) and Qu(d the base flow
(m>s™"). Base-flow estimation was performed here using the
separation by recession curve approach (see, e.g., Furey and

Gupta, 2001).

3.2. ARIMA model for temperature and flow

Linear stochastic processes are among the most widely used
time-series techniques for modelling water resources. Here
an ARIMA(p, d, q) model (e.g. Box and Jenkins, 1976) is used:

(B)(1~ B)'x = O (B (6)
with x; a zero-mean time-series, 7, the white noise, ® and ©
respectively the pth- and gth-order auto-regressive and
moving-average components, B a backward shift operator
defined so that B/x; = x,_j, and d the order of differentiation
of the original data, i.e. the minimum non-negative integer

necessary to obtain a stationary process by differencing the
original series. Forecasting of the flow or temperature values
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Fig. 3. Year 1979. D-ITUH model calibration: calculated and
observed daily flow and snowmelt.

for 1,2,...,ndays is performed going step by step ahead using
the ARIMA model with estimated parameters using all
available data.

4. MODEL APPLICATION
4.1. Database

Here three events showing relatively good documentation
were selected from the AFS. Two of these, for the years 1958
and 1979, are the largest and third-largest events ever
observed (no database was available for the second-largest
event, dating back to 1931, with an estimated peak flow
of 2330m3s™). Temperature data were available from five
measuring stations in Belarus and one in Lithuania, while
daily precipitation data were available from seven stations in
Belarus and one in Lithuania. Winter snow precipitation and
daily snowpack data (depth and mass density) were
available from two Lithuanian measuring stations.

4.2. D-IUH model estimation

The D-IUH model was calibrated for the 1979 flood event
and validated for the events in 1970 and 1958. The 1979
event (Fig. 3) is used for calibration because it shows the
most complete database. A constant degree-day factor was
estimated by regression of cumulated melted snow from
snowpack data against the daily temperature series, resulting
in a=0.23cmd ™' °C™". Using this value and knowing the
initial snow depth on the ground, i.e. the greatest available
amount of water SWE,.,, the melted snow amount can be
back-estimated from daily temperatures (in Fig. 3). The CN
value is estimated by equating the net snowmelt volume
with the runoff volume (total volume minus base flow
volume). For the 1979 event, CN = 68. Nash’s model
parameters  and k were calibrated by a least-squares error
approach as:

=ty A
Gk = min{252(t)ﬂ,k} (7)
=ty
with € the error in flow discharge prediction from the model.
For every flood event the mean average percentage error

(MAPE) rate was used to check flow simulation and forecast
accuracy:

1 n
MAPE = — ;\q,- — pil/qi - 100% (8)

with n the number of flood days, g; the observed discharge
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Fig. 4. Year 1979. Flood forecast of the peak disharges for Ly =
1-7 days. D-IUH and ARIMA models and new estimates using
Kalman filter.

values and p; the modeled discharge values. A forecast is
usually considered to be very good for MAPE < 10%, good
for MAPE<20% and acceptable for MAPE<50%. The
MAPEs for flow simulation (i.e. with known model inputs;
no forecasting) for 1979, 1970 and 1958 are given in
Table 1. Figure 3 presents the results of the D-IUH cali-
bration. Notice the reasonable accuracy (1day ahead) in
defining the snowmelt period, i.e. the day of snow depletion,
and the resulting accuracy of the flood peak date. Validation
for 1970 and 1958 was carried out by taking the same a,
B and k values as in 1979. In this case, no snowpack data
were available. However, cumulative snow-depth precipi-
tation was available during the accumulation season. This
was used to set an initial condition for SWE.x. Again, for
1958 and 1978, the simulated ablation dates coincided
fairly well with the observed flow-peaking dates, indirectly
witnessing the likelihood of the a values. The CN had to be
changed; otherwise the model yielded unreasonable flow
rates. This was expected, because CN is variable from event
to event, requiring direct evaluation in practice (e.g.
Bocchiola and Rosso, 2006a). However, after the CN was
tuned, the D-IUH model performed reasonably well.

4.3. ARIMA model estimation

For short-term temperature forecasting, an ARIMA model
was chosen, and its parameters evaluated using winter—
spring daily temperature values. The temperature series were
divided by standard deviation and detrended, i.e. the linear
increasing trend of daily temperature during the flood event
period was subtracted from data. Preliminary tests showed
that, for a given daily temperature series, the optimal
forecasting performance (i.e. least forecast error) was given
by an ARIMA(1,1,1) model. Notice that here temperature
forecasting was accomplished using simple ARIMA model-
ling techniques, in view of the simple dataset that was
available for 1979. More refined sources are now available
(e.g. 7day temperature forecast from meteorological cen-
tres). An ARIMA model was also applied to flow discharges
(e.g. Montanari and others, 2000). Optimal performance
was obtained using an ARIMA(2,2,2) model. The model was
then applied for flow forecasting (Fig. 4).

4.4. Flood forecasting with D-IUH model

The flood forecasting was performed using temperature as a
driving variable to feed the D-IUH model. The temperature
forecast was simulated using the ARIMA model, and the
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Fig. 5. Year 1979. Uncertainty analysis of flood forecast for
Ly = 7 days. Various model runs with parameters selected from
distributions in Table 3 are compared to the measured hydrograph.

result was then used for snowmelt estimation in Equation (1).
Using Equations (2-5), the flood forecast could then be
carried out for lead times Ly from 1 to 7 days. Here, only
forecasting of the 1979 event was considered, because it
includes a more complete database. Issuing of a forecast
according to the risk-based decision-making procedure starts
after an attention level is reached, fixed at 500m>s™". An
example of forecasting for Ly =7days is presented in
Figure 4. The forecasts from 1 to 7 days ahead are shown,
issued on 4 April, close to the peak date. MAPE for forecast
ranges from 4.9% for Lt = 1day to 7.6% for Ly = 7 days,
reported in Table 2. This seems reasonable, because the
D-IUH model was properly calibrated a posteriori.

4.5. Flood forecasting with Kalman filtering

The D-IUH model shows a memory on the order of the lag
time, here T = 8k = 7.8 days. The ARIMA model is instead
a shorter-memory model, as it uses a few of the last flood
measurements, thus being decreasingly effective for longer-
duration flood forecasts. It seems warranted that the greatest
possible amount of information is gathered by data fusion of
the forecasts from the two models.

Kalman filtering is a reliable tool for data fusion and
forecasting (Bocchiola and Rosso, 2006b; Bocchiola, 2007)
and provides an optimal (i.e. unbiased and least-variance)
estimation. The equations for Kalman filtering are widely
known (e.g. Bras and Rodriguez-lturbe, 1985), so are not
reported here. Kalman filtering was carried out using the
ARIMA as the state variable model, and the D-IUH forecasts
as surrogates for noisy measurements. The variance of
estimation of D-IUH is the sample variance of the forecast
error by the D-ITUH model alone. In Figure 4, the flood
forecast for 1-7 days ahead as obtained by the Kalman filter
is shown.

Table 2. 1979 event. Accuracy in flood forecast based on MAPE
(%). Lead time 1-7 days

Model LT:1 LT:2 LT:?’ LT:4 LT:5 LT:6 LT:7
D-IUH 4.9 4.6 4.9 5.0 5.9 6.7 7.6
ARIMA 2.5 4.6 8.2 126 175 242 313

Kalman filter 2.3 3.5 4.4 4.8 5.3 6.1 6.5
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Fig. 6. Year 1979. S.. of D-IUH model parameters.

Clearly a poor forecast is obtained using the ARIMA
model after about 3 days, while the D-IUH model results in
more accurate forecasts until approximately day 5. How-
ever, after a longer period, i.e. for days 6 and 7, the
performance of the D-IUH model seems to decrease. The
Kalman filter seems to improve the accuracy of either model
used independently. Similar results were observed for most
of the cases, when issuing a 7 day forecast starting from
different dates. The full results of the comparison in term of
MAPE are given in Table 2.

5. UNCERTAINTY ANALYSIS

Uncertainty analysis of the decision-making procedure
indicates that the input parameters of the flood-forecasting
model are a main source of uncertainty (e.g. Augutis and
others, 2004). Therefore, an analysis was performed on the
D-IUH model to determine the main source of uncertainties
in the forecast. This evaluation is necessary to specify the
most important parameters, i.e. those that need to be
evaluated online for a better flood forecast exercise.
Uncertainty of the D-IUH forecasts arises because the
main parameters (i.e. a, CN, 8 and k) are not known a
priori and can vary between different events. To carry out
an uncertainty analysis for a number of parameters,
X1, X2 ...Xp, one can model them as random variables with
given probabilistic density functions p(x1), p(x2) ... p(xn).

When uncertainty is due to measurement errors, a normal
distribution is usually reasonably valid; other distributions
that can also be used are triangular, uniform, log-normal and
beta. In this case, normal and triangular distributions were
selected after a preliminary analysis (omitted for brevity; see
Table 3).

To test the sensitivity of the D-IUH to the input values of
the parameters, 93 numerical simulations were carried out
using SUSA® software. According to Wilks (1942), this is the
lowest number of simulations required for assessment of the
95% confidence limits to the flow forecast. Random values
of the parameters were extracted according to the defined
distributions and then fed to the D-IUH used for forecasting.
The 1979 flood event was considered. The analysis provided
a flood forecast for Ly = 7 days, presented in Figure 5 for an
interval close to the peak.

Analysis of the forecast results against the set of input
parameters resulted in a determination coefficient R* =
0.80. This means that uncertainty in the forecast model is
reasonably well explained by the variability of the model
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Parameter Min. value Max. value Nominal value Std dev. Distribution
Degree-day, a 0.18 0.28 0.23 0.05 Normal
Curve number, CN 55 75 68 - Triangular
Shape parameter, 1.62 2.22 1.92 - Triangular
Scale parameter, k 3.56 4.76 4.16 - Triangular
parameters. Sensitivity analysis to input parameters was ~ ACKNOWLEDGEMENTS

then performed using Spearman’s correlation coefficient S.
(-1 <S5 < 1) which shows the contribution to uncertainty
resulting from each parameter in the model. Estimation of
Scc is presented in Figure 6. The greatest value of S.. is
associated with the degree-day factor a (from S.. = 0.69 for
Ly =1to Scc = 0.78 for Ly = 7). The slight decrease of S
for CN as Ly increases is likely explained by an increase
of soil saturation during flood. The Nash parameters 3 and
k are negatively correlated and S is less than 0.3 in
absolute value.

As such, the conclusion can be drawn that the greatest
uncertainty is brought about by the degree-day factor a.
Consequently, accurate estimates of a must be carried out,
particularly when a flood event starts, to achieve accurate
online calibration of the D-IUH model. Care is also required
in setting CN to accurately forecast the flood volume.

6. CONCLUSIONS

Hydrological modelling based on a degree-day snowmelt
model and IUH theory was developed and applied to the
Nemunas river to forecast daily flow at the Kaunas reservoir.
The D-IUH model was calibrated for a case-study event in
1979 and validated for two events in 1970 and 1958,
showing good capability to represent the flood phenomena.
For the 1979 event, a temperature forecast from an ARIMA
model was fed to the D-IUH model, obtaining an acceptable
flood forecast for lead times up to 1 week. To improve the
model performance, the forecast from an ARIMA model for
flood discharges was merged with that from the D-IUH using
a Kalman filter, resulting in increased accuracy. Uncertainty
analysis of the D-ITUH model displayed considerable
influence of the degree-day factor and soil moisture via
the curve number CN. Therefore, online updating of these
parameters can lead to increased forecast accuracy. Fore-
casting of flood events nowadays can profit from more
comprehensive meteorological forecasts, resulting in more
accurate temperature assessments, rather than ARIMA
temperature forecasts. Also, the use of remotely sensed
imagery can result in more accurate snow-cover estimation
for the D-IUH model.
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