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Abstract. We present results from 3D MHD simulations of the magnetospheres from massive
stars with a dipole magnetic axis that has an arbitrary obliquity angle (β) to the stars rotation
axis. As an initial direct application, we examine the global structure of co-rotating disks for
tilt angles β = 0, 45 and 90 degrees using ζ Pup stellar parameters as a prototype. We find that
for models with rapid stellar rotation (∼ 0.5 critical rotation), accumulation surfaces closely
resemble the form predicted by the analytic Rigidly Rotating Magnetosphere (RRM) model,
but with a mass distribution and outer disk termination set by centrifugal breakout processes.
However, some significant differences are found including warping resulting from the dynamic
nature of the MHD models in contrast to static RRM models. These MHD models can be used
to synthesize rotational modulation of photometric absorption and H-alpha emission for a direct
comparison with observations.
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Hot, luminous, massive (OB-type) stars lose large amount of mass through radiatively-
driven stellar wind (Castor et al. 1975, CAK). In general, winds of these objects are
spherically symmetric, but some fraction of them exhibit variability and structure on both
small and large scales which can be caused by global magnetic field. Babel & Montmerle
(1997) have shown that in Bp stars magnetic field is so strong that it acts like rigid
rods that guide material towards the magnetic equator wherein they collide leading to
magnetically confined wind shocks (MCWS). Once the material cools, the dense material
is a source of strong Hα emission. However, this MCWS was a phenomenological model
and did not make any specific predictions about how much material would accumulate
within magnetosphere or provide a mechanism for emptying it.

A vast improvement upon MCWS model was made by Townsend et al. (2005) who
developed rigidly rotating magnetosphere (RRM) model for Bp star using σ Ori E as
a prototype. RRM model predicts the accumulation of circumstellar plasma situated in
magnetohydrostatic equilibrium at the intersections between the magnetic and rotational
equators. Amount of accumulated material depends on mass feeding rate at the base of
rigid field lines. The model also predicts large scale emptying of the magnetosphere via
centrifugal breakout (CBO) and has been successfully used to reproduce the periodic
modulations observed in the light curve and Hα emission-line profile of σ Ori E.

Key advantage of the RRM model is that it is analytic and does not require expensive
numerical computations. However, it lacks self-consistent interactions between magnetic
field and the wind that is inherent in magnetohydrodynamic (MHD) simulations. As
such, RRM model is unable to predict density structure within the magnetosphere, one
of the main goals of this work here.
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Figure 1. Comparison between analytic Rigidly Rotating Magnetosphere (RRM) vs our fully
self-consistent 3D MHD models. They are quite similar but significant differences exist. MHD
model shows the sense of rotation with denser part of the disk leading unlike in RRM model.
Dragonfly wing-like structure exhibits warping which can have observational implications.

In an extensive series of papers (see ud-Doula & Owocki 2002; ud-Doula et al. 2006,
2008, 2009), we have applied MHD simulations to understand the dynamics of such
magnetic wind channeling, the consequent hard X-ray emission and Hα emission. But
all these models were either 2D or simplified 3D models where magnetic axis is aligned
with rotational axis.

In practice, magnetic massive stars are often oblique rotators, which naturally leads —
especially when rotation is rapid — to lateral structures that cannot be modeled by
axisymmetric 2-D models. But for rapid rotators with magnetic field tilted with respect
to rotational axis, this is not option as axisymmetry is fully broken. Here we present a
3D MHD model where magnetic field is tilted by 45◦ with respect to the rotational axis.

We use PLUTO code in spherical geometry. We follow the same basic formalism as in
ud-Doula & Owocki (2002); ud-Doula et al. (2008). We evolve our model for over 1.5Ms,
which allows the model to settle in quasi-steady state. As shown in Fig. 1, fully self
consistent MHD model (bottom panel) and the RRM model (top panel) match relatively
well. However, there are some notable differences. The MHD model shows the dynamic
effects of rotation that leads to warping of the circumstellar structure, making it resem-
ble a ‘dragonfly wing’. The overall structure exhibits the sense of rotation with higher
density material leading the way. Such MHD models also allow to extract density scaling
information that can have observational consequences.
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