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Abstract We analyse Hecke pairs (G, H) and the associated Hecke algebra H when G is a semi-direct
product N �Q and H = M �R for subgroups M ⊂ N and R ⊂ Q with M normal in N . Our main result
shows that, when (G, H) coincides with its Schlichting completion and R is normal in Q, the closure
of H in C∗(G) is Morita–Rieffel equivalent to a crossed product I �β Q/R, where I is a certain ideal
in the fixed-point algebra C∗(N)R. Several concrete examples are given illustrating and applying our
techniques, including some involving subgroups of GL(2, K) acting on K2, where K = Q or K = Z[p−1].
In particular we look at the ax + b group of a quadratic extension of K.
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1. Introduction

A Hecke pair (G, H) comprises a group G and a subgroup H for which every double
coset is a finite union of left cosets, and the associated Hecke algebra, generated by the
characteristic functions of double cosets, reduces to the group ∗-algebra of G/H when H

is normal.
In [5] we introduced the Schlichting completion (Ḡ, H̄) of the Hecke pair (G, H) as a

tool for analysing Hecke algebras, based in part on the work of Tzanev [14]. (A slight
variation on this construction appears in [3].) The idea is that H̄ is a compact open
subgroup of Ḡ such that the Hecke algebra of (Ḡ, H̄) is naturally identified with the
Hecke algebra H of (G, H). The characteristic function p of H̄ is a projection in the
group C∗-algebra A := C∗(Ḡ), and H can be identified with pCc(Ḡ)p ⊂ A; thus, the
closure of H in A coincides with the corner pAp, which is Morita–Rieffel equivalent to
the ideal ApA.

In [5] we were mainly interested in studying the questions of when pAp is the enveloping
C∗-algebra of the Hecke algebra H, and when the projection p is full in A, making the
C∗-completion pAp of H Morita–Rieffel equivalent to the group C∗-algebra A. We had
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the most success when G = N �Q was a semi-direct product with the Hecke subgroup H

contained in the normal subgroup N .
In this paper we again consider G = N � Q, but now we allow H = M � R, where M

is a normal subgroup of N and R is a subgroup of Q which normalizes M . Briefly,

G = N � Q

∨ ∇ ∨
H = M � R.

(1.1)

This leads to a refinement of the Morita–Rieffel equivalence ApA ∼ pAp (see Theo-
rem 5.1).

We begin in § 2 by recalling our conventions from [5] regarding Hecke algebras. In § 3
we describe the main properties of our group-theoretic set-up (1.1). In particular, we
characterize the reduced Hecke pairs in terms of N , Q, M and R.

In order to effectively analyse how our semi-direct-product decomposition affects the
Hecke topology, we need to go into somewhat more detail than might be expected. In
particular, we must exercise some care to obtain the semi-direct-product decomposition

Ḡ = N̄ � Q̄, H̄ = M̄ � R̄

for the Schlichting completion (see Corollary 3.8), and to describe various bits of this
completion as inverse limits of groups (see Theorem 3.14).

Section 4 is preparatory for § 5, but the results may be of independent interest. In
Proposition 4.1 we show that if (B, Q, α) is an action, R is a compact normal subgroup
of Q and (BR, Q/R, β) is the associated action, then the projection q =

∫
R

r dr is in
M(B ×α Q) and BR ×β Q/R ∼= q(B ×α Q)q. This generalizes the result of [13].

We also show in Theorem 4.6 that under this correspondence the ideal

(B ×α G)p(B ×α G)

is mapped to an ideal I ×β Q/R, where I is a Q/R-invariant ideal of BR.
In § 5, we assume that R is normal in Q, and (without loss of generality) that the pair

(G, H) is equal to its Schlichting completion. The main result is Theorem 5.1, in which
we take full advantage of the semi-direct-product decomposition to show that the Hecke
C∗-algebra pHC∗(G)pH is Morita–Rieffel equivalent to a crossed product I ×β Q/R,
where I is the ideal in C∗(N)R generated by {αs(pM ) : s ∈ Q}. We look briefly at the
special case where the normal subgroup N is abelian.

Finally, in § 6 we give some examples to illustrate our results. Classical Hecke algebras
have most commonly treated pairs of semi-simple groups such as (GL(n, Q), SL(n, Z)).
The work of Bost and Connes [1] showed the importance of also studying Hecke pairs of
solvable groups. In our examples we mostly deal with the following situation: K is either
the field Q of rational numbers or the field Z[p−1] of rational numbers with denominators
of the form pn; N = K2; M = Z2; Q is a subgroup of GL(2, K) containing the diagonal
subgroup, acting on N in the obvious way, and R = Q ∩ GL(2, Z). It is not so difficult
to see that the Schlichting completions are p-adic or adelic versions of the same groups.
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As to specific examples we look at the algebra studied by Connes and Marcolli in [2]
(see also [8]). Here R is not normal in Q, so the full results of § 5 do not apply. On the
other hand, if R is normal in Q then Corollary 5.7 does apply, and as in [7] one can
use the Mackey orbit method to study the ideal structure of the C∗-algebras involved. A
particular example of this is the ax + b group over a quadratic extension K[

√
d] treated

in [9], and we shall see that this example raises some interesting questions. We also look
at a nilpotent example, i.e. one version of the Heisenberg group over the rationals.

After we had completed the research for this paper, we became aware of the recent
preprint [8], which treats semi-direct-product Hecke pairs in a way quite similar to ours.
The present paper and [8] were written independently, and the techniques have only
incidental overlap. We should mention that we treat only the case where M is normal
in N , while the context in [8] seems to be more general. Thus, for example, it would be
difficult to adapt our results on inverse limits (see § 3.4) to the context of [8].

2. Preliminaries

We adopt the conventions of [5], which contains more references. A Hecke pair (G, H)
comprises a group G and a Hecke subgroup H, i.e. one for which every double coset HxH

is a finite union of left cosets {y1H, . . . , yL(x)H}. A good reference for the basic theory of
Hecke pairs is [6]. A Hecke pair (G, H) is reduced if

⋂
x∈G xHx−1 = {e}, and a reduced

Hecke pair (G, H) is a Schlichting pair if G is locally compact Hausdorff and H is compact
and open in G. In [5, Theorem 3.8], we gave a new proof of [14, Proposition 4.1], which
says that every reduced Hecke pair (G, H) can be embedded in an essentially unique
Schlichting pair (Ḡ, H̄), which we call the Schlichting completion of (G, H). Specifically,
Ḡ is the completion of G in the (two-sided uniformity defined by the) Hecke topology
having a local sub-base {xHx−1 | x ∈ G} of neighbourhoods of e, and (Ḡ, H̄) is unique
in the sense that if (L, K) is any Schlichting pair and σ : G → L is a homomorphism
such that σ(G) is dense and H = σ−1(K), then σ extends uniquely to a topological
isomorphism σ̄ : Ḡ → L, and, moreover, σ̄(H̄) = K.

The associated Hecke algebra is the vector subspace H of CG spanned by the charac-
teristic functions of double H-cosets, with operations defined by

f ∗ g(x) =
∑

yH∈G/H

f(y)g(y−1x),

f∗(x) = f(x−1)∆(x−1),

where ∆(x) = L(x)/L(x−1) and L(x) is the number of left cosets yH in the double coset
HxH. Warning: some authors do not include the factor of ∆ in the involution; for us
it arises naturally when we embed H in Cc(Ḡ) (see [5, § 1]). One way to see how this
embedding goes is the following: let p = χH̄ , which is a projection in Cc(Ḡ) when the
Haar measure on Ḡ has been normalized so that H̄ has measure 1. Then the restriction
map f 
→ f |G gives a ∗-isomorphism of the convolution algebra pCc(Ḡ)p onto H.
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2.1. Notation

H < G means that H is a subgroup of G. H � G means H is a normal subgroup of
G. If N � G and Q < G such that N ∩ Q = {e} and NQ = G, then G is the (internal)
semi-direct product of N by Q, and we write G = N � Q.

3. Groups

Here we describe the main properties of our group-theoretic set-up (1.1) for Hecke semi-
direct products. We need to establish many elementary facts from group theory which
are not standard, so we will give more detail than might seem necessary.

3.1. Generalities

We will be interested in subgroups of H of the form LS, where L < M and S < R.
Note that LS < MR if and only if S normalizes L.

Lemma 3.1. If A, B, C are subgroups of G with

(i) A ⊃ B,

(ii) A ∩ C = {e},

(iii) AC = CA,

(iv) BC = CB,

then
[AC : BC] = [A : B].

Proof. The map aB 
→ aBC : A/B → AC/BC is obviously well defined and surjec-
tive, and is injective because

a1BC = a2BC =⇒ a−1
2 a1 ∈ BC ∩ A = B.

�

Corollary 3.2. Suppose that L < M and S < R and suppose that S normalizes L,
so that LS is a subgroup of MR. Then

[M : L][R : S] = [MR : LS].

Proof. We have
[MR : LS] = [MR : MS][MS : LS],

so the result follows from the above lemma. �
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Notation. For any subgroup K of G and x ∈ G, we define

Kx = K ∩ xKx−1.

Thus, Kx is precisely the stabilizer subgroup of the coset xK under the action of K on
G/K by left translation, and

[K : Kx] = |KxK/K|. (3.1)

If T is another subgroup of G, we let

Tx,K = {t ∈ T | txKt−1 = xK}

denote the stabilizer subgroup of xK under the action of T by conjugation on the set of
all subsets of G; thus,

[T : Tx,K ] = |{txKt−1 | t ∈ T}|. (3.2)

Note that if T normalizes K, then the conjugation action of T descends to G/K.
For E ⊂ G, we further define

KE =
⋂

x∈E

Kx and TE,K =
⋂

x∈E

Tx,K .

It will also be useful to observe that if {Mi}i∈I is a family of subgroups of N and
{Ri}i∈I is a family of subgroups of Q such that Ri normalizes Mi for each i ∈ I, then,
because N ∩ Q = {e}, we have

⋂
i∈I

MiRi =
( ⋂

i∈I

Mi

)( ⋂
i∈I

Ri

)
. (3.3)

Lemma 3.3. Let L be a subgroup of N which is normalized by R. For any r ∈ R and
n ∈ N , the following are equivalent:

(i) r ∈ Rn,L;

(ii) rnr−1 ∈ nL;

(iii) r ∈ nLRn−1.

Sketch of the proof. (i) =⇒ (ii) =⇒ (iii) is clear. (iii) =⇒ (ii) uses N ∩Q = {e}.
(ii) =⇒ (i) because R normalizes L. �

Taking L = M in Lemma 3.3 and using H = MR, we have

Rn,M = R ∩ nMRn−1 = R ∩ nHn−1 ⊃ R ∩ nRn−1 = Rn. (3.4)

From this we deduce the following.
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Lemma 3.4. For any n ∈ N and q ∈ Q,

(i) Hn = MRn,M ,

(ii) Hq = MqRq,

(iii) Hqn ∩ Hq = Mq(qRn,Mq−1 ∩ R).

Proof. (i) Suppose that h = mr ∈ Hn for m ∈ M and r ∈ R. Then

r ∈ m−1nMRn−1 = n(n−1m−1nMR)n−1 = nMRn−1 = nHn−1,

so (using (3.4))
mr ∈ m(R ∩ nHn−1) ⊂ MRn,M .

Thus, Hn ⊂ MRn,M . Conversely, also using (3.4),

MRn,M = M(R ∩ nHn−1) ⊂ MR ∩ MnHn−1 = H ∩ nHn−1 = Hn.

(ii) By (3.3) we have

Hq = H ∩ qHq−1

= MR ∩ (qMq−1)(qRq−1)

= (M ∩ qMq−1)(R ∩ qRq−1)

= MqRq.

(iii) Using part (i) and (3.3) we have

Hqn ∩ Hq = H ∩ qHq−1 ∩ qnHn−1q−1

= H ∩ q(Hn)q−1

= MR ∩ (qMq−1)(qRn,Mq−1)

= Mq(R ∩ qRn,Mq−1).

�

3.2. Hecke pairs

Since [H : Hx] = |HxH/H| for any x ∈ G, the pair (G, H) is Hecke if and only if each
subgroup Hx has finite index in H. Applying this to the pair (N � Q, Q), we see that
(N � Q, Q) is Hecke if and only if [Q : Qn] = [Q : Qn,{e}] < ∞ for each n ∈ N . The next
proposition extends this observation to our more general context.

Proposition 3.5. The following are equivalent:

(i) (G, H) is a Hecke pair;

(ii) [R : Rq], [M : Mq] and [R : Rn,M ] are all finite for each q ∈ Q and n ∈ N ;

(iii) (Q, R), (G, M) and (N/M � R, R) are Hecke pairs;

(iv) (Q, R), (G, M) and (NR, H) are Hecke pairs.
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Proof. If (G, H) is a Hecke pair, then for all q ∈ Q and n ∈ N we have

[M : Mq][R : Rq] = [MR : MqRq] = [H : Hq] < ∞

and

[R : Rn,M ] = [MR : MRn,M ] = [H : Hn] < ∞,

so (i) =⇒ (ii). Conversely, assuming (ii), for any q ∈ Q and n ∈ N , Lemma 3.4 gives

[H : Hqn] � [H : Hqn ∩ Hq] = [MR : Mq(qRn,Mq−1 ∩ R)]

= [M : Mq][R : qRn,Mq−1 ∩ R]

= [M : Mq][R : Rq][Rq : qRn,Mq−1 ∩ R],

which is finite because, for any subgroups S ⊃ T of G, we have [R ∩ S : R ∩ T ] � [S : T ]
and [qSq−1 : qTq−1] = [S : T ]. Thus, (ii) =⇒ (i).

If q ∈ Q and n ∈ N then qnMn−1q−1 = qMq−1, so [M : Mq] < ∞ for all q ∈ Q if and
only if (G, M) is Hecke. As observed above, R is a Hecke subgroup of N/M � R if and
only if, for each nM ∈ N/M , the stabilizer subgroup of nM in R (acting by conjugation)
has finite index in R. Since this subgroup is precisely Rn,M , we have [R : Rn,M ] < ∞ for
all n ∈ N if and only if (N/M � R, R) is Hecke. Therefore, (ii) ⇐⇒ (iii).

Finally, if n ∈ N and r ∈ R then nrHr−1n−1 = nHn−1, so

[H : Hnr] = [H : Hn] = [R : Rn,M ].

Therefore (iii) ⇐⇒ (iv). �

Proposition 3.6. Suppose that (G, H) is a Hecke pair. Then the following are equiv-
alent:

(i) (G, H) is reduced;

(ii) MQ = {e} and RN,{e} ∩ RQ = {e}.

Proof. Since (G, H) is reduced if and only if HG = {e}, the proposition will follow
easily from the identity

HG = MQ(RN,MQ
∩ RQ). (3.5)

To establish (3.5), we first use Lemma 3.4 (iii) and Corollary 3.2 to get

HG =
⋂

x∈G

Hx

=
⋂

q∈Q, n∈N

Hqn

=
⋂

q∈Q, n∈N

(Hq ∩ Hqn)
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=
⋂

q∈Q, n∈N

Mq(qRn,Mq−1 ∩ R)

=
( ⋂

q∈Q

Mq

)( ⋂
q∈Q, n∈N

qRn,Mq−1 ∩ R

)
.

Furthermore, ⋂
q∈Q, n∈N

qRn,Mq−1 ∩ R =
⋂

q∈Q, n∈N

Rqnq−1,qMq−1 ∩ Rq

=
⋂

q∈Q, n∈N

Rn,qMq−1 ∩
⋂
q∈Q

Rq

= RN,MQ
∩ RQ.

�

Note that RN,{e} consists of those elements of R which commute element-wise with N .

3.3. Hecke topology

In addition to our semi-direct product set-up (1.1), we now assume that (G, H) is a
reduced Hecke pair. Let (Ḡ, H̄) denote its Schlichting completion.

Proposition 3.7. The relative Hecke topologies of the relevant subgroups have the
following sub-bases at the identity.

(i) For both N and M , {Mq | q ∈ Q}.

(ii) For Q, {qRn,Mq−1 | q ∈ Q, n ∈ N}.

(iii) For R, {R ∩ qRn,Mq−1 | q ∈ Q, n ∈ N}.

Proof. (i) This follows from the computation

N ∩ qnHn−1q−1 = qn(N ∩ H)n−1q−1 = qnMn−1q−1 = qMq−1

and its immediate consequence, M ∩ qnHn−1q−1 = Mq.

For (ii), we have

Q ∩ nHn−1 = Q ∩ nMRn−1 ⊂ Q ∩ MNRN = Q ∩ NR = R,

so
Q ∩ qnHn−1q−1 = q(Q ∩ nHn−1)q−1 = q(R ∩ nHn−1)q−1 = qRn,Mq−1.

Finally, (iii) follows from (ii). �

The following corollary should be compared with [8, Theorem 2.9 (ii)]; the extra
hypothesis therein is satisfied in our special case (M � N), but it would be complicated
to verify that our result follows from theirs because their construction is significantly
different from ours.
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Corollary 3.8. If (G, H) as in (1.1) is a reduced Hecke pair with Schlichting comple-
tion (Ḡ, H̄), then

Ḡ = N̄ � Q̄ and H̄ = M̄ � R̄,

where the closures are all taken in Ḡ.

Proof. First, in order to show that Ḡ is the semi-direct product N̄�Q̄ of its subgroups
N̄ and Q̄, we require that

(i) N̄ � Ḡ,

(ii) Ḡ = N̄Q̄,

(iii) N̄ ∩ Q̄ = {e},

(iv) Ḡ has the product topology of N̄ × Q̄.

Item (i) is obvious. To see (ii), note that the subgroup N̄Q̄ contains both G = NQ

and M̄R̄. Since M̄ is compact, the subgroup M̄R̄ is closed, and it follows that H̄ = M̄R̄.
This implies (ii), since every coset in Ḡ/H̄ can be expressed in the form xH̄ for x ∈ G.

For (iii), note that the quotient map ψ : G → Q ⊂ Q̄ is continuous for the Hecke topol-
ogy of G and the relative Hecke topology of Q, because a typical sub-basic neighbourhood
of e in Q is of the form qRn,Mq−1 for q ∈ Q and n ∈ N , and

ψ−1(qRn,Mq−1) = NqRn,Mq−1

contains the neighbourhood

Hqn ∩ Hq = Mq(R ∩ qRn,Mq−1)

of e in G. Since Q̄ is a complete topological group, ψ extends uniquely to a continuous
homomorphism ψ̄ : Ḡ → Q̄. Because ψ takes N to e and agrees with the inclusion map
on Q, by density and continuity ψ̄ takes N̄ to e and agrees with the inclusion map on Q̄.
Therefore, N̄ ∩ Q̄ = {e}.

To see how (iv) follows, note that the multiplication map (n, q) 
→ nq of N̄ × Q̄ onto
Ḡ is continuous by definition, and its inverse x 
→ (xψ̄(x)−1, ψ̄(x)) is also continuous
because ψ̄ is, as shown above.

It only remains to show that H̄ = M̄ � R̄, but this follows immediately: we have
M̄ ∩ R̄ = {e}, and the subgroup M̄R̄ has the product topology since N̄Q̄ does. �

3.4. Inverse limits

Here we again assume that (G, H) is a reduced Hecke pair. For each of our groups M ,
N , R, H and Q we want to describe the closure as an inverse limit of groups, so that
we capture both the algebraic and the topological structure. From [5, Proposition 3.10],
we know that the closure is topologically the inverse limit of the coset spaces of finite
intersections of stabilizer subgroups. To get the algebraic structure we need enough of
these intersections to be normal subgroups. In the case of M and N , we already have
what we need, since each Mq is normal in N , and hence also in M . However, for R we
need to do more work.

https://doi.org/10.1017/S0013091506001469 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506001469


136 S. Kaliszewski, M. B. Landstad and J. Quigg

Lemma 3.9. Suppose L < M and S < R. Then LS � MR if and only if

(i) L � MR,

(ii) S � R and

(iii) S ⊂ RM,L.

Moreover, in this case
MR/LS ∼= (M/L) � (R/S).

Proof. First assume LS � MR. Then

S = R ∩ LS � R ∩ MR = R,

and since M � MR we also have

L = M ∩ LS � MR.

For (iii), fix s ∈ S and m ∈ M . Then m−1sm ∈ LS because LS � MR, so m−1sms−1 ∈
LS. On the other hand, m−1sms−1 ∈ M because S ⊂ R and R normalizes M . Thus,

m−1sms−1 ∈ LS ∩ M = L,

so s ∈ Rm,L.
Conversely, assume (i)–(iii). It then suffices to show that M conjugates S into LS: for

m ∈ M and s ∈ S we have m−1sms−1 ∈ L by Lemma 3.3 (ii), and hence m−1sm ∈ LS.
For the ‘moreover’ statement, it is routine to verify that the map

mrLS 
→ (mL, rS) for m ∈ M, r ∈ R,

gives a well-defined isomorphism. �

Notation. For E ⊂ Q and F ⊂ N set

RE
F =

⋂
q∈E

qRF,Mq−1 ∩ R =
⋂
q∈E

⋂
n∈F

qRn,Mq−1 ∩ R.

Note that the families

{ME : E ⊂ Q finite} and {RE
F : both E ⊂ Q and F ⊂ N finite}

are neighbourhood bases at e in the relative Hecke topology of M and R, respectively.

Notation. Let E be the family of all subsets E ⊂ Q such that

(i) E is a finite union of cosets in Q/R,

(ii) e ∈ E,

(iii) RE = E,
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and let F be the family of all pairs (E, F ) such that

(iv) E ∈ E ,

(v) F is a finite union of cosets in N/M ,

(vi) q−1Mq ⊂ F for all q ∈ E.

Lemma 3.10. For all (E, F ) ∈ F ,

(i) RE
F � R,

(ii) [R : RE
F ] < ∞.

Proof. RE
F is a subgroup of R because RF,M is a subgroup of R. For r ∈ R we have

rRE
F r−1 =

⋂
q∈E

r(qRF,Mq−1 ∩ R)r−1 =
⋂
q∈E

rqRF,Mq−1r−1 ∩ R = RE
F

since rE = E. This proves (i).

For (ii), first note that [R : RF,M ] < ∞ because |F/M | < ∞ and Rn,M only depends
upon the coset nM . Thus,

R0 :=
⋂
r∈R

rRF,Mr−1

has finite index in R. For each coset tR contained in E we have⋂
q∈tR

qRF,Mq−1 =
⋂
r∈R

trRF,Mr−1t−1 = tR0t
−1.

Thus, ⋂
q∈tR

qRF,Mq−1 ∩ R

has finite index in R. Letting E = {t1R, . . . , tkR}, it follows that

⋂
q∈E

qRF,Mq−1 ∩ R =
k⋂

i=1

( ⋂
q∈tiR

qRF,Mq−1 ∩ R

)

has finite index in R. �

Lemma 3.11. For all E ∈ E ,

(i) ME � N ,

(ii) ME � M ,

(iii) ME � H,

(iv) [M : ME ] < ∞.
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Proof. Part (i) holds because Mq � N for each q, and (ii) follows since ME ⊂ M .

(iii) For r ∈ R we have

rMEr−1 =
⋂
q∈E

r(qMq−1 ∩ M)r−1 =
⋂
q∈E

rqMq−1r−1 ∩ M = ME

since rE = E. Thus, ME � MR = H by (ii).

(iv) For each coset tR contained in E we have

⋂
q∈tR

qMq−1 =
⋂
r∈R

trMr−1t−1 = tMt−1.

Thus,
⋂

q∈tR Mq = Mt has finite index in M , and it follows that ME =
⋂

q∈E Mq has
finite index in M as well. �

Lemma 3.12. For all (E, F ) ∈ F we have

RE
F ⊂ RM,ME

.

Proof. Fix s ∈ RE
F and m ∈ M ; we need to show that s ∈ Rm,ME

. Thus, for q ∈ E,
we must show that

m−1sms−1 ∈ qMq−1.

We have q−1mq ∈ F , so s ∈ qRq−1mq,Mq−1. It follows that

q−1m−1sms−1q = (q−1m−1q)(q−1sq)(q−1mq)(q−1s−1q) ∈ M,

and hence m−1sms−1 ∈ qMq−1, as desired. �

Lemmas 3.10–3.12 yield the following.

Proposition 3.13. For all (E, F ) ∈ F we have

MERE
F � H and [H : MERE

F ] < ∞.

Theorem 3.14. With the above notation, we have

(i) M̄ = lim←−E∈E M/ME ,

(ii) N̄ = lim←−E∈E N/ME ,

(iii) R̄ = lim←−(E,F )∈F R/RE
F ,

(iv) H̄ = lim←−(E,F )∈F M/ME � R/RE
F ,

all as topological groups.
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Proof. By the preceding results, it suffices to show that for all finite subsets

E′ ⊂ Q and F ′ ⊂ N

there exists (E, F ) ∈ F such that

ME ⊂ ME′ and RE
F ⊂ RE′

F ′ .

Set
E′′ = (E′ ∪ {e})R and F ′′ = (F ′ ∪ {e})M.

Since (Q, R) is Hecke, E := RE′′ is a finite union of cosets in Q/R, and it follows that
E ∈ E . We have ME ⊂ ME′ since E ⊃ E′.

Let M0 be the subgroup of N generated by the conjugates q−1Mq for q ∈ E. Then
M0 � N since q−1Mq � N for each q. Since E is a finite union of double cosets of R in Q,
and since (Q, R) is Hecke, E is a finite union of right cosets of R in Q. Thus, the family
{q−1Mq : q ∈ E} is finite. Since M0 is the product of the subgroups q−1Mq (because
they are normal in N), it follows that [M0 : M ] < ∞. Thus, setting F = M0F

′′, we have
(E, F ) ∈ F and, moreover, RE

F ⊂ RE′

F ′ since E ⊃ E′ and F ⊃ F ′. �

As a topological space, Q̄ = lim←−E,F
Q/RE

F , but since the subgroups RE
F are not in

general normal in Q, the group structure of Q̄ is more complicated. For details on this,
we refer the reader to [5, Remark 3.11]. In the special case where Q is abelian, we do
have RE

F � Q, so
Q̄ = lim←−

E,F

Q/RE
F

as topological groups.

4. Crossed products

In this section we prove a few results concerning crossed products, subgroups and projec-
tions. We state these results in somewhat greater generality than we require, since they
might be useful elsewhere and no extra work is required.

4.1. Compact subgroups

Let R be a compact normal subgroup of a locally compact group Q. We identify Q

and Cc(Q) with their canonical images in M(C∗(Q)) and C∗(Q), respectively. Normalize
the Haar measure on R so that R has measure 1. Then q := χR is a central projection
in M(C∗(Q)), and the map τ : Q/R → M(C∗(Q)) defined by

τ(sR) = sq for s ∈ Q (4.1)

integrates to give an isomorphism of C∗(Q/R) with the ideal C∗(Q)q of C∗(Q).
Let α be an action of Q on a C∗-algebra B. We identify B and C∗(Q) with their

canonical images in M(B ×α Q). Thus, q is a projection in M(B ×α Q), and we may
regard τ as a homomorphism of Q/R into M(B ×α Q).
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Let
Φ(b) =

∫
R

αr(b) dr

be the faithful conditional expectation of B onto the fixed-point algebra BR. Then an
elementary calculation shows that

qbq = Φ(b)q = qΦ(b) for b ∈ B.

Thus, qBq = BRq, and q commutes with every element of BR. Thus, the formula

σ(b) = bq (4.2)

defines a homomorphism σ of BR onto the C∗-subalgebra BRq of M(B ×α Q). We will
deduce from Proposition 4.1 that σ is in fact an isomorphism.

Let β be the action of Q/R on BR obtained from α. It is easy to see that the maps σ

and τ from Equations (4.2) and (4.1) combine to form a covariant homomorphism (σ, τ)
of the action (BR, Q/R, β), and that the integrated form

θ := σ × τ : BR ×β Q/R → q(B ×α Q)q (4.3)

is surjective.
In the special case R = Q, the following is the main result of [13].

Proposition 4.1. Let (B, Q, α) be an action, let R be a compact normal subgroup
of Q, let (BR, Q/R, β) be the associated action and let q = χR. Then the map θ :
BR ×β Q/R → q(B ×α Q)q from (4.3) is an isomorphism.

Proof. In light of the discussion preceding the statement of the proposition, it remains
to verify that θ is injective, and we do this by showing that, for every covariant repre-
sentation (π, U) of (BR, Q/R, β) on a Hilbert space V , there exists a representation ρ of
q(B ×α Q)q on V such that ρ ◦ θ = π × U .

Recall from the theory of Rieffel induction [12] that the conditional expectation Φ :
B → BR gives rise to a BR-valued inner product

〈b, c〉BR = Φ(b∗c)

on B, so the completion X is a Hilbert BR-module. Moreover, B acts on the left of X

by adjointable operators, so we can use X to induce π to a representation π̃ of B on
Ṽ := X ⊗BR V . An easy computation shows that the formula

Ũs(b ⊗ ξ) = αs(b) ⊗ UsRξ for s ∈ Q, b ∈ B, ξ ∈ V

determines a representation Ũ of Q on Ṽ such that (π̃, Ũ) is a covariant representation
of (B, Q, α).

Thus, π̃ × Ũ is a representation of the crossed product B ×α Q on Ṽ ; let ρ1 be its
restriction to the corner q(B ×α Q)q. We have ρ1(q)Ṽ = BR ⊗BR V , because if b ∈ B
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and ξ ∈ V , then

ρ1(q)(b ⊗ ξ) =
∫

R

Ũr(b ⊗ ξ) dr

=
∫

R

(αr(b) ⊗ UrRξ) dr

=
∫

R

αr(b) dr ⊗ ξ.

The subspace BR ⊗BR V is invariant for the representation ρ1; let ρ2 denote the associ-
ated subrepresentation of q(B ×α Q)q. A routine computation shows that

W (b ⊗ ξ) = π(b)ξ for b ∈ BR, ξ ∈ V

determines a unitary map W of BR ⊗BR V onto V which implements an equivalence
between the representations ρ2 ◦ θ and π × U . Thus, we can take ρ = AdW ◦ ρ2. �

Corollary 4.2. Let (B, Q, α) be an action, let R be a compact normal subgroup of Q,
let (BR, Q/R, β) be the associated action and let q = χR. Then the map σ : BR → BRq

from (4.2) is an isomorphism.

Proof. It remains to observe that σ is faithful, being the composition of the injective
homomorphism θ with the canonical embedding of BR into M(BR ×β Q/R). �

4.2. Two projections

If A is a C∗-algebra and p is a projection in M(A), then one of the most basic appli-
cations of Rieffel’s theory [12] is that the ideal ApA is Morita–Rieffel equivalent to the
corner pAp via the ApA − pAp imprimitivity bimodule Ap. For later purposes, we will
need the following slightly more subtle variant.

Lemma 4.3. Let A be a C∗-algebra, and let p, q ∈ M(A) be projections with p � q.
Then qApAq is Morita–Rieffel equivalent to pAp.

Proof. Just apply the above Morita–Rieffel equivalence ApA ∼ pAp with A replaced
by qAq. �

4.3. Central projection

Let β be an action of a locally compact group T on a C∗-algebra C, and let d ∈ M(C)
be a central projection. Then d may also be regarded as a multiplier of the crossed
product C ×β T , and it generates the ideal

(C ×β T )d(C ×β T ).

Proposition 4.4. With the above notation, we have

(i) (C ×β T )d(C ×β T ) = I ×β T , where I is the T -invariant ideal of C generated by d,

(ii) I = span{βt(d)C : t ∈ T} = {c ∈ C : p∞c = c}, where p∞ = sup{βt(d) : t ∈ T}.

https://doi.org/10.1017/S0013091506001469 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506001469


142 S. Kaliszewski, M. B. Landstad and J. Quigg

Proof. (i) This follows from [4, Propositions 11 (ii) and 12 (i)].

(ii) The first equality holds because d is a central projection. For the second, note that
the projections {βt(d) : t ∈ T} are central, so their supremum p∞ is an open central pro-
jection in C∗∗, and the desired equality follows from, for example, [11, Proposition 3.11.9].
To make this part of the proof self-contained, we include the argument: set

J = {c ∈ C : p∞c = c}.

For any t ∈ T and c ∈ C we have βt(d) � p∞, so

p∞βt(d)c = βt(d)c.

Thus, I ⊂ J . Suppose that a ∈ J but a /∈ I. There then exists a non-degenerate repre-
sentation π of C such that π(a) �= 0 but I ⊂ ker π. Extend π to a weak∗-weak-operator
continuous representation π̄ of C∗∗. Enlarge the set {βt(d) : t ∈ T} to an upward-
directed set P of central projections in M(C), so that there is an increasing net {pi} in
P converging weakly∗ to p∞. Then pia → p∞a weakly∗, so π(pia) → π̄(p∞a). We have
π̄(p∞a) = π(a) because a ∈ J , and π(pia) = 0 for all i, so we deduce that π(a) = 0,
which is a contradiction. �

Question 4.5. When will p∞ be a multiplier of BR? (Example 6.10 shows that it is
not always so.)

4.4. Combined results

With the notation and assumptions of Proposition 4.1, set

A = B ×α Q.

Also let d ∈ M(B) be an R-invariant central projection, so that d is also a central
projection in M(BR). Set

p∞ = sup{αs(d) : s ∈ Q}.

Then p∞ is an open central projection in (BR)∗∗. Let I be the Q/R-invariant ideal of
BR generated by d. We have dq = qd ∈ M(A), and we denote this projection by p.

The following theorem combines the previous results in this section.

Theorem 4.6. With the above notation, we have the following:

(i) θ(I ×β Q/R) = qApAq;

(ii) I = span{αs(d)BR : s ∈ Q} = {b ∈ BR : p∞b = b};

(iii) σ(I) = span{sds−1qBq : s ∈ Q} = span{sqdBqs−1 : s ∈ Q};

(iv) pAp is Morita–Rieffel equivalent to I ×β Q/R.
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Proof. The only part that still requires proof is (iii). We have

σ(I) = span
s∈Q

θ ◦ αs(dBR)

because αs(BR) = BR. For each s ∈ Q we have

σ ◦ αs(dBR) = σ ◦ βsR(dBR)

= τsRσ(dBR)τ∗
sR (covariance)

= (sq)dBRq(sq)∗

= sqdBRqs−1

= sqdqBqs−1

= sqdBqs−1 (dq = qd)

= sds−1qBq (sq = qs, sB = Bs),

and (iii) follows. �

5. Hecke crossed products

In this section our main object of study is a Schlichting pair (G, H) which has the semi-
direct-product decomposition of (1.1), with the additional condition that R be normal
in Q. We shall obtain crossed-product C∗-algebras which are Morita–Rieffel equivalent
to the completion of the Hecke algebra inside C∗(G), giving results which are similar to
certain results of [5]. At the end of the section we shall briefly indicate how our results
can be applied if the Hecke pair is incomplete.

Set A = C∗(G) and B = C∗(N), and let α denote the canonical action of Q on B

determined by conjugation of Q on N . Then A is isomorphic to the crossed product
B ×α Q, and we identify these two C∗-algebras.

Normalize the Haar measures on N and Q so that M and R each have measure 1. Then
the product measure is a Haar measure on G, and H has measure 1. Thus, pM := χM

is a central projection in B, and hence is a projection in M(A). Similarly, pR := χR is a
central projection in C∗(Q), and hence also a projection in M(A), and we have

pH := χH = pMpR = pRpM ∈ A.

By [5, Corollary 4.4] the Hecke algebra of the pair (G, H) is H = pHCc(G)pH , whose
closure in A is the corner pHApH . From § 4 we obtain the isomorphisms

θ = σ × τ : BR ×β Q/R
∼=−→ pRApR,

σ : BR ∼=−→ BRpR,

τ : C∗(Q/R)
∼=−→ C∗(Q)pR,

and an ideal
I = {b ∈ BR : p∞b = b} � BR,
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where
p∞ = sup{αs(pM ) : s ∈ Q} ∈ (BR)∗∗.

Theorem 4.6 quickly gives the following analogue of [5, Theorem 8.2].

Theorem 5.1. With the above notation,

(i) θ(I ×β Q/R) = pRApHApR,

(ii) I = span{αs(pM )BR : s ∈ Q},

(iii) we have

σ(I) = span{spMs−1pRBpR : s ∈ Q}
= span{spRpMBpRs−1 : s ∈ Q}
= span{spMs−1pRnpR : s ∈ Q, n ∈ N},

and

(iv) pHApH is Morita–Rieffel equivalent to I ×β Q/R.

Proof. The only thing left to prove is the last equality of part (iii), and this follows
from Theorem 4.6, because M is compact open in N , and hence

pMB = span{pMn : n ∈ N}

(note that the projection d from Theorem 4.6 is pM here). �

Remark 5.2. Note that if R is non-trivial, then pH is never full in A: since N is
normal in G with Q = G/N , there is a natural homomorphism C∗(G) → C∗(Q) which
maps pH to pR. Thus, pR is a non-trivial projection, which, being central, is not full in
C∗(Q).

We say that the family {sMs−1 : s ∈ Q} of conjugates of M is downward-directed if
the intersection of any two of them contains a third.

Proposition 5.3. If {sMs−1 : s ∈ Q} is downward-directed, then

pRApHApR = pRApR
∼= BR ×β Q/R.

Proof. Because the pair (G, H) is reduced we have
⋂
s∈Q

sMs−1 = {e},

so the upward-directed set {spMs−1 : s ∈ Q} of projections has supremum p∞ = 1
in (BR)∗∗. Therefore, the ideal I from Theorem 5.1 coincides with BR, and the result
follows. �
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Remark 5.4. In the above proposition, we have

pRApHApR = pRApR,

although the ideal ApHA of A is proper if R is non-trivial.

As in [5, § 7] we specialize to the case where N is abelian. Taking Fourier transforms,
the action α of Q on B becomes an action α′ on C0(N̂):

α′
s(f)(φ) = f(φ ◦ αs) for s ∈ Q, f ∈ C0(N̂), φ ∈ N̂ .

The smallest Q-invariant subset of N̂ containing M⊥ is

Ω =
⋃
s∈Q

(sMs−1)⊥.

The Fourier transform of the fixed-point algebra BR is isomorphic to C0(N̂/R), where
N̂/R is the orbit space under the action of R. The smallest Q/R-invariant subset of N̂/R

containing M⊥/R is Ω/R. Thus, the Fourier transform of the ideal I of BR is C0(Ω/R).
Let γ be the associated action of Q/R on C0(Ω/R). The following corollary is analogous
to [5, Corollary 7.1].

Corollary 5.5. With the assumptions and notation of Proposition 5.3, if N is abelian,
then pHApH is Morita–Rieffel equivalent to the crossed product C0(Ω/R) ×γ Q/R.

We finish this section with a brief indication of how the above general theory can be
used when (G, H) is the Schlichting completion of a reduced Hecke pair (G0, H0). More
precisely, we assume that G0 = N0 � Q0, M0 � N0, R0 � Q0, R0 normalizes M0 and
that (G0, H0) is a reduced Hecke pair (and Propositions 3.5 and 3.6 give conditions under
which the latter happens). By Corollary 3.8, the closures N , Q, M and R of N0, Q0, M0

and R0, respectively, satisfy the conditions of the current section. The action (B, Q, α)
restricts to an action (B, Q0, α0), and by density we have BR = BR0 . The map sR0 
→ sR

for s ∈ R0 gives an isomorphism Q0/R0 ∼= Q/R of discrete groups, and the action β of
Q/R on BR corresponds to an action β0 of Q0/R0 on BR0 . Thus, we have a natural
isomorphism

BR ×β Q/R ∼= BR0 ×β0 Q0/R0.

Again by density, for all s ∈ Q there exists s0 ∈ Q0 such that pRs = pRs0, and similarly
for all n ∈ N there exists n0 ∈ N such that npM = n0pM . We deduce the following.

Corollary 5.6. Using the above isomorphisms and identifications, we have the fol-
lowing:

(i) I is the Q0/R0-invariant ideal of BR0 generated by pM ;

(ii) I ×β0 Q0/R0 ∼= pRApHApR;

(iii) p∞ = sup{spMs−1 : s ∈ Q0};

(iv) I ∼= span{spMs−1pRnpR : s ∈ Q0, n ∈ N0};

(v) pHApH is Morita–Rieffel equivalent to I ×β0 Q0/R0.
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As explained in [5], many of the nice properties of the Hecke algebra in [1] hold because
the family {xHx−1 | x ∈ G} of conjugates of H is downward-directed; in particular this
implies that the projection p is full. In our situation we can only have p full if R = {e},
but we do have the following.

Corollary 5.7. Suppose the conjugates {sMs−1 | s ∈ Q} of M are downward-
directed. Then I = BR0 and pHApH is Morita–Rieffel equivalent to BR0 ×β0 Q0/R0.

Proof. We have spMs−1 = psMs−1 , so by the assumptions p∞ = 1. �

Continuing with (G, H) being the Schlichting completion of (G0, H0) as above, we again
consider the special case where N , equivalently N0, is abelian. Fourier transforming, by
density we have

Ω =
⋃

s∈Q0

(sMs−1)⊥,

and there is an associated action γ0 of Q0/R0 on C0(Ω/R), giving the following result.

Corollary 5.8. With the above notation, pHApH is Morita–Rieffel equivalent to
C0(Ω/R) ×γ0 Q0/R0.

6. Examples

We shall here illustrate the results from the preceding sections with a number of examples.
Some arguments are only sketched.

First note that the case R = {e} is treated in [5, §§ 7 and 8].

Example 6.1. The situation with M = {e} and R � Q is also interesting. From § 3
we see that (NQ, R) is Hecke if and only if Rn,{e} = {r ∈ R | rnr−1 = n} has finite
index in R for all n. The pair is reduced if and only if

⋂
n Rn,{e} = {e}, i.e. if the map

R → AutN is injective. Here N̄ = N , p := pH = pR and Theorem 5.1 gives Morita–
Rieffel equivalences among ApA, pAp and C∗(N)R×Q/R. Example 10.1 of [5] is a special
case of this situation.

We shall next study 2 × 2 matrix groups (and leave it to the reader to see how this
generalizes to n × n matrices). For any ring J we let M(2, J) denote the set of all 2 × 2
matrices with entries in J ; we let GL(2, J) denote the group of invertible elements of
M(2, J); SL±(2, J) denotes the subgroup of GL(2, J) consisting of those matrices with
determinant ±1, and SL(2, J) is the subgroup of GL(2, J) of matrices with determinant 1.

Proposition 6.2. Suppose that N = Q2 and M = Z2, that Q is a subgroup of
GL(2, Q) containing the diagonal subgroup

D =

{(
λ 0
0 λ

) ∣∣∣∣∣ λ ∈ Q×

}
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and that R = Q∩GL(2, Z). Then (NQ, MR) is a reduced Hecke pair, and the Schlichting
completion is given by

N̄ = A2
f , M̄ = Z2, R̄ = lim←−R/R(s) and Q̄ =

⋃
q∈Q/R

qR̄,

where Q̄ has the topology from R̄, i.e. qi → e if and only if qi ∈ R̄ eventually and qi → e

in R̄.

Proof. Given q ∈ Q there is an integer matrix k ∈ D such that kq−1 is an integer
matrix. From this it follows that kq−1Z2 ⊂ Z2 and therefore kMk−1 ⊂ qMq−1. This
implies that the sets {kZ2} are downward-directed and form a base at e for the Hecke
topologies of M and N , by Proposition 3.7. We also note that

⋂
k kMk−1 =

⋂
k kZ2 =

{e}, by Proposition 3.6. Thus, N̄ = A2
f and M̄ = Z2, with Af the finite adeles and Z

the integers in Af .
Next, if n ∈ N there exists s ∈ Z such that sn ∈ M . Take

n1 =

(
1/s

0

)
and n2 =

(
0

1/s

)
.

By definition r ∈ Rn,M if and only if (r − I)n ∈ Z2. One checks that Rn1,M ∩ Rn2,M ⊂
Rn,M and that

Rn1,M ∩ Rn2,M = {r ∈ R | r − I ∈ M(2, sZ)}.

Call this subgroup R(s); it is clearly a normal subgroup of finite index in R.
Suppose that

q =

(
a b

c d

)
∈ Q,

and without loss of generality we may assume q ∈ M(2, Z). Setting t = det(q) = ad − bc,
for r ∈ R(t) we have

q−1(r − I)q = t−1

(
d −b

−c a

)
(r − I)

(
a b

c d

)
∈ M(2, Z),

and it follows that q−1rq ∈ M(2, Z). The same argument holds for r−1, so both q−1rq

and q−1r−1q are integer matrices in Q. Thus,

q−1rq ∈ Q ∩ GL(2, Z) = R.

From this it follows that

R(t) ⊂ R ∩ qRq−1 for t = det(q),

and we have just observed that [R : R(t)] < ∞, so [R : Rq] < ∞.
The same argument also shows that R(st) ⊂ R ∩ qR(s)q−1 for any s, and therefore

for any given finite sets E ⊂ Q and F ⊂ N there exists s ∈ N such that R(s) ⊂ RE
F .

Combining all this with Proposition 3.7 we see that the family {R(s) | s ∈ N} is a base
at e for the Hecke topology restricted to R or Q.

Finally, note that
⋂

s R(s) = {e}. �
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A similar result holds when Q is replaced by other number fields, e.g. Z[p−1] for a
prime number p (not to be confused with the projection p). We now state it without
proof.

Proposition 6.3. Suppose that N = Z[p−1]2 and M = Z2, that Q is a subgroup of
GL(2, Z[p−1]) containing the diagonal subgroup

D =

{(
pn 0
0 pn

) ∣∣∣∣∣ n ∈ Z

}
,

and that R = Q∩GL(2, Z). Then (NQ, MR) is a reduced Hecke pair, and the Schlichting
completion is given by

N̄ = Q2
p, M̄ = Z2

p , R̄ = lim←−R/R(pn) and Q̄ =
⋃

q∈Q/R

qR̄,

where, as above, Q̄ has the topology from R̄.

Example 6.4. Let us first consider the maximal p-adic case with Q = GL(2, Z[p−1])
and R = GL(2, Z).

Proposition 6.5. Let

T =

{(
pm 0
c pn

) ∣∣∣∣∣ m, n ∈ Z, c ∈ Z[p−1]

}
.

Then T SL±(2,Zp) = {g ∈ GL(2, Qp) | det(g) ∈ ±pZ}.

Proof. Clearly, the left-hand side is included in the right-hand side. For the ‘reverse
inclusion’ it suffices to show that every g ∈ M(2,Zp) with det(g) ∈ pN is a member of
the left-hand side. Let

g =

(
a b

c d

)
.

Case 1. Suppose that b = 0 and ad = pm. If a = pnu with u a unit in Zp, we must
have d = u−1pm−n. So

g =

(
a 0
c d

)
=

(
pn 0
0 pm−n

) (
1 0
x 1

) (
u 0
0 u−1

)

with x = cu−1pn−m. Now x = y + z with y ∈ Z[1/p] and z ∈ Zp, and since(
1 0
z 1

) (
u 0
0 u−1

)
∈ SL(2,Zp),

it follows that

g =

(
a 0
c d

)
∈ T SL(2,Zp).
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Case 2. Suppose that a = 0 and b �= 0. Then

g =

(
0 b

c d

)
=

(
b 0
d −c

) (
0 1

−1 0

)
∈ T SL(2,Zp).

Case 3. Suppose a = pmu and b = pnv with u, v units in Zp. We may assume m � n,
if not we multiply by ( 0 1

−1 0 ) as in case 2. So p−na ∈ Zp. Then(
a b

c d

)
=

(
pn 0

v−1d p−nad − vc

) (
p−na v

−v−1 0

)
.

The second matrix on the right-hand side is in SL(2,Zp), while the first has determinant
equal to ad− bc, which by assumption is in pN, so by case 1 this matrix is in T SL(2,Zp).

�
Theorem 6.6. Let Q = GL(2, Z[p−1]) and R = GL(2, Z). Then

(i) R̄ = lim←−R/R(pn) = SL±(2,Zp),

(ii) Q̄ =
⋃

q∈Q/R q SL±(2,Zp) = {g ∈ GL(2, Qp) | det(g) ∈ ±pZ},

where Q̄ has the topology from R̄ = SL±(2,Zp).

Proof. Since Q = TR we get Q̄ = TR̄, which by Proposition 6.5 equals the right-hand
side. That [5, Theorem 3.8] applies to the pair (N̄Q̄, M̄R̄) now follows from Proposi-
tions 6.3 and 6.5, and density of GL(2, Z) in SL±(2,Zp) (see [6, Proposition IV.6.3]). �

Now we look at the case where Q = GL(2, Q) and R = GL(2, Z). We first need the
following version of Proposition 6.5.

Proposition 6.7. Let

T =

{(
a 0
c d

) ∣∣∣∣∣ a, c, d ∈ Q, ad �= 0

}
.

Then T SL(2,Z) = {g ∈ GL(2,Af ) | det(g) ∈ Q}.

Proof. Again one inclusion is obvious, so suppose that

g =

(
a b

c d

)
∈ GL(2,Af ) with det g ∈ Q;

in fact, without loss of generality we may assume that det g = 1. For each prime p let

gp =

(
ap bp

cp dp

)

be the corresponding matrix in GL(2, Qp). For all but finitely many p we will have
gp ∈ SL(2,Zp). In these cases take kp = gp.

In the other cases we cannot have both ap and bp zero, so by Proposition 6.5 there is a
matrix kp ∈ SL(2,Zp) such that gpk

−1
p ∈ T ∩ GL(2, Z[1/p]). So k = (kp) ∈ SL(2,Z) and

gk−1 ∈ T as claimed. �
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Theorem 6.8. Let Q = GL(2, Q) and R = GL(2, Z). Then

(i) R̄ = SL±(2,Z),

(ii) Q̄ =
⋃

q∈Q/R q SL±(2,Z) = {g ∈ GL(2,Af ) | det(g) ∈ Q},

where Q̄ has the topology from R̄ = SL±(2,Z).

Proof. From [6, Proposition IV.6.3] (the hard part is hidden there) it follows that

R̄ = lim←−R/R(s) = lim←− SL±(2, Zs) = SL±(2,Z).

Since Q̄ = TR̄, part (ii) follows from Proposition 6.7. �

Note that the topology on Q̄ is not the relative topology from GL(2,Af ), in contrast
with Theorem 6.6.

This is essentially the same result as [8, Proposition 2.5]. Since R is not normal in Q we
cannot use Theorem 5.1, but it would be interesting to get a description of the C∗-algebra
pRApHApR in these cases (see [2]). However, note that we are not using exactly the same
algebra, since in both [2] and [8] the action of Q is by left multiplication on M(2, Q).

Example 6.9. Much recent work on Hecke algebras started with the study of the
affine group over Q in [1]. Other number fields have also been extensively studied, as in,
for example, [2,9]. For a survey, see [2, § 1.4]. We shall here illustrate how our approach
works for a quadratic extension of Q. For details about the number theory used here we
refer the reader to [10].

Let d be a square-free integer such that d �≡ 1 mod 4, and let N = Q(
√

d), M = Z[
√

d],
Q = Q(

√
d)×, and R = {r ∈ Q | r, r−1 ∈ M}.∗

So
R = {m + n

√
d | m, n ∈ Z, m2 − dn2 = ±1}

is the group of units in the field N . An alternative matrix description is as follows:

N = Q2,

M = Z2,

Q =

{(
a db

b a

) ∣∣∣∣∣ a, b ∈ Q, a2 − db2 �= 0

}
,

R =

{(
m dn

n m

) ∣∣∣∣∣ m, n ∈ Z, m2 − dn2 = ±1

}
.

So we get N̄ = A2
f and M̄ = Z2.

Here Theorem 5.1 applies, so

pAp ∼MR C0(A2
f/R̄) � Q/R.

∗ If, for instance, d = 5, one should instead use M = Z[(1 +
√

5)/2], etc. (see [10, Theorem 9.20]).
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In this way we obtain [9, Proposition 3.2] for the field Q(
√

d) without using the theory
of semigroup crossed products, and this will also work in greater generality.

The structure of these crossed products can be studied by the Mackey–Takesaki orbit
method as in [7]; note that the orbit closures in N̄/R̄ under the action of Q/R are
basically the same as the orbit closures in N̄ under the action of Q.

To determine R̄ and its topology we need some more information. First, if d < 0 then
R is finite (of order 2 or 4). So let us concentrate on the case with d > 1. We then,
by [10, Theorem 7.26], have R ∼= {±1} × Z, and in fact there exists r0 ∈ R such that
R = {±rn

0 | n ∈ Z}. For instance, if d = 2, one can take r0 = 1 +
√

2.
Let us look at R(s). There is a smallest integer ns > 0 such that rns

0 ≡ 1 mod s. From
this we get R̄ = lim←−R/R(s) = {±1} × lim←− Z/Zns . However, examples show that the
behaviour of the numbers ns is complicated, so a more exact description of R̄ is difficult.

Perhaps counter-intuitively, in general it turns out that

R̄ � {m + n
√

d | m, n ∈ Z, m2 − dn2 = ±1}.

This is because under the homomorphism Z[
√

d] 
→ Zs[
√

d] the units R in Z[
√

d] are in
general mapped onto a proper subgroup of the units in Zs[

√
d]. For instance, 4 is a unit

in Z17[
√

2], but ±(1 +
√

2)n �≡ 4 mod 17 for all n.

Example 6.10. We shall here give a slightly different treatment of the Heisenberg
group from that in [5]. Take

N = Q/Z × Q, M = {0} × Z,

Q =

{(
1 q

0 1

) ∣∣∣∣∣ q ∈ Q

}
, R =

{(
1 r

0 1

) ∣∣∣∣∣ r ∈ Z

}
,

with the obvious action of Q on N . If

x =

(
1 1/n

0 1

)
with n ∈ N,

one checks that M ∩ xMx−1 = {0} × nZ. So we have

N̄ = Q/Z × Af = Af/Z × Af and M̄ = {0} × Z.

If

n =

(
a

b/m

)
with b, m ∈ Z and r =

(
1 r

0 1

)
,

then rnr−1 − n ∈ M if and only if rb ∈ mZ. Thus,

Q̄ =

{(
1 q

0 1

) ∣∣∣∣∣ q ∈ Af

}
and R̄ =

{(
1 r

0 1

) ∣∣∣∣∣ r ∈ Z
}

.
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We have ˆ̄N = Z × Af and M̄⊥ = Z × Z. Moreover, the dual action of Q̄ on ˆ̄N is given
by

(z, w)

(
1 q

0 1

)
= (z, qz + w).

Lemma 6.11. Set Ω =
⋃

q∈Q̄ qM̄⊥. Then

Ω = {(z, qz + w) | z, w ∈ Z, q ∈ Af}
= {(z, u) ∈ Z × Af | zp = 0 =⇒ up ∈ Zp}.

Proof. Clearly, if (z, w) ∈ Ω and zp = 0, then wp ∈ Zp.
Conversely, suppose (z, u) is an element of the right-hand side. If up ∈ Zp, take qp = 1

and wp = up − zp ∈ Zp. For the finitely many p with up /∈ Zp, we have up = xp + vp

with xp ∈ Q× and vp ∈ Zp and, by assumption, zp �= 0. Take qp = z−1
p xp ∈ Qp, so

qpzp + wp = up. Thus, with q := (qp) ∈ Af and w := (wp) ∈ Z, we have qz + w = u. �

So here Ω is open but not closed; hence, the projection p∞ defined in § 5 is not
in M(BR).

The orbits under the action of R can be described as follows: (0, w) is always a fixed
point. If z �= 0, then the R-orbit of (z, w) is (z, w + zZ).
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