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Abstract

In this paper we introduce 7 -noncosingular modules. Rings for which all right modules are
T -noncosingular are shown to be precisely those for which every simple right module is injective.
Moreover, for any ring R we show that the right R-module R is 7 -noncosingular precisely when R
has zero Jacobson radical. We also study the 7 -noncosingular condition in association with (strongly)
FI-lifting modules.
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1. Introduction

Throughout this paper S denotes the endomorphism ring of any module M. In [8], the
authors investigate K-nonsingular modules. Motivated by this work, we introduce the
notion of 7 -noncosingular modules as the dual notion to the notion of K-nonsingular
modules. A module M is called 7 -noncosingular if, for every nonzero endomorphism
@ of M, Im ¢ is not small in M. Following [10], the module M is called noncosingular
if for every nonzero module N and every nonzero homomorphism f : M — N, Im f
is not a small submodule of N. It is clear that every noncosingular module is
T -noncosingular.

The aim of this paper is to study 7 -noncosingular modules. It turns out that some
results about K-nonsingular modules have corresponding duals for 7 -noncosingular
modules.

Section 2 introduces the concept of 7 -noncosingular modules. The structure of
finitely generated 7 -noncosingular Z-modules is described. We show that in general
the direct sum of 7 -noncosingular modules is not a 7-noncosingular module. Then
we provide a necessary and sufficient condition for a direct sum of 7 -noncosingular
modules to be 7 -noncosingular. We also prove that 7 -noncosingularity is inherited
by direct summands.
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Section 3 is concerned with the concept of Fl-lifting modules. We prove some
results concerning these types of modules using the notion of 7 -noncosingularity. In
particular, any @-supplemented module is FI-lifting.

2. 7 -noncosingular modules

Let M and N be two modules. We say that M is T -noncosingular relative to N
if, for every nonzero homomorphism ¢ : M — N, Im ¢ is not small in N. If M is
T -noncosingular relative to M, we say that M is 7 -noncosingular. The ring R is
said to be right T -noncosingular if the right R-module Rg is 7 -noncosingular. Left
T -noncosingular rings are defined similarly.

Recall (see, for example, [11, 23.1]) that a module M is called cosemisimple if each
factor module of M has zero (Jacobson) radical and, for any ring R, the right R-module
Rp is cosemisimple precisely when every simple right R-module is injective, that is, R
is a right V-ring. Note, from the above definition, that every module with zero radical
is 7-noncosingular. Consequently every cosemisimple module is 7 -noncosingular.

It is clear that a module M is noncosingular if and only if it is a 7-noncosingular
module relative to N for every module N. However, it is easy to check that
the Z-module M =7Z/pZ, where p is a prime integer, is 7 -noncosingular but
not noncosingular.

For every module M, let

Z(M) = ﬂ{Ker glg: M — T, where T is small in its injective hull}

and let V(M) = {p € S | Im ¢ < M}. It is easy to see that V(M) is an ideal of S. By
the T -noncosingular submodule of M we mean Z7(M) = MNyevu) Kerg.

A module M is called a lifting module if for every submodule N of M, there is a
decomposition M = M @& M, such that M| < N and N N M, << M or, equivalently,
for every submodule N of M there is a direct summand K of M such that N/K <
M /K. The module M is called discrete if it is lifting and satisfies the condition that,
if N is a submodule of M for which M /N is isomorphic to a direct summand of M,
then N is a direct summand of M.

EXAMPLE 2.1. Every injective module over a right hereditary ring R is 7 -noncosin-
gular. In fact, let f be an endomorphism of M such that Im f << M. Since R is a
right hereditary ring and Im f = M/ Ker f, Im f is injective. Thus, Im f is a direct
summand of M. Therefore, f = 0.

PROPOSITION 2.2. Let M be a module. We have:

() M is T-noncosingular if and only if Zr(M)=M; _ _
() Z7(M) is a fully invariant submodule of_M; moreover, Z(M) C Z7(M);
(i) ifM=P;c; M;, then Zr (M) C D, c; Z7(M)).
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PROOF. (i) This is clear.

(ii) Let ¢ € S such that Im ¢ < M and let f € S. We have Im ¢f < Im ¢, and hence
Im ¢ f < M. Therefore, Z7 (M) is fully invariant.
The inclusion Z(M) C Z7 (M) is clear from the definitions.

(iii) Since Z7 (M) is fully invariant in M, we have Z7 (M) = @;;(Z7(M) N M;). It
is sufficient to show that Z7 (M) N M; € Z7(M;) foralli € I.

Let x; € Z7 (M) N M; for a fixed i € I. Let ¢; € End(M;) such that Im ¢; < M;.
Extending ¢; to ¢; : M —> M by ¢; | Mj =0 for i # j, we have Im¢; <« M. Thus,
@i (x;) = @i (x;) = 0. Therefore, x; € Z7(M;). O

PROPOSITION 2.3. Let M be a T -noncosingular module and let N be a direct
summand of M. Then N is T -noncosingular.

PROOF. Let M=N@®N’'. Let ¢:N— N with Imp < N. Consider the
homomorphism ¢ @O0y : N ® N — N @ N’ defined by ¢ @ Op/(n +n') = pn).
Now ¢ @ Oy (N & N') = ¢(N) <« M. Since M is T-noncosingular, ¢ @ 0’ = 0, and
hence ¢ = 0. O

Note that the Z-module Z is 7 -noncosingular, but S = End(Z) is not von Neumann
regular. However, the following two results show that there is some connection
between the 7 -noncosingular condition and regular endomorphism rings.

PROPOSITION 2.4. If M is a 7T-noncosingular discrete module, then S is
von Neumann regular.

PROOF. By [7, Theorem 5.4], V(M) = J(S) the Jacobson radical of S and S/J(S) is
von Neumann regular. However, since M is 7 -noncosingular, V(M) = 0. O

PROPOSITION 2.5. If M is a module such that S is von Neumann regular, then M is
T -noncosingular.

PROOF. Let f € S such that Im f <« M. Since S is von Neumann regular, there exists
g € S such that fgf = f. This gives that fg is an idempotent. Hence Im fg is a
direct summand of M. But Im fg <Im f. Thus Im fg <« M. So fg =0, and hence

f=ref=0. O
PROPOSITION 2.6. Let M = xR be a cyclic module such that Ann(x), the right

annihilator of x, is an ideal of R. Then M is a T -noncosingular module if and only if
Rad(M) = 0.

PROOF. Suppose that M is a 7 -noncosingular module and Rad(M) £ 0. Therefore
there exists a € R such that xa # 0 and xa € Rad(M). Consider the endomorphism
f of M defined by f(xa) = xax for every « € R. The map f is well defined since
Ann(x) is an ideal of R. Thus, Im f < Rad(M) and f # 0. However, Rad(M) < M.
Then M is not 7 -noncosingular, a contradiction. The converse is clear. O

The following two corollaries are now immediate.

https://doi.org/10.1017/5S0004972709000409 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709000409

[4] On 7 -noncosingular modules 465

COROLLARY 2.7. A ring R is right (left) T -noncosingular if and only if Rad(R) = 0.

COROLLARY 2.8. Let M be a local module over a commutative ring R. Then M is a
T -noncosingular module if and only if M is a simple module.

COROLLARY 2.9. Let M be a finitely generated module over a commutative principal
ideal domain R. Then M is a T -noncosingular module if and only if Rad(M) = 0.

PROOF. This follows from Propositions 2.3, 2.6 and [9, Corollary, p. 179]. a

PROPOSITION 2.10. A finitely generated Z-module M is a T -noncosingular module
if and only if M = 7" & K for some n € N and semisimple module K.

PROOF. It is well known that every finitely generated Z-module is a finite direct sum
of cyclic modules. Since every direct summand of a 7-noncosingular module is a
T -noncosingular module, the Chinese remainder theorem implies that every cyclic
torsion Z-module is a 7 -noncosingular module if and only if it is semisimple by
Corollary 2.8. The result follows. On the other hand, it is clear that if K is semisimple,
then Z™ & K is T-noncosingular because Rad(Z™ @ K) = 0. O

PROPOSITION 2.11. Let (M;)icr be a family of modules. Then M = EBI-E] M; is a
T -noncosingular module if and only if M; is a T-noncosingular module relative to
M; foralli, j el.

PROOF. (=) Let (i, j) be any pair in I x I. Let ¢ € Hom(M;, M;) such that
Im¢ < M;. Consider the homomorphism f: M; ® M; — M; ® M; defined by
fxi+xj)=¢(x;) with x; € M; and x; € M;. Then Im f =@ (M;) <K M; ® M;.
However, M; ® M is a 7-noncosingular module by Proposition 2.3. Thus, f =0
and hence ¢ = 0. This completes the proof.

(<) Let f be an endomorphism of M such that Im f < M. Consider the
homomorphisms 7m; : M — M; (the projections) and ¢; : M; — M (the inclusion
maps). Let (i, j) be any pair in I x I. Since Im(f¢;) < M, we have
Im(r; f¢i) < M;. By hypothesis, ; f¢; = 0. Now, for all x € M, we have f(x) =
Dier Zjel ;[ f (¢i (i (x)))] (The sum is finite.) Thus, f = 0. Consequently, M is a
T -noncosingular module. u

In general, a direct sum of 7 -noncosingular modules is not a 7 -noncosingular
module, as the following example shows.

If R is a Dedekind domain, then R is said to be proper if R is not a field.

If R is a proper Dedekind domain, then for each nonzero prime ideal P of R,
R(P°°) will denote the P-primary component of the torsion R-module K /R, where
K is the quotient field of R.

EXAMPLE 2.12. Let R be a proper Dedekind domain. Let P be any nonzero
prime ideal of R. Consider the module M = R(P*°) & R/P and the endomorphism
f M — M defined by f(x +y) =cy with x € R(P*°), y € R and c is a nonzero
element of R(P°°) such that cP =0. It is clear that Im f = cR which is nonzero
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and small in M. So M is not a 7 -noncosingular module. In particular, for any prime
integer p, the Z-module Z(p*>°) & Z/ pZ is not a T -noncosingular Z-module.

PROPOSITION 2.13. The following are equivalent for a ring R.

(i)  Every right R-module is T -noncosingular.
(i) Every right R-module is noncosingular.
(ii1) R is a right V-ring, that is, every simple right R-module is injective.

PROOF. (i) = (ii) Let M and N be two modules. Since M & N is 7 -noncosingular,
M is T-noncosingular relative to N by Proposition 2.11.  Therefore, M is
noncosingular. The implications (ii)) = (iii)) and (iii) = (i) follow from [10,
Proposition 2.5]. O

PROPOSITION 2.14. Let M be a T -noncosingular module. If N < X, X/N <K M/N
and N is a direct summand of M, then N is unique.

PROOF. Let M be 7 -noncosingular. Assume that X/N; < M/N; with M = N; & P;,
i =1, 2 and assume that N; # N,. Without loss of generality, suppose that N;  No.
Consider the projections nwy, : M — Ny and 7wp, : M — P,. Then we have the
nonzero homomorphism ¢ = wp,y,. On the other hand, Im ¢ = (N1 + N2) N P, C
X N Py K P, implies that ¢ = 0, a contradiction. Therefore, N| = N». O

Let M be a module and N <M. The submodule N is called coclosed if
N/K <« M/K implies N = K for every submodule K of M contained in N. Let
K <N<M.If Kiscoclosedin M and N/K < M/K, then K is called a coclosure
of N in M. The module M is called a UCC module if every submodule of M has a
unique coclosure in M (see [3]).

COROLLARY 2.15. Every lifting T -noncosingular module is UCC.

PROPOSITION 2.16. Let M be a T -noncosingular module and X fully invariant in M.
Let N < X suchthat X/N < M /N and N a direct summand of M. Then N is (unique)
fully invariant in M.

PROOF. Let P be a submodule of M such that M = N @ P. Assume that N is not
fully invariant in M. Then there exist an endomorphism ¢ of M and x € N such that
o(x)EN. Lety =mnpony: M — P, where iy : M — N and wp : M — P are the
projections. Note that ¥ # 0 (¢(x) € N) and Im € X N P < M. This contradicts
the fact that M is 7 -noncosingular. Thus, N is fully invariant in M. ]

COROLLARY 2.17. We have the following results.

(i) Let M be a noncosingular module and X <M. Let N <X such that
X/N < M/N and N is a direct summand of M. Then N is unique.

(i) Let M be a noncosingular module and X a fully invariant submodule of M. Let
N < X such that X/N < M/N and N is a direct summand of M. Then N is
unique and fully invariant in M.
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PROOF. Part (i) follows from Proposition 2.14 while part (ii) follows from
Proposition 2.16. O

3. FI-lifting and strongly FI-lifting modules

A module M is called FlI-lifting if for every fully invariant submodule N of M,
there is a decomposition M = M| & M, such that M| <N and N N M, < M, or,
equivalently, for every fully invariant submodule N of M there is a direct summand K
of M such that N/K <« M /K. The module M is called strongly Fl-lifting if, for every
fully invariant submodule N of M, there is a fully invariant direct summand K of M
such that N/K < M /K. It is easy to prove that any direct summand of a strongly
FI-lifting module is strongly FI-lifting.

Let M be a module. If N < M, then N is called a supplement submodule of M if
there exists a submodule K of M such that M = N + K and N N K < N (in this
case we say that N is a supplement of K in M). If every submodule of M has
a (direct summand) supplement in M, then M is called (®-)supplemented. 1If for
every submodule N of M there exists a submodule K of M with M = N + K and
N N K « M, then M is called weakly supplemented.

By [6, Theorem 3.4], any finite direct sum of FI-lifting modules is again FI-lifting.
The following two examples show that this property is not true in general for infinite
direct sums of FI-lifting modules. Let R be a discrete valuation ring with maximal
ideal m. Let M = EBfil R/m' or M = RN. By [12, Corollary 2, p. 48], Rad(M) does
not have a supplement in M. Since Rad(M) is a fully invariant submodule of M, M
is not FI-lifting. On the other hand, it is clear that R/m’ (i > 1) and R are lifting
modules.

PROPOSITION 3.1. Let M be a T -noncosingular module. Then M is FI-lifting if and
only if M is strongly Fl-lifting.

PROOF. Let M be Fl-lifting and X a fully invariant submodule of M. Then there
exists a direct summand N of M such that X/N <« M /N. By Proposition 2.16, N is
fully invariant in M. Thus, M is strongly FI-lifting. The converse is clear. O

COROLLARY 3.2. Let M be a noncosingular module. Then M is FI-lifting if and only
if M is strongly FI-lifting.

The following proof uses the concept of a left semicentral idempotent of a ring S:
this is an idempotent e of S for which exe = xe for all x € S.

LEMMA 3.3. If K is a fully invariant submodule of M having a coclosure L which is
a fully invariant direct summand of M, then L is the unique direct summand coclosure

of K.

PROOF. By [1, Lemma 1.9] and our hypothesis, there is a left semicentral idempotent
e € Ssuchthat L =e(M) and K /e(M) < M/e(M). Let ¢ € S be an idempotent such
that K/c(M) K M/c(M). Then (1 —c)(M)N K < (1 —c)(M). Let us show that
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L = c(M). Since K is fully invariant in M, we have (1 —c¢)(K)=(1 —c)(M) N K.
Thus, (1 — ¢)(K) <« M. Therefore, e(1 — ¢)(K) « e(M) and hence e(1 — ¢)(K) <
K since e(M) C K. So e(l —c)e(K)Ce(l —c¢)(K) < K. Then, since e is left
semicentral, (1 —c)e(K) =e(l —c)e(K) < K and (1 — c)e is an idempotent of S.
Therefore, (1 —c¢)e(K)=0. Since e(M)=e(K), we have (1 —c)e(M) =0, and
hence e =ce. It follows that e(M) C c(M). Since c(M)/e(M)C K/e(M) K
M /e(M), we obtain c(M) = e(M). This completes the proof. O

PROPOSITION 3.4. If M is a strongly FI-lifting module and K is a fully invariant
submodule of M, then there exists a unique (fully invariant) direct summand L of M
such that K/L < M /L.

PrROOEF. This follows from Lemma 3.3. O

PROPOSITION 3.5. Let M be an FI-lifting module and X a fully invariant submodule
of M. If one of the following conditions is satisfied, then M / X is strongly FI-lifting:

(i) M/ X is indecomposable;
(i) M/ X is T-noncosingular.

PROOF. By [6, Proposition 3.3], M/ X is FI-lifting.
(i) Clearly, indecomposable FI-lifting modules are strongly FI-lifting.
(i1) This follows from Proposition 3.1. O

PROPOSITION 3.6. Let M be a lifting (respectively noncosingular weakly supple-
mented FI-lifting) module such that every small submodule is fully invariant. Then
every factor module of M is lifting (respectively strongly FI-lifting).

PROOEF. Let X, Y be submodules of M suchthat M =X + Y and X N Y <« M. Note
that M/(XNY)=X/(XNY)®Y/(XNY). By hypothesis, X NY is fully invariant
in M. If M is lifting, then M/(X NY) is lifting by [2, 22.2]. Since the lifting
property is inherited by direct summands, M /X is lifting. Now assume that M is
a noncosingular weakly supplemented FI-lifting module. Then the result follows
from [6, Proposition 3.3], Corollary 3.2 and the fact that any direct summand of a
strongly FI-lifting module is strongly FI-lifting. O

PROPOSITION 3.7. Let M be a module. The following are equivalent:

(1) M is Fl-lifting;

(1) every fully invariant submodule of M has a direct summand supplement;

(iii) for each fully invariant submodule X of M, there is a coclosed submodule K
of M and a direct summand supplement L of K such that K < X, X/K <
M/K and every homomorphism f: M — M/(LNK) can be lifted to an
endomorphism g : M — M, that is, such that g(m) + (L N K) = f(m) for all
meM.
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PROOF. (i) < (ii) Let X be a fully invariant submodule of M. First assume that
M is Fl-lifting. Then there exists a decomposition M = M; @ M, such that M1 < X
and M, N X < M>. Then M = X + M, and M> is a direct summand supplement
of X. Conversely, let K be a direct summand supplement of X in M. Then
M=K+X=K®K'and KN X « K for some submodule K’ of M. Consider
the natural projection map ¢ : M — K'. Since X is fully invariant,

dX)=X+K)NK'=MNK =K' <X.
Thus, M is FI-lifting.

(i) = (iii) Let X be a fully invariant submodule of M. Since M is FI-lifting, there exists
a decomposition M = L @ K such that K < X and X/K < M/K. Since L N K =0,
clearly any homomorphism f : M — M /(L N K) liftstoag: M — M.

(iii)) = (i) Let X be a fully invariant submodule of M. By (iii), there is a coclosed
submodule K of M and a direct summand supplement L of K such that K < X and
X/K < M/K. Since K is a supplement in M by [4, Proposition 3], it follows from [5,
Lemma 2.2] that K is a direct summand of M. Thus, M is FI-lifting. O

PROPOSITION 3.8. Let M be a module. The following are equivalent:

(i) M is strongly FI-lifting;

(i1) every fully invariant submodule of M has a supplement K which is a direct
summand of M with M = K & N for some fully invariant submodule N of M.

PROOF. We completely follow the proof of Proposition 3.7((i) < (ii)). O

PROPOSITION 3.9. Let M be an FI-lifting module and let U be a fully invariant
submodule of M. Then M /U is FI-lifting. If, moreover, U is coclosed in M, then
U is also FI-lifting.

PROOF. By [6, Proposition 3.3], M /U is FI-lifting. Assume that U is coclosed in M.
Let V be a fully invariant submodule of U. Then V is fully invariant in M. So, there
exist submodules K and K’ of M suchthat M =K @K', K'<Vand KNV « K.
Thus, U =V + (U N K). Since U is fully invariantin M, U = (U N K) & (U N K").
Hence, U N K is a direct summand of U. Moreover, VN(UNK)=VNK <K K.
This implies that V. N (U N K) < U N K since U N K is coclosed in M by [2, 3.7].
Therefore, U N K is a direct summand supplement of V in U. By Proposition 3.7, U
is FI-lifting. O

A module M is called a duo module provided that every submodule of M is
fully invariant.
PROPOSITION 3.10. Let M be a module. Consider the following statements:
(1) M is lifting;
(i) M is ®-supplemented;
(i) M is Fl-lifting.
Then (i) = (ii) = (iii). If M is a duo module, then (iii) = (i).
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PROOF. (i) = (ii) This is clear.
(i1) = (iii) This is clear by Proposition 3.7.
The rest is clear from the definitions. O

REMARK. (1) Consider the Z-module M = Z/pZ @& 7./ p3Z. It is well known that M
is not lifting, but it is FI-lifting by [6, Theorem 3.4].

(2) Consider QQ the additive group of rational numbers. Let f be any nonzero
Z-endomorphism of Q. Let r be a nonzero element of Q such that f(1)=r.
Let a and b be two nonzero integers. Then f(1)= f((1/b) x b) = f(1/b)b=r.
So f(1/b) =r/b. Thus, f(a/b)= f(1/b)a = (r/b)a= (a/b)r. Now let N be a
nonzero fully invariant submodule of Q. Let s be a nonzero element of N. Let
g be the endomorphism of Q defined by g(x) = (1/s)x for every x € Q. Since N
is fully invariant, g(s) € N. Thus, 1 € N. Hence, Q < N since h(1) € N for every
h € Endz(Q). Consequently, the only fully invariant submodules of QQ are 0 and Q.
Therefore, Q is strongly FI-lifting. On the other hand, Q is not &-supplemented since
Q is an indecomposable Z-module which is not hollow.

THEOREM 3.11. Let M be a T -noncosingular module and X a fully invariant
submodule of M. Then M is (strongly) Fl-lifting if and only if M = M| & M3 such
that M and M, are (strongly) FI-lifting and M is the unique fully invariant direct
summand of M with My C X and X/ M| < M /M.

PROOF. (=) Since X is fully invariant in M and M is Fl-lifting, there exists
a decomposition M = M| & M, such that M C X and X/M| <K M/M;. By
Proposition 2.16, M| is unique and fully invariant in M. Then by Proposition 3.9, M
and M, are FI-lifting. The remainder of the proof is a consequence of Propositions 2.3
and 3.1.

(«=) This follows from [6, Theorem 3.4] and Proposition 3.1. O

PROPOSITION 3.12. Let M = M| @& M»>. Then M, is FI-lifting if and only if for every
fully invariant submodule N /M| of M /M, there exists a direct summand K of M
suchthat K <My, M=K +Nand NN K < M.

PROOF. Suppose that M; is FI-lifting. Let N/M; be any fully invariant submodule
of M/M;. 1t is easy to see that N N M, is fully invariant in M,. Since M is
FI-lifting, there exists a decomposition M, = K @ K’ such that M, = (N N M) + K
and NN K <« K. Clearly, M = N + K.

Conversely, suppose that M/M; has the stated property. Let H be a fully
invariant submodule of M,. It is easy to see that (H & M1)/M; is fully invariant
in M/M;. By hypothesis, there exists a direct summand L of M such that
L<My M=L+H+ M;and LN (H+ M) < M. By modularity, M, = L + H.
It follows easily that L is a supplement of H in M;. Therefore, M, is FI-lifting by
Proposition 3.7. O
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