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We consider the following queuing system which arises as a model of awireless link
shared by multiple user3here is a finite numbeN of input flows served by a
server The system operates in discrete titne 0,1,2,.... Each input flow can be
described as an irreducible countable Markov chaiaiting customers of each
flow are placed in a queu@he sequence of servetates nft),t = 0,1,2,...,is a
Markov chain with finite number of statdd. When the server is in statg, it can
servel customers of flow (in one time slok

The scheduling discipline is a rule that in each time slot chooses the flow to
serve based on the server state and the state of the q@wawain result is that a
simple online scheduling disciplin®odified Largest Weighted Delay Firstlong
with its generalizationds throughput optimalnamely it ensures that the queues
are stable as long as the vector of average arrival rates is within the system maxi-
mum stability region
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1. INTRODUCTION

We consider a model motivated by the problem of scheduling transmissions of mul-
tiple data useréflows) sharing the same wireless changsarvej. The unique “wire-

less” feature of this problem is the fact that the capa@éyvice ratgof the channel
varies with time randomly analsynchronousljor different usersThe variations of

the channel capacity are due to differer@ndom interference levels observed by
different users and due fast fadingof the signal received by a us&ve will refer

to this problem as theariable channel scheduling problem.

The variable channel problem arisés examplein the 3G CDMA High Data
Rate(HDR) system[6]. (See alsq27] for a background on CDMA wireless sys-
tems) In HDR, multiple mobile users in a cell share the same CDMA wireless
channel On the downlink(the link from the cell base station to usgrsme is di-
vided into fixed-size&1.67-m9 time slots This slot size is short enough so tli@ach
user’g channel quality stays approximately constant within one or even a few con-
secutive time slotg To be more preciseéhis is true only for relatively low mobile
user velocitiesseg 27].) In each time slgtdata can be transmitted to only one user
Each user constantly reports to the base station its “instantaneous” channel capacity
(i.e, the rate at which data can be transmitted if this user is scheduled for transmis-
sion in the current time slat

In the HDR systengand in the generic variable channel model as yalsched-
uling algorithm can take advantage of channel variations by giving some form of
priority to users withtemporarily better channelsSince channel capacities of dif-
ferent users vary in time in an asynchronous maytherquality of servicéQoS of
all users can be improveds compared to scheduling schemes which do not take
channel conditions into accourt scheduling rule providingroportional fairness
in the achieved long-term throughput of different users was proposed and analyzed
in [25]. (See als$26].)

The QoS of a data user can be defined in different wHydata users aresal-
time users then the packet delays of each flow need to be kept below a certain
threshold This means that the primary goal of a scheduling algorithm is to keep all
gueuesstable(i.e., to be able to handle all the offered traffic without queues “blow-
ing up”).

In this article we consider the generic variable channel scheduling maxiel
main result is that a simple online scheduling disciplmedified largest weighted
delay first (M-LWDF) is throughput optimalnamely it ensures that the queues are
stable as long as the vector of average arrival rates is within the systearisnum
stability region

In a time slott, the M-LWDF discipline serves the floyfor which

v W (D] P4 (1) 1)

is maxima) whereW (t) is the head-of-the-line packet delay for flgwy; (t) is the
server capacity for floyat timet, andg and they;’s are arbitrary positive constants
(The name M-LWDF is because this discipline is a generalization of the LWDF

https://doi.org/10.1017/50269964804182041 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804182041

QUEUING SYSTEM AND ASYNCHRONOUS RATES 193

discipling[1,22].) Moreover as we discuss in Sectiondur result actually holds for
a quite wideclassof disciplines(of which M-LWDF is a memberand a more
general class of modelk particular the throughput optimality holds if instead of
maximizing(1), the scheduling rule maximizes

¥ [V (O1° (1), (2)

whereV,(t) = 7" W (t) + 7/?Q(t). Here 7"’ = 0 andn® = 0 are arbitrary
parameters for flovj, not equal to zero simultaneously and possibly dependept on

Our main stability results are closely related to the series of results on the sta-
bility of MaxWeight-typescheduling algorithms in queuing networks and in input-
buffered crossbar switcheBhe first results of this type were obtained by Tassiulas
and Ephremideg23,24] in the context of wireless systemnt=or the switch schedul-
ing stability resultsse€g[15,17] and a recent pap€t0]. In the context of interactive
parallel server systems and systems with randomly varying conneghilaigiVeight-
type stability results were obtained|i8,5]. (See alsg4], which is a recent exten-
sion of[3].)

The underlying intuition behind the stability of a MaxWeight-type algorithm is
the fact that it minimizes the drift of a Lyapunov function of the foBjV; (t)]#**.
Most of the algorithms studied before are for the gasel andV;(t) = Q;(t). As far
as we are awar¢l7] was the firstin which the stability result for a MaxWeight-type
rule using flow delay$/\(t) (as opposed to queue lengt@gt)) was derived (A
similar result was formulated but not proved i#].)

The main contribution of this article is that we show that a MaxWeight-type
algorithm retains stability properties even if the “weight” of an individual queue
has a form as general @¥,(t)]”. Such a generalization is important because the
additional parameters, ", andn® allow for a more flexible control of queue
lengths and delay distributiont® satisfy a variety of QoS constrainEor example
if we are interested in giving tight delay bounds to a flpwith a low arrival rate
then the “weight” for flowj should be based more on head-of-the-line packet delay
than on queue lengtli.e., 5"’ should be large relative tg©'). Converselyif flow
j has a high arrival rate and we want to bound its buffer space require,rt‘rmrnaj@
should be large relative tq(w).

To prove our stability resulfsve use theluid limit techniqug 7-919,20]. (For
a MaxWeight-type rulgthe technique was also used[it0] in a “switch” model
context) Use of this technique makes the above-described generalization very nat-
ural. Roughly speakingin the “fluid limit” and after some initial period of time
Q;(t) andW(t) stay proportional to each othe¢hus MaxWeight algorithms using
Q;(t), W(t), or a linear combinatio(t) are in some sense “indistinguishable” in
the fluid limit.

It is shown recently if21], which analyzes a more genefdescribed in Sec-
tion 4.2) version of our modethat in addition to throughput optimalitfviax\Weight-
type rules have certain asymptotic optimality properties when the system is heavily
loaded
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Practical implications of using M-LWDF to provide QoS for real-time data
users are addressed 2. In particular we show in 2] that the M-LWDF discipling
with “appropriately” chosen parameteys provides good QoS defined in terms of
the probabilities of packet delays exceeding predefined thresholds

The rest of the article is organized as follows Section 2 we introduce the
formal variable channel schedulingueuing modelNecessary and sufficient sta-
bility conditions are derived and the system stability region is defined in Section 3
In Section 4 we introduce the M-LWDF scheduling rule and formulate our main
result—Theorem 3which states that M-LWDFalong with a wide class of rules
generalizing it is throughput optimalThe proof of Theorem 3 is presented in
Section 5

2. VARIABLE CHANNEL SCHEDULING MODEL

Consider the following queuing systeifhere is a finite numbeN of input flows
indexed byi =1,2,...,N, served by aserver Each input flow consists of discrete
customers(One customer models one byte or bit of dafithe system operates in
discrete time = 0,1,2,.... By conventionwe will

(a) identify an(intege) timet, with the unit time intervalt, t + 1), which will
sometimes be referred to as e slot t
(b) assume that all processes we consider are constant within each time slot

There is a finite sefl, ..., M} of serverstates This set itself we also denote by
M (as well as its cardinalily Associated with each state € M is a fixed vector of
service ratespy,..., uy), where ally™ are nonnegative integefBhe meaning oft"
is as follows If in time slott the server is in stateand the servicén this time sloj
is given exclusively to queug then " type i customers are served from those
present at timé (or the entire queue content at, whichever is less We assume
that within each typecustomers are served in the order of their arrival in the system

The random server state process= m(t), t = 0,1,2,... is assumed to be an
irreducible (see[12]) discrete-time Markov chain with th@inite) state spacé.
The (unique stationary distribution of this Markov chain we denote hy=
(774,...,7n). Note that due to irreducibility 77,, > 0 for allm & M.

We make a nondegeneracy assumption that for eachifltvere is at least one
server staten € M such thap™ > 0. (Otherwisewe would have flows which simply
can never be served

Denote byA;(t) the number of typeé customers that arrived at tinte and
assume by convention that these customers are immediately available for service
We assume that each input procésss an irreducible positive recurrefsee[12])
Markov chain with countable state space and that the input processes are mutually
independent(This condition can be relaxed as follovilthe aggregate arrival pro-
cessA = {(A(1),...,An(t)),t = 1,2,...} can be described by a finite number of
regenerative processgk?] with finite mean regeneration cycle¢&et us denote by
A, i =1,...,N, the mean arrival rate for flow (i.e., the mean number of typie
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customers arriving in one time sjofhe vector of mean arrival rates is denoted by
A=(Agyen, An).

The random process describing the behavior of the entire syste®=S(t),
t=0,1,2,...), where

S(t) = {(Ui(1),...,Uq (1), i =1,...,N; m(t)},

Qi(t) is the typei queue length at timg andU,(t) is the current sojourn timer
delay, of thekth typei customer present in the system at tim@éwithin each type
the customers are numbered in the order of their arpival

A mappingH which takes a system sta$ét) in a time slot into a fixed proba-
bility distributionH (S(t)) on the set of queudswill be called ascheduling rulgor
aqueuing disciplineWith a fixed disciplineH, the queue to serve at tinhés chosen
randomly according to the distributidth(S(t)). Sq the numbeD; (t) of typei cus-
tomers served in the time slbis equal to midQ, (t), u™v} if queuei is chosen for
service and equal to zero otherwigecording to our convention$or each time,

Qi(t+1) =Qi(t) — Di(t) + A(t), Oi.

Our assumptions imply that with any scheduling r@gs a discrete-time count-
able Markov chainBy stability of the Markov chairs (and stability of the system
we mean the following propertiyhe set of positive recurrent states is nonempty and
it contains a finite subset which is reached with probability mi¢hin finite time)
from any initial stateStability implies the existence of a stationary probability dis-
tribution. (If all positive recurrent states are connectib@ stationary distribution is
unique)

We conclude this section with some basic notation we use throughout the arti-
cle. Vector inequalities are understood componentwlizeand [z] denote the inte-
ger part and the “ceiling” of a real numberespectivelyWe say that a functiof(t)
of areal variable is RCLL if it is right-continuous and has left limit in every point
t of its domain The abbreviation “10.c.” in a convergence statement means that the
convergence is uniform on any fixed compact subset of the corresponding function
domain We denote byV = {1,2,...} the set of positive natural numbers

3. NECESSARY AND SUFFICIENT STABILITY CONDITIONS.
STABILITY REGION

Suppose a stochastic matix= (¢, m& M,i =1,...,N) is fixed, which means
that¢,, = 0 for allmandi, andY}; ¢, =1 for everym. Consider atatic service split

(SS9 scheduling rulgparameterized by the matrék When the server is in statg,

the SSSrule chooses for service quewih probability¢,,. (The wordstaticin the

name of the rule reflects the fact that scheduling decisions depend only on the server
state) Clearly, the vectow = (v4,...,vn) = v(¢), Where

v = 2 T P "
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gives the long-term average service rates allocated to different.fldvis observa-
tion makes the following simplénd quite standajdesult very intuitive

THeEOREM 1: For the existence of a scheduling rule H under which the system is
stable, condition (3) is necessary

A =uv(¢) forsome stochastic matrik 3)
and condition (4) is sufficient

A <wv(¢p) for some stochastic matrik. 4

Proor: The necessity of conditio(8) is almost obviousConsider a ruled under
which the system is stable and consider the Markov cBaina stationary regime
(Such a stationary regime existaut is not necessarily unigyeNVe will denote by
H; (s) the probability with which the SSS rule chooses for service the guainren
S(t) = s. Then for anyi (and arbitrary fixed time sldt), we can write

A = EA(t) =EDi(t) = % 7mE(Di (1)m(t) = m)
= % wmg P(S(t) = s|m(t) = m)H; ()"
= % B W
where
bmi = Z P(S(t) = sIm(t) = mH;(s).

Obviously we haveX; ¢, = 1 for eachm. The necessity of3) is proved
Sufficiency of condition(4) is almost obvious as wellhe SSS rule associated
with any matrix¢ satisfying(4) makes the system stabladeed the rates at which
service is provided to different flowssis a random process “modulated” by the
underlying (ergodig Markov chainm, independent of the aggregate arrival pro-
cessA. Moreover the average service ratd ¢) available to each flow is strictly
greater than its average arrival rate If the Markov chain of interest would be

{(Ql(t)7~7QN(t));m(t)}7 t= 0»172’-”

(viz. its states would track queue lengths gnthen for examplemax Q; (t) can be
used as a Lyapunov function to show the stability via standard “drift” critetiah
as those in18]. Howeverthe states of our Markov cha8include customer sojourn
times as wellTo accommodate thjshe stability proof for the SSS rul@ssuming
(4)) can be obtaingdfor example as a much simplified version of the proof of
M-LWDF rule stability (Theorem 3, which is the main result of this articlSince
such a proof requires a fair amount of preliminayiesroduced later in the article
we present its details in the Appendix for the interested redtég also note that
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Theorem 3 itself implies sufficiency d@#). It is, however more intuitive simple
and standard to demonstrate this fact via the SSS rule or a similar stati€matds
why we discuss the SSS rule hgre n

The set of allaverage arrival rajevectorsa satisfying conditior(4) is usually
called the systermaximum stability regioror juststability region

An SSS rule associated with stochastic madrixwill be calledmaximalif the
vectorv(¢™) is not dominated by (¢) for any other stochastic matrik. (We say
that vectorv™ is dominated by vectos @ if v* < v for all i and the strict
inequalityv” < v? holds for at least oné) The following theorem provides a
useful characterization of maximal SSS rules

THEOREM 2: Consider a maximal SSS rule associated with a stochastic mgtrix
Suppose, in addition, that all componentedt= v (¢*) are strictly positive. Then,
there exists a set of strictly positive constastsi = 1,2,..., N, such that for any m
and i,

¢dmi > 0implies i€ arg maxy; Y. )
]

The theorem says that a maximal SSS rule always chooses for service at any
timet a queue for which a; U™ is maximal (It does not say what to do in case of
atie)

Proor: Consider the following linear program

max A
AAdmit
subject to
M
E Tl dmi = Av/', i=1...,N, (6)
m=1
N
Sém=LmEM, 0=¢y=LmeM,i=1..,N (7)
i=1

From the definition ob*, we know thatA = 1 and¢ = ¢* solve this linear program
with constraint$6) satisfied as equalitie$hen by the Kuhn-Tucker theorefseeg
e.g., [13]), there exists a set of nonnegative Lagrange multiptigr&;, ..., ay such
thatA =1 and¢ = ¢* also solve the following linear progratwith the same value
of the maximun:

N

M
max a'OA + 2 Q; < 2 77-m“imd)mi - Avi*> (8)
m=1

A dmit =1
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subject to
N
Somi=1 0=¢u=1 0Omi. 9)
i=1
Itis easy to verify that ally; must be strictly positive angly = 1. Then rewriting
(8) as
N M N
max A — A Z (65 Ui* + 2 sz Q; p-im(ﬁmi’
AAdmi i=1 m=1 i=1

we see that conditiofb) must hold because otherwise the maximum would not be
achieved byp = ¢*. u

4. THE MODIFIED LARGEST WEIGHTED DELAY FIRST DISCIPLINE
4.1. Main Result

The following natural question arisds there a scheduling rule whi¢hnlike SS$
does not use a priori information about the input ratgeand the stationary distri-
butionr of the server stat@nd yet ensures system stability as long as the necessary
and sulfficient stability conditiofd) is satisfied Theorem 3 shows that the answer
isyes

Let us call the value

Wi(t) = Upa(t)

(with Wi (t) = 0 if Q;(t) = 0 by conventiohthedelayof flow i at timet.

Let a set of positive constanis, ..., yy and a positive constagt> 0 be fixed
We define modified largest weighted delay fitdl-LWDF) to be the scheduling
rule that chooses for service in time sta@ singlequeue

| € arg maxy, MO (W (1))~

(The “ties” are broken arbitrarityfor example in favor of the largest indek)
An analogous rulewhich we will call modified largest weighte@infinished
work first (M-LWWF), chooses a single queue

i € arg maxy; "0 (Q, (1))~
J

THeEOREM 3: Let an arbitrary set of positive constams,...,yy and 8 > 0 be

fixed. Then, either of the two scheduling rules, M-LWDF or M-LWWF, are through-
put optimal; namely, they make the system stable as long as condition (4) holds (i.e.,
as long as the arrival rate vector is within the system stability region).

As mentioned in Section, bur proof of Theorem 3 uses tlikiid limit tech-
nigue This technique allows us to “derive” the stability of M-LWDF from the sta-
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bility of M-LWWF using the fact that their fluid limits are in a certain sense
indistinguishable

4.2. Generalizations

It will be clear from the proof of Theorem 3 that this result can be significantly
generalizedFirst, the (virtually unchangegl proof allows us to show throughput
optimality of the following “mixed” M-LWDF M-LWWF rule:

Serve queue
i € arg maxy; "V (V;(1))%,
J

where Y = 173-("")V\/j + 7,9 Q;, andn™ andn? are nonnegatie constants
that satisfyn " + 1% > 0.

In addition the model assumption that only one queue may be served at a time can
be relaxed as followd-or each server statg, there is an associated finiset K(m)

of service rate decision#&ssociated with each deciside K(m) is a service rate
vector

(HT'(K), ..., (k).

If the decisiork is chosen when the server is in staigthenp™(k) customers from
each queug (or the entire queugcontentQ;(t) if it is less thany™(k)) are served
within one time slatAgain, a slightly adjusted proof of Theorem 3 allows us to prove
that the following MaxWeight-type rule is throughput optimal

Choose a service rate decision

kearg max >y LMV K)(V;(1))~A

keK(m(t) %]

In the latter general forprour result includes as special cases the throughput opti-
mality results in both the “switch scheduling” model settjid,17] (and related
ones in3,14]) and the variable channel scheduling settimgich is the main focus

of this article

5. PROOF OF THEOREM 3

Throughout the proofve consider a system with a fixed set of parameters such that
condition (4) holds It needs to be proved that this system is stable under both
M-LWDF and M-LWWF rules

To simplify notation the proof will be for the casg = 1. The generalization of
the proof for arbitrary8 > 0 is trivial: The quadratic Lyapunov function i86)
needs to be replaced by the power law function
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l N
Ly)=—75 YR
=17 5 21: Y
in the formulations of Lemmas 2 and  (t), g;(t), w;(t), andw;(t) need to be
replaced byg;(t)#, g;(t)%, w;(t)#, andw;(t)?, respectively corresponding minor
adjustments need to be made throughout the proofs

5.1. Preliminaries

Let us define the norm of the stagét) as follows
N N
IS] =2 Q1) + 2 Wi(b).

Let S(™ denote a procesSwith an initial condition such thatS™ (0)| = n. In the
analysis to followall variables associated with a proc&s® will be supplied with
the upper indexn).

The following theorem follows from the state-dependent Lyapunov-type stabil-
ity criteria for countable Markov chainebtained first by Malyshev and Menshikov
[16].

THEOREM 4: Suppose that there exist> 0 and an integer T> 0 such that for any
sequence of processg8™,n=1,2,...}, we have

1

IimsupE[a ||S(“>(nT)|} =l-e (10)

n—co

Then, S is stable.

It was shown by Rybko and Stolyft9] that a stability condition of the type
(10) naturally leads to a fluid-limit approach to the stability problem of queu-
ing systemsThis approach was further developed by P&j, Chen[7], Stolyar
[20], and Dai and Meyri9]. As the form of(10) suggeststhe approach studies
a fluid processs(t) obtained as a limit of the sequence of scaled processes
(1/n)SM(nt),t = 0. At the heart of the approach in its standard form is a proof
that anys(t) starting from any initial state with norms(0)| = 1 reaches zero
in finite time T and stays therdt is sufficient however to show that for some
€ >0, ||s(T)| =1 — ¢, which is what we are going to do in this articlgn many
cases of interesta still weaker condition is sufficientt is enough to verify that
anys(t) is such that infy[/s(t)| < 1, as shown irf20]. This is true in our case as
well, as could be shown with a little extra woyKkn our settingwe need to define
what the scalind1/n)S™ (nt) meansIn order for this scaling to make sensee
will need an alternative definition of the process

To this end let us define the following random functions associated with the
processS(™(t). Let F™(t) be the total number of typiecustomers that arrived by
timet = 0, including the customers present at timefid Ietlfi(”)(t) be the number

https://doi.org/10.1017/50269964804182041 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804182041

QUEUING SYSTEM AND ASYNCHRONOUS RATES 201

of typei customers that were served by titrre 0. Obviously F™(0)=o0foralli.
As in [19] and[20], we “encode” the initial state of the system particular we
extend the definition o, (t) to the negative intervale [—n,0) by assuming that
the customers present in the system in its initial s&i¥&0) arrived in the past at
some of the time instants(n —1),—(n — 2),...,0, according to their delays in the
stateS(0). By this conventionF, ™ (—n) = 0 for alli andn and3", F™(0) = n.

Also, denote byG{"(t) the total number of time slots before tirhé.e., among the

slots QL,...,t — 1), when the server was in state and byé,ﬂi})(t) the number of

time slots before timéwhen the server state wasand the server was allocated to
serve queue. Let us also denote

Ut =t - w"), t=0,i=12,...,N.
Then the following relations obviously hoid
Q") =F"(t) - FE™(t), t=0,i=12,...,N, (11)
ut) =t, t=0,
U™t =inf{s=t:F"(9 > F" (1)}, t=0. (12)

It is clear that the procesS™ = (S(™(t),t = 0) is a projection of the process
XMW = (FM F™ M GM QM WM U™) where

FW = FE"t),t=-ni=12,...,N),

FO = F"1),t=0,i=12,...,N),

G™ = (GM(t),t=0,mE M),

GM =G (t),t=0,meM,i=12,...,N),
QM = (Q™(1),t=0,i=12,...,N),
um=wu"(t),t=0,i=12,...,N),

W™ = W"t),t=0,i=12,...,N).

In other wordsa sample path oX ™ uniquely defines the sample path$f".
Let us also adopt the convention

YO = Y(t])  fory=s" R F",.60, G, Q" U W,
witht= —nforY = Fi(") andt = 0 for all other functionsThis convention allows

us to view the above functions as continuous-time processes definedtfar @llor
t = —n), but having constant values in each interMat + 1).
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Now, consider the scaled proces® = (f ™, f™, g™, ™, q™,u™,w™), where
fO=(£"t),t=-1i=12,...,N),
f™=(f"t),t=0,i=12,...,N),
g™ = (g"(t),t=0, me M),
g™ = (g (t),t=0,meM,i=12,...,N),
g™ = (g™ (t),t=0,i=12,...,N),
u™ = w™t),t=0,i=12,...,N),

w® = w"(t),t=0,i=12,...,N),

and the scaling is defined as
1
zM(t) = - Z™(nt).

From(11), we get
a" ) =" -f"1, t=0i=12...,N. (13)

The following lemma establishes convergence to a fluid process and is a variant
of Theorem 41 in [8]. The lemma is a list of basic convergence properties of the
scaled sequencgs ™} which we need for future referencalthough the lemma
statement is quite londhe properties it describes are rather simple because they
follow almost directly from the structure of the model and the strong law of large
numbers for the input flow and server state processes

LemMma 1: Consider our system under any scheduling rule such that, within each
type i, the customers are served in the order of their arrival in the system. The
following statements hold with probabilify For any sequence of procesges™,

n € NV}, there exists a subsequené®, k € K C N’} such that as k> oo, the
scaled subsequen¢e™, k € £} has the following convergence properties for each

i €{1,...,N} and me M:

(¥, t= —1) = (fi(t),t= 1), (14)
(£¥(t),t=0 - (f(t),t=0) u.o.c., (15)
(ft),t=0) - (f(t),t=0 uo.c., (16)
(a(t),t=0) - (g (t),t=0) uo.c., (17)
(g(t),t = 0) = (gm(t),t=0) u.0.C., (18)
(0¥ (1), t=0) - (4mi(t),t=0) u.o.C., (19)
(U (t),t = 0) = (u;(t),t = 0), (20)
W (1),t=0) = (w(1),t=0), (21)
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where the functions fire RCLL nonnegative nondecreasinginl, o), the func-
tions f, f;, gm, and g, are nonnegative nondecreasing Lipschitz-continuous in
[0,00), functions gare continuous if0,00), functions yare nondecreasing RCLL

in [0,00), functions ware nonnegative RCLL if0,c), and “=" signifies conver-
gence at every continuity point of the corresponding limit function. The limiting set
of functions

x=(f,f.9,6,0uw)
also satisfies the following properties for al& {1,...,N} and m& M:

2 f,(0) = 1, (22)
f.(0) =0, (24)
fi(t)y=f(t), t=0, (25)
Om(t) = 7ty t=0, (26)
a(t) =fi(t)—fi(t), t=0, (27)
Gmi(0) = 0, (28)
> Gmi(t) = gn(t); (29)
for any interval[t;, t,] C [0,00),
fi(t,) — fi(t) = ZM M (Omi(t2) = Gmi(t1)); (30)

if gi(t) > O0fort € [ty,t,] C[0,00), then

fit) = fi(t) = 3 pM(Gm(ta) = Gi(ta)), (31)

meM

ui(t) =t —wi(t); (32)

for any fixed t > 0, the conditions [(t;) > 0 andf;(t;) > f, (0) are equivalent and if
they hold, then in the intervat,, ),

Aiw(t) = gi(t), (33)
which, in particular, implies that wand y are Lipschitz-continuous ift;,0).

Remark: The sets of functionsare(“fluid” ) limits of the sequences of scaled paths
{x®}. As suchits components have the usual natural interpretatibosexample
f;(t) andf,(t) are the amounts of typie‘fluid” that arrived into the system and are
served by the system by tligcaled timet, respectivelyandg; (t) = f;(t) — f;(t) is
the amount of unserved typet timet; gn,(t) is the total(scaled time before time
twhen the server state was §,,i(t) is the totalscaled time before timé when the
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server state was and queué was chosen for servicBroperty(23) then means that
after time Qthe fluid of each type arrives at the constant vatehis is generally not
true for the interva]—1,0] because the fluid arrival procesdg4) in this interval
simply code sojourn times of the customers present at tinam@ these initial so-
journ times can be distributed in a “bad” wagequality(30) simply means that the
amount of fluid served in any interval cannot exceed the “potential” amount which
could be served if the server would never incur idleness while serving quéue
idleness is incurred when queuis served in a slot at the raté’, but there are less
thanp™ customers in the quelteinequality (31) means that if the amount of un-
served fluidg;(t) in some(scaled interval is bounded away from zerthen the
actual amount of fluid served in this interval is exactly equal to the potential amount
of service The property containing33) is also simplebut is particularly important

for our analysislt says that if by some fixe@scaled timet;, the amount of typé

fluid served is greater than its initial amou(rt particular all of the “initial fluid” is
“gone” by timet,), then for allt = t,, the strict linear relation; w; (t) = q; (t) exists
between the amount of fluig (t) and the “head-of-the-line” fluid delay; (t). It is

this relation which will allow us tporoughly speakingmake a “transition” from the
stability of M-LWWF to the stability of M-LWDF by showing that the fluid limit
under M-LWDF is in a certain sense indistinguishable from that under M-LWWF
after the system “gets rid” of all the initial fluid

Proor oF LEmma 1: It follows from the strong law of large numbers thatith
probability 1 for everyi,

(™) — £(0),t=0) - (A, t=0) uo.c.

To prove(15), (22), and(23), it suffices to choose a subsequetig&’} such that for
everyi, lim f;*’(0) exists and denote the limit by;(0). Since allf.® andu® are
nondecreasingve can always choose a further subsequence suctil#and(20)
hold. Then (21) follows from (20).
Propertieg18) and(26) follow from the ergodicity of the server state process
Also, for any fixed 0= t; = t,, for everyi, m, and anyn, we have(using the

notationp™ = maxy, ; U

7)) = 3 u:“(gé:?az) ~ G () + %) = (tz “t %)

meM

From this inequalitywe deduce the existence of a subsequéotthe subsequence
already chosersuch that the convergencgls) and(19) take place an¢30) holds
Relations(24), (25), (28), (29), and(32) follow from the corresponding rela-
tions which trivially hold for the prelimit functiongfor any indexn € N'). The
convergencél?) and identity(27) trivially follow from identity (13).
Suppose thatgi(t) > 0 for t € [t;,t,] C [0,00). Let us fix § &
(0,mineepy,, 1,1 Gi (t)). The Lipschitz continuity ofg;(-), along with uo.c. con-
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vergence ofg™ to q;, implies that(with probability 1) the sequencéX®} is
such that for all sufficiently largk, the following inequalities hold

min - Q™ (t) > sk > maxp™.
tellty k. tyk+1] m

The latter property implies that if the quelas chosen for service anywhere in the
interval[ | t,;k], t,k + 1] when the server state was then exactly typei custom-
ers were servedsqg we must have

IR (k) — FY(kt) — > pm(G (k) — G (kty))| = 2 maxp™

meM

Multiplying the last inequality by Ak and taking the limik — oo, we obtain(31).
Property(33) easily follows from the fact that in the intervid, ), the scaled

input flow functionf, (- converges 10.c. to the strictly increasing linear function

f;(0) + A;t. We omit details [ |

Since some of the component functions included ifviz. f;(-), fi(-), gm(-),
Omi(+), andg;(-)) are Lipschitz if0,0), they are absolutely continuoubherefore
at almost all point$ € [0,c0) (with respect to Lebesgue measptbe derivatives of
all those functions exisiWe will call such pointgegular.

In the rest of this articlevhen we consider a fixed limiting set of functionsas
defined in Lemma lwe always assume that a sequence of prelimit patHs},
which “defines it” (viz. the convergence properties of Lemma 1 hold fixed as
well, along with the corresponding sequence of unscaled fiffs;.

5.2. Proof of Theorem 3 for the M-LWWEF Discipline

The meaning of the following auxiliary lemma is that if relati@4) holds at some
(scaled timet, then by virtue of the M-LWWF scheduling rylen some neighbor-
hood of pointt, flow i cannot be served

LeEMmMA 2: Consider the system with the M-LWWF discipline. With probahllity
limiting set of functions X, as defined in Lemma 1, satisfies the following additional
property. If

Yi g (1) < maxy, u"g; (t) (34)

for some regular point & 0, for some i and m, then

Ghi(t) = 0. (35)

Proor: Let us pick aj at which the maximum in inequalit{84) is attainedIn a
similar manner to the proof of propertgl) (in Lemma 1, we can fix a small
positived, > 0 such thatfor all sufficiently largek, for the unscaled patk® we
must have
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m (k> H m (k)
CE[(t—87)k, (t+51)K] YilrQT () ge[(t—aTlLQwsﬂk] nWQT)
(If t =0, then the time interval should 46, 5,k].) This means that in the interval
[(t — 81k + 1, (t+ 6,)k — 1], queuei cannot be served in any time slot when the
server is in statenbecause it would contradict the M-LWWF scheduling rdleus
for all sufficiently largek, we must have

6 <t + %) -g" (t - %) =0,

which implies@; (t + 6,/2) — §;(t — 6./2) = 0, and we are done u

Let us introduce a quadratic Lyapunov function
1 N
L(y) = > R (36)
1

for a vectory = (yy,..., Yn)-

The following lemma embodies the key idea behind MaxWeight-type sched-
uling rules They try to maximize the rate of decrease of the Lyapunov function
L(q(t)). Sq roughly speakingsince there exists at least one scheduling (elg,
an SSS rule withp such that < v(¢)) under whichL(q(t)) has a negative drift
(whenL(q(t)) > 0), the drift of L(q(t)) under M-LWWF has to be negative as
well.

LeEmMA 3: Consider a system with the M-LWWF discipline. For any> 0, there

existsd, > 0 such that the following holds. With probability a limiting set of

functions x, as defined in Lemma 1, satisfies the following additional properties:
L(g(t)),t= 0, is an absolutely continuous function,

1 N
L) =5 Sy, (37)
1
and at any regular point t,

L(q(t)) = &, implies % L(q(t)) = —6>. (38)

PrOOF: Let us pick a fixed stochastic matrix such that; < v;(¢) for alli. (The
existence of such a matrix is conditi¢).)

For any regulat = 0 such that.(q(t)) > 0, the derivative ofL(q(t)) can be
written

d N .
a L(a(t)) = 21% ai (1) (A — /(1) (39)

= _:El’)’i gi (O (A —vi(9)) + _:21% gi(t)vi (o) — _:21% a(Ovi(d), (40)
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where

) 4 (t
¢mi(t) = g ( )5
T

m

and we use the fa¢following from property(31)) that
fr(t) = X urghi(t) if gi(t) > 0.

Let us choosé; > 0 such that_(y) = §, implies maxy; = §s. Then the first sum
in (40) is bounded as follows

2 76O~ (@) = —(minyi ) ssmin(ui(#) = &) = =5

It remains to show that

K(A(t),q(t) = K(¢,q(t)), (41)

whereK (£, y) denotes the function of a stochastic< N matrix £ and a nonnegative
N-dimensional vectoy, defined as

N
K(EY) =2 7iYivi(€) = 2 7Y 2 Tmmi " = 2 7 X Emivi Y-
i=1 i m m i
It is easy to see that for any nonnegative vegtoa stochastic matri¥ maxi-

mizesK (¢, y) if and only if the following condition holds for every and m: If
yi UMY < max y; iy, then

Emi = 0. (42)
However property(35) shows that42) is satisfied fory = q(t) andé = ¢(t). This
proves(41) and the lemma |

LemMA 4: Consider a system with the M-LWWF discipline. For @y 0, there
exists T> 0 such that with probabilityl, a limiting set of functions x, as defined in
Lemma 1, satisfies the following additional property:

L(q(t)) =6, t=T. (43)
The proof follows from Lemma.3

ProoF oF THEOREM 3 FOR M-LWWF: According to Lemmas 1-4or any fixed
€, > 0we can always choose a large enough int&gel0 such that for any sequence
of random processdX ™}, there exists a subsequer{e€”'} such that with prob-
ability 1, the convergence to a limiting set of functiontakes place ananoreovey

2 q(T) =e;. (44)
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If we recall thatT is large then it follows from(44) that
fi(T) = (T) - q(T) >£(0), i, (45)
implying (by (33)) that

W (T) = q')(\T) 0. (46)

This, in turn, implies (sincee, is smal) that
1
SaM+>Sw(M =1+ ——|e=1-e<Ll
i i <m'in Ai>

Therefore with probability 1,

lim sup ||S(”)(nT)H =l-e (47)

n—oo

Since

IS™(nT)| = n+ 3 [R™(nT) = K™ (0] + N[n +nT],

our input process assumptions easily imply that the sequghg®|S™ (nT)|} is
uniformly integrable This, along with (47), verifies condition(10). The proof is
complete [ |

The following supplemental statement about the M-LWWF discipline will play
an important role in the stability proof for the M-LWDF discipline

Consider gyeneralizedsystem with a given discipling. The generalization is
to assume that some time slots are unavailable for service of any .dueeach
available for service time slpthe scheduling rule ibl. In a generalized systertet
G{"(t) denote the number @vailable for servicdime slots(by timet) when the
server is in staten. (Such a generalized system arises latdren we want to study
the service dynamics ofsubsebf queuesTo do that we will view the time slots
allocated to any other queue as unavailable for service of the subset of queues on
which we focus)

LeEmma 5: Let positive constants Kand K; be fixed. Consider a sequence of
fixed sample pathgX ¥} of the generalized system under M-LWWF such that as
k — oo, all properties described in Lemmas 1 and 2 hold with the following
modifications:

Property (22) is replaced by

N

2 1(0) = Ko < o, (48)
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property (26) is replaced by
gm(t) =Tl — hm(t)’ t=0, (49)

where each functionis nondecreasing Lipschitz-continuoug,(@) = 0, and
> lim hy(t) = K,
m t—oo

Then, the function (g(t)) has the upper bound € oo, which depends only ongK
and Ky

L(g(t)) =C, t=0. (50)

Proor: The idea of the proof is simpl¢he total “amount” of(scaled time when
service is unavailable to the queues is finileunded above bi;. During the “rest
of the timg” when the service is availahl¢he Lyapunov functiori(q(t)) cannot
increasedue to the “reasons” presented in the proof of Lemntd@Bveverwe need
to apply this idea in a continuous time settimghich requires some care with the
estimatesWe now proceed with the details

We will use the notatiofh (t) = L(q(t)). Let us choosé > 0 small enough so
that the following holds for regular pointsIf gn(t) = 7, — 6 for eachm, then
(d/dt)L(t) < 0. (The existence of suchais easily obtained using the argument and
the estimates used in the proof of LemmpgNote thalX,,, h,(t) = 6 impliesg/,(t) =
7m — 6 for eachm.

Let us denote by the Lebesgue measure andbyheo-algebra of Lebesgue-
measurable subsets[df,c0). Consider the subset

B = {t € [0,00) : tis regular Y, hj(t) > 8}.
Itis easy to check th& € £ and

A(B) = Ky
==

Define the measure on £ as follows

v(A) = A(AN B).

Notice thatv ([0,00)) = A(B).
For future referencewe note that for some fixed positivg andc, and all
regulart,

L'(t) = ¢, + c,L(1), (51)

which follows from the estimate

L'(t) = 2 Yiai(ta(t) = (maX)\i)z YiaGi(t) = (maX/\i)z yi[1+ (qi(1)%].
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We see that the derivativig(t) is bounded above as (1) at regular points
t € B, and it is negative at regular point& [0,00)\B. We can write

C(t) = C0) + f

[0, t]NB

C'(y)A(dy) = C(O) + f C(y)»(dy)
= L) + c,v([0,t]) + sz E(Y)V(dY)
0

= L(0) + ¢, ([0,00)) + szo L(y)v(dy).

Applying Gronwall’s inequality{11, p. 498], we obtain
L(t) = [L(0) + c,v([0,00))] exp{c, v ([0,00))}

and finally,

_ c K cK
L(t)S[KO+ 16 1]exp{ 26 l}, t=0,

which proves the lemma u

5.3. Proof of Theorem 3 for the M-LWDF Discipline

The following lemma describes the key property of the M-LWDF discipline which
is analogous to the M-LWWF property described in Lemma 2

LeEmMA 6: Consider a system with the M-LWDF discipline. With probabilifya
limiting set of functions X, as defined in Lemma 1, satisfies the following additional
property. If in some intervdlt;, t,], 0 = t; < t, < oo, for some fixed m and fixed i
and j we have

sup i "W (t) < inf s i wy (1), (52)

y=t=t,
then

gmi(tz) - gmi(tl) =0. (53)

Proor: The proof is analogous to the proof of Lemmg 2he only additional dif-
ficulty is the fact that the functions; (-) may not be continuougNote that condition
(52) implies thaty™ > 0. We will consider only the nontrivial case whest' > 0.
(The casqu™ = 0 is treated analogously to and simpler than this gdsat us fix
positive constanta andé such that

sup yvi"wi(t) <a—8<a+d6< inf yu"w(t). (54)
ty=t=t,

t=t=t,
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Then for all t € [t;,t,], we have

() >t— —
u - -
Vi Mi
and
a+o
u(t) <t-— o
Vi Ky

Since for each, u; () and allu™®(-) are nondecreasing and we have the convergence
ui(k)(t) — U; (t) for everyt whereu; is continuouswe see that for all sufficiently large
k and for allt € [t;, t,],

) >t —

and

)
u () <t-— .
: YiH"

From the latter two inequalitiesve see that

YW <a<yurwt),  te [t t].

Just as in the proof of Lemma ®e observe that the latter property implies that for

all largek,
1 1
® (K
milt2— =] = Omi (tz+ -] =0
< 2 k> ( ! k)

because the corresponding unscaled pathis such that quetiemay not be served
in any time slot in the intervdkt; + 1, kt, — 1] when the server is in state (Other-
wise, we would get a violation of the M-LWDF scheduling rul@aking the limit
k — oo completes the proof u

The following lemma shows that under M-LWDddl fluid limits x are such that
after some fixed timdy, all of the “initial fluid” is served(and thereforethe linear
relationg; (t) = A;w;(t) holds for all t = Ty and all queues.

LemmMma 7: Consider a system with the M-LWDF discipline. There exigsts Dsuch
that with probabilityl, a limiting set of functions x, as defined in Lemma 1, satisfies
the following additional property:

f(Ty)>%0), i=1...,N.
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To illustrate the intuition behind the formal prqoafie present the following
informal discussionSuppose we consider the system with two flaws 1,2 and
assume that by some fixed tiffie= 0, we havef;(T;) > f,(0) (i.e,, all of the initial
fluid of type 1 has been serviedConsider a fixed sufficiently large timik. Let us
show why the assumption that the initial type 2 fluid is not served by Tyneamely

f(T,) = £,(0), (55)
leads to a contradictioiWe observe thafirst, the flow 2 delayw,(t) = t for all
t € [T1, T,]. Second the amount of time unavailable to flow 1 i, T,] is
bounded abovef,(0) = 1. Then according to Lemma ,5q9,(t)—and therefore
wy(t) = qi(t)/A,—is bounded above ifiT, T,] by a constant independent of
T,. Therefore during most of the intervalT,, T, ], the ratio of the waiting times
Wa(t)/w;(t) is very large This means thatduring most of the intervdlT;, T,]) as
long as the server statis such that flow 2 can be served at strictly positive rate
U3, the M-LWDF rule must choose for service queue 2 over queliénis means
that the amount of time when queue 2 is served is of the orddp,ofvhich is
large However then all of initial type 2 fluid the amount of which is upper
bounded by 1must be served by tim&—a contradiction to assumptig5).

Proor or LEMMA 7: Let us fix an arbitrary, > 0. We have
fi(ez) = (0) + A e, > 1,(0), 0O,
and
EQi(Ez) = E file)) =K, =1+ (2 /\i>€2-
We will show the existence offy such that
f(Ty) =f(e), i=1...,N. (56)

The proof of(56) is by induction
Induction Base. There exists F 0 such that for at least one i,

fAi (Ty) = fi(ep).

Let us sefl; =€, + Ky /7", wherer* is the sum of the stationary probabilities,
over server state®s such thap™ > 0O for at least ong Suppose the statement of the
induction basgwith thisT;, does not holdThen for all sufficiently largek, we must
have

DM — %)l = 77 (Ti — &) + 0(1) =Ky + 0(1),

whereo(1) is a term vanishing als — co. Taking thek — oo limit, we obtain

2 [ f(T) — fi(e2)] = Ky,
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which meangsee the definition oK,) that 3, f.(T,) = 3 f,(e,) and therefore
f.(T,) = f,(e,) for at least oné. This contradiction proves the induction base

Induction Step. Suppose that there exists 0, 1 = | < N such that for at least
one subset NC {1,..., N} of cardinality I, we have

£(T) = f(e2) (57)

forallj € N,. Then, there exist§.T; = T, such that (57) holds for all j within at least
one subset N, of cardinality [+ 1.

We will prove the induction step fdr= 1. (The generalization for arbitrafyis
straightforward Thus we need to prove the existence Bf= T, such that for at
least two different flows andr, (57) holds forj = i, r, with T, being the constant
from the induction base statement

Let us fixi for which
fi(t) =fi(e), t=T,
according to the induction basBuppose
f(Ty) <fi(ep) forallj+i. (58)

We observe that

> (file) = fi(T)) =K,

j#i

whereK; is as defined earlieand

Gi(T) =Ko =1+ AT
Suppose that a constafit> T, is fixed such that
f(T,) <f.(e,) forallr=#i. (59)

(Below, we provide a choice df, such that assumptigb9) leads to a contradiction

Let us view each unscaled paxf¥ after timekT, as a generalized system
(described just above Lemma with the single input flow of typé and with time
slots allocated to any other flow being unavailable to fioWBy convention only
the slots in which at least one customer of at least one fléw was actually served
are considered unavailable to flaw Then for the scaled generalized systestart-
ing at timeT,, we have

hm(t) = 2 [gmr(t) - gmr(Tl)] = Kla Tl =t= T27 me M (60)

r#i

Sincex is such that the simple linear relatianw; (t) = g;(t) holds for flowi for all
t=T,, the generalized system with the M-LWDF discipline satisfies all of the prop-
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erties of the generalized system with the M-LWWF disciplimeluding Lemma
with eachy; replaced byy; /A;. Thus from Lemma 5we have

1/vi\ , _
§<A_i>Qi (t)=¢C,

where the left-hand side is the(q(t))” for the generalized system a@= 0 is the
constant defined in Lemma Bepending only on the constars andK, specified
in this proof From the last display we have the estimate

- 2c
g(t)=C, = > te [T, T,]. (61)
Note thatC, does not depend on the choiceTof
From this pointwe “switch back” to interpretingk ¥ as a path of the original
system Let us denote by (i) the subset of elemenis € M such thay™ > 0 for
at least one flow # i and denoter*(i) = X em(i) 7m. Let us choos&, > T, large
enough so that for any pair f i andm € M such thayy™ > 0, we have

¥i U"Cy

SN ). (62)

Finally, let us choosd, > T, large enough so that
7 (i)(T,—T) > K,.

Our choice ofT} in (62) guarantees that for all sufficiently largethe unscaled path
X® must be(according to the M-LWDF rulesuch that in the intervgkT;, kT, ], in
every time slot in which the state of the server belongs to thd/ge}, one of the
flowsr #i is chosen for servic&d his observation implies that in thke— oo limit for
the corresponding scaled patlase must have

2 [Ome(T2) = Gnr(T] = 7 () (T = T5) > Ky

r#i
This is a contradiction t@60), which shows thatfor the T, chosen aboveg(59)
cannot holdand therefore

f(To) = f, (e2) (63)

for at least one # i.

We have proved clair63), assuming conditiof68). However the opposite of
condition(58) means thatrivially, (63) holds for some # i and anyT, = T,. Thus
(63) holds for the chosem, regardless of conditio(G8).

Our choice ofT, depended on However since there is only a finite number of
possible values af, we can choos@&, so that(63) holds for some # i no matter
whati is. The proof of the induction step is complete u
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Proor oF THEOREM 3 FOR M-LWDEF: We proved the existence @f > 0 such that
for any sequence of random procesS¢$’}, there exists a subsequere€"} such
that with probability 1the convergence to a limiting set of functioxntakes placge
and moreoversx is such that the linear relation exists for all

Aiwi (1) = qi(t), t="Ty.

This fact along with Lemma gmeans that with probability 1 in the intenjdl, o)
the setx also satisfies all the properties described in Lemmas 2—4 if only in their
formulations we replace; by y; /A;, replace(37) by the condition

1 N
L(g(Ty)) = E 2 Y1+ A4Ty)3

and move the time origin t®. Thereforgfor anye, > 0, there existd = Ty such
that with probability 1 x satisfies the condition

E q(T) =e.

The restis exactly as in the proof of the theorem for M-LW\WVke only difference
is that we obtair{46) directly from the property33) and Lemma 7not from (45).

6. CONCLUSIONS

We consider the variable channel scheduling queuing model which naturally arises
in wireless communication¥Ve show that a wide class of online scheduling rules
including the M-LWDF and M-LWWF rule&nd their generalizationsare through-
put optimal(i.e., they make all queues stable as long as the flow arrival rates are
within the system stability regionOne of the main contributions of this work is that
we show that the throughput optimality of MaxWeight-type scheduling rules is pre-
served when flow waiting times are used as queue state variables in plardrof
conjunction with the queue lengths

We believe that the class of scheduling algorithms we study in this article can be
efficiently used in applications to provide flexible control of quality of service to
multiple data flows—in particular flows sharing a time-varying wireless.link
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APPENDIX
Details of the Proof of Sufficiency in Theorem 1

Lemma 1 holds for any scheduling rulecluding the SSS rule associated with the magrix
For this rule with probability 1 a limiting set of functions is such that

gmi (t) = ¢mi gm(t) = d)mi 7Tmt7 t=0.

From this and the argument analogous to that us€8dnand(40), we see that at any regular
pointt = 0, conditiong; (t) > 0 implies

a(t) = A — /(1) = A —vi () <O.

Thereforeq(t) =0 for allt = max 1/(vi(¢) — A;). The rest of the proof is the same as in the
proof of Theorem 3 for the M-LWWF rulevhich follows Lemma 4 in Section.3. |
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