
TPLP 23 (1): 157–194, 2023. © The Author(s), 2022. Published by Cambridge University Press.

doi:10.1017/S1471068422000047 First published online 23 February 2022
157

Aggregate Semantics for Propositional Answer Set
Programs∗

MARIO ALVIANO
University of Calabria, Rende, Italy
(e-mail: alviano@mat.unical.it)

WOLFGANG FABER
University of Klagenfurt, Klagenfurt, Austria

(e-mail: wolfgang.faber@aau.at)

MARTIN GEBSER
University of Klagenfurt, Klagenfurt, Austria
Graz University of Technology, Graz, Austria

(e-mail: martin.gebser@aau.at@aau.at)

submitted 28 July 2022; revised 20 September 2021; accepted 21 January 2022

Abstract

Answer set programming (ASP) emerged in the late 1990s as a paradigm for knowledge repre-
sentation and reasoning. The attractiveness of ASP builds on an expressive high-level modeling
language along with the availability of powerful off-the-shelf solving systems. While the util-
ity of incorporating aggregate expressions in the modeling language has been realized almost
simultaneously with the inception of the first ASP solving systems, a general semantics of aggre-
gates and its efficient implementation have been long-standing challenges. Aggregates have been
proposed and widely used in database systems, and also in the deductive database language
Datalog, which is one of the main precursors of ASP. The use of aggregates was, however, still
restricted in Datalog (by either disallowing recursion or only allowing monotone aggregates),
while several ways to integrate unrestricted aggregates evolved in the context of ASP. In this
survey, we pick up at this point of development by presenting and comparing the main aggre-
gate semantics that have been proposed for propositional ASP programs. We highlight crucial
properties such as computational complexity and expressive power, and outline the capabilities
and limitations of different approaches by illustrative examples.

KEYWORDS: answer set programming, aggregate expressions, semantics, complexity and ex-
pressiveness

1 Introduction

Answer set programming (ASP) (Brewka et al . 2011; Gelfond and Leone 2002; Lifschitz

2002; Marek and Truszczyński 1999; Niemelä 1999) is a paradigm for knowledge rep-

∗The work of Mario Alviano was partially supported by projects PRIN “Declarative Reasoning over
Streams” (CUP: H24I17000080001), PON-MISE MAP4ID “Multipurpose Analytics Platform 4 Indus-
trial Data” (CUP: B21B19000650008), lab LAIA (part of SILA), and GNCS-INdAM. Martin Gebser
was partially supported by KWF project 28472, cms electronics GmbH, FunderMax GmbH, Hirsch
Armbänder GmbH, incubed IT GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein
Holding GmbH, and Privatstiftung Kärntner Sparkasse. We are grateful to the reviewers for valuable
and constructive comments helping to improve this paper.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047
https://orcid.org/0000-0002-2052-2063
mailto:alviano@mat.unical.it
https://orcid.org/0000-0002-0330-5868
mailto:wolfgang.faber@aau.at
https://orcid.org/0000-0002-8010-4752
mailto:martin.gebser@aau.at@aau.at
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068422000047&domain=pdf
https://doi.org/10.1017/S1471068422000047

158 M. Alviano et al.

Fig. 1. A tree, its relational representation, and the number of nodes in each (sub)tree.

resentation and reasoning. ASP knowledge bases are encoded by means of logic rules

interpreted according to the stable model semantics (Gelfond and Lifschitz 1988; 1991),

that is, models of ASP programs are required to satisfy an additional stability condition

guaranteeing that all true atoms in a model are necessary. A strength of ASP is its high-

level modeling language, capable of expressing all problems in the complexity classes NP

and ΣP

2 by means of declarative statements (Dantsin et al . 2001; Schlipf 1995), depend-

ing on the availability of disjunctive rules or unrestricted aggregates. The attractiveness

of ASP also builds on the availability of powerful off-the-shelf solving systems, among

them clingo (Gebser et al . 2019), dlv (Alviano et al . 2017), and idp (Bruynooghe et al .

2015).

The language of ASP offers several constructs to ease the representation of prac-

tical knowledge. Aggregate expressions received particular interest by ASP designers

(Bartholomew et al . 2011; Denecker et al . 2001; Faber et al . 2011; Ferraris 2011; Gebser

et al . 2015a; Gelfond and Zhang 2019; Liu et al . 2010; Marek and Remmel 2004; Pelov

et al . 2007; Simons et al . 2002), and the utility of their incorporation in the modeling lan-

guage has been realized almost simultaneously with the inception of the first ASP solving

systems. In fact, aggregate expressions provide a natural syntax for expressing properties

on sets of atoms collectively, which is often desired when modeling complex knowledge.

For example, aggregate expressions are widely used to enforce collective conditions on

guessed relations. In graph k-colorability (Garey and Johnson 1979), the guessed assign-

ment of colors must be a total function, which can be enforced by means of the following

constraint:

:- vertex(X), #count{C : assign_color(X,C)} != 1.

In independent set (Garey and Johnson 1979), the guessed set of nodes must not be

smaller than a given bound k ≥ 1, which can be enforced by the following constraint:

:- #count{X : in_independent_set(X)} < k.

Aggregate expressions in constraints, as in the examples above, are frequent and leave

no ambiguity in their intended semantics. However, there are other frequent use cases

in which aggregation functions are involved in inductive definitions, which open the

possibility of using aggregation functions for reasoning about recursive data structures.

For example, the number of nodes in a tree (and its subtrees) can be determined by the

following rule:

nodes(T,C+1) :- tree(T), C = #sum{C',T' : child(T,T'), nodes(T',C')}.

Figure 1 shows a tree and the expected outcome for the nodes relation. Note that the sum

is applied to a multiset, specifically to the multiset obtained by projecting on the first

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 159

Fig. 2. Companies and their shares, their relational representation, and the control
relationships.

element the following set of tuples: {(C',T') | child(T,T') ∧ nodes(T',C')}. For exam-

ple, given nodes(d,1) and nodes(e,1), for T = b the set is {(1,d), (1,e)}, and therefore

the sum aggregation is applied to the multiset [1, 1].

As another example, consider the company controls problem, originally proposed by

Mumick et al . (1990), where a set of companies and their stock shares are given and

the task is to determine the control relationships between companies. The following rule

encodes such knowledge:

controls(A,B) :- company(A), company(B),

#sum{S : own(A,B,S); S,C : controls(A,C), own(C,B,S), A != C} > 50.

Figure 2 shows an instance of this problem and the expected outcome. Non-deterministic

variants of this problem naturally emerge if some of the stock shares are not fixed and

associated with a cost, and a holding company wants to understand whether its companies

can exert an indirect control over other companies of interest.∗
The possibility to mix guesses, inductive definitions, and aggregation functions opens

the gates for several alternative interpretations of the expected outcome, and thus a

general semantics of aggregates and its efficient implementation have been long-standing

challenges. Already in the propositional case, checking the satisfiability of an aggregate

expression is an intractable problem in general, with the NP-complete subset sum and

subset product problems (Garey and Johnson 1979) as special cases. The practical impli-

cation of such an intractability is the use of weakened propagation procedures, meaning

that ASP solvers give up on the propagation of some deterministic inferences to achieve

algorithmic efficiency, usually obtained by translational approaches (Alviano et al . 2015;

Alviano and Leone 2015; Elkabani et al . 2004; Faber et al . 2008; Ferraris and Lifschitz

2005; Simons et al . 2002). For example, an aggregate expression involving a sum and

the equality comparison is split into a conjunction of two aggregate expressions that are

true when the sum is no more and no less than the original bound. In addition, sat-

isfiability of aggregate expressions is in general a non-convex function: the expression

#sum{1 : a; -1 : b} = 0 is true for ∅, false for {a} and {b}, and true again for {a,b}, a

pattern not shown by conjunctions of (possibly negated) atoms. In fact, satisfiability of

conjunctions of positive literals is a monotone function (i.e., at most one transition from

false to true, and no other transitions), satisfiability of conjunctions of negative literals is

an anti-monotone function (i.e., at most one transition from true to false, and no other

transitions), and satisfiability of conjunctions of literals in general is a convex function

(i.e., at most one transition from false to true followed by at most one transition from

true to false). The general picture for aggregate expressions is shown in Figure 3 and

further detailed in Section 2.3.

Among the variety of semantics proposed for interpreting ASP programs with aggre-

gates, two of them (Faber et al . 2011; Ferraris 2011) are implemented in widely used ASP

∗ https://www.mat.unical.it/aspcomp2011/FinalProblemDescriptions/CompanyControlsOptimize.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://www.mat.unical.it/aspcomp2011/FinalProblemDescriptions/CompanyControlsOptimize
https://doi.org/10.1017/S1471068422000047

160 M. Alviano et al.

Fig. 3. Aggregate expressions classified according to the monotonicity of satisfiability.
Subscript signs denote restrictions on the sign of weights; for example, sum+ is sum with

positive weights.

solvers (Faber et al . 2008; Gebser et al . 2012). The two semantics agree for programs

without negation, and are thus referred indistinctly as FFLP-answer sets in this survey.

Under this syntactic restriction, FFLP-answer sets can be defined as ⊆-minimal models

of a program reduct obtained by deleting rules with false bodies, as in the aggregate-free

case. Other prominent semantics (Denecker et al . 2001; Gelfond and Zhang 2019; Kemp

and Stuckey 1991; Liu et al . 2010; Marek and Remmel 2004; Pelov et al . 2007; Son and

Pontelli 2007) adopt constructive procedures for checking the provability of true atoms.

While some of these semantics were originally defined via a notion of reduct in the non-

disjunctive case, they can be viewed as semantics based on different extensions of the

immediate consequence operator (van Emden and Kowalski 1976; Lloyd 1987). Although

such extensions result in different answer sets in general, there are cases in which answer

sets according to one definition are also answer sets according to other definitions; details

on such relationships are given in Section 3.3.

Historically, aggregates appeared in database query languages and have been available

almost since the inception of database systems. However, these aggregate constructs

usually lacked generality and formal definitions. Notably, aggregates were not present in

Relational Algebra and Relational Calculus of Codd’s seminal papers (Codd 1970; 1972).

It was only with Klug’s work (Klug 1982) in the 1980s that aggregate expressions were

cleanly integrated into Relational Algebra and Calculus. This integration was further

refined by Özsoyoglu et al . (1987) a few years later, which also included the ability to

specify set expressions. While none of these languages supported recursive definitions

yet, the Relational Calculus in these papers did, however, feature a clean formalism for

defining ranges and therefore avoid unsafe queries, which can be seen as a direct precursor

to safety notions in the ASP-Core-2 language specification (Calimeri et al . 2019).

Database query languages allowing for recursive definitions and aggregates were based

on Datalog, essentially a deterministic fragment of ASP, in which every program is as-

sociated with a unique intended model, as for example the perfect model of Datalog

programs with stratified negation (Apt et al . 1987). Preserving the unique model prop-

erty is non-trivial in presence of aggregate expressions because of nonmonotonicity of

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 161

their satisfiability functions, which may lead to programs having no model, and also to

programs having several equally justifiable models. Often in the literature, uniqueness

of the intended model was guaranteed by imposing syntactic restrictions on the use of

aggregates, usually resulting in some stratification of aggregations or monotonicity con-

ditions; see for example the papers by Mumick et al . (1990) and Ross (1994). Other

works in the literature extended the well-founded semantics to logic programs with ag-

gregates (Kemp and Stuckey 1991; Pelov et al . 2007; Van Gelder 1992), hence considering

a third truth value to reason on undefined expressions whose truth or falsity is taken as

unknown. Semantics for aggregate expressions were also given in terms of translation

into aggregate-free (sub)programs, and then applying the well-founded or stable model

semantics to the resulting programs. Such translations first addressed extrema predicates

only, that is, #min and #max aggregate expressions (Ganguly et al . 1995; Sudarshan and

Ramakrishnan 1991), and were later also presented for monotonic versions of #count and

#sum aggregate expressions (Mazuran et al . 2013; Zaniolo et al . 2017).

The first attempt to define a variant of the stable model semantics that includes

aggregates was given by Kemp and Stuckey (1991). The proposed generalization of the

Gelfond–Lifschitz reduct was to treat aggregate expressions in the same way as negated

atoms. From today’s point of view, this was of course bound to be problematic, as

some aggregate expressions behave like positive rather than negative literals (and some

aggregate expressions behave like neither of them). As a simple example, consider the

program

a :- #sum{1 : a} > 0.

which should intuitively be equivalent to

a :- a.

but will have two answer sets according to Kemp and Stuckey (1991): the expected ∅
plus the unexpected {a} (as in that case the reduct results in a.). Still, this seminal work

should be regarded as the starting point of what we discuss in the sequel.

The structure of this survey is as follows. Section 2 introduces the language of logic

programs with aggregate expressions to be studied (Section 2.1), investigates the com-

plexity of deciding satisfiability of aggregate expressions (Section 2.2), and classifies

aggregate expressions according to their monotonicity (Section 2.3). Contrary to this

introduction, which used examples of symbolic programs with object variables, the

main part of the survey focuses on a propositional language, where object variables

are assumed to be eliminated as usual by a grounding procedure. Section 3 discusses

model-based and construction-based answer set semantics for logic programs contain-

ing aggregates (presented in Section 3.1 or Section 3.2, respectively), and outlines se-

mantic correspondences obtained for programs with aggregate expressions of particular

monotonicity (Section 3.3). The computational complexity of common reasoning tasks

is studied in Section 4, addressing answer set checking (Section 4.1) and answer set

existence (Section 4.2). Finally, Section 5 discusses related work beyond the presented

aggregate semantics and properties, including first-order semantics for symbolic programs

with aggregates over object variables, rewriting methods for turning programs contain-

ing (sophisticated) aggregates into simpler and often aggregate-free representations, and

tools to extend logic programs by custom aggregates.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

162 M. Alviano et al.

2 Rules and programs with aggregates

This section addresses basic syntactic and semantic concepts of propositional logic

programs with aggregate expressions. Section 2.1 introduces the syntax of aggregate

expressions as well as rules and logic programs including them, and further specifies the

satisfaction of these constructs by interpretations over propositional atoms. In Section 2.2,

we investigate the complexity of deciding whether an aggregate expression is satisfiable,

that is, checking the existence of some interpretation satisfying the aggregate expression.

Finally, Section 2.3 turns to monotonicity properties of aggregate expressions, which

characterize their satisfaction w.r.t. evolving interpretations.

2.1 Syntax and satisfaction of aggregates

In order to characterize the similarities and differences between the main aggregate se-

mantics proposed for propositional logic programs (Denecker et al . 2001; Faber et al .

2011; Ferraris 2011; Gelfond and Zhang 2019; Liu et al . 2010; Marek and Remmel 2004;

Pelov et al . 2007), we consider a set P of propositional atoms. An aggregate expression

has the form

agg[w1 : p1, . . . , wn : pn]� w0, (1)

where n ≥ 0 and

• agg ∈ {sum,times,avg,min,max} is the name of an aggregation function,

• w0, w1, . . . , wn are integers, where wi is a weight, for 1 ≤ i ≤ n, and w0 is a bound,

• p1, . . . , pn are propositional atoms from P, and
• � ∈ {<,≤,≥, >,=, 	=} is a comparison operator.

For an aggregate expression A as in (1), by at(A) = {p1, . . . , pn} we denote the set of

propositional atoms occurring in A.

Note that the common count aggregation function is a special case of sum such that

each weight is 1. Similarly, even and odd are special cases of times such that each

weight is −1, the bound is 1, and � is = or 	=, respectively. More liberal aggregate con-

cepts also account for rational or real-valued weights, formulas instead of propositional

atoms only, as well as a second comparison operator and bound (Calimeri et al . 2019;

Ferraris 2011). Concerning knowledge representation, Bartholomew et al . (2011), Gebser

et al . (2015a), and Harrison and Lifschitz (2019) provide first-order generalizations of the

aggregate semantics by Faber et al . (2011) and Ferraris (2011), while Gelfond and Zhang

(2019) as well as Pelov et al . (2007) genuinely accommodate first-order aggregates.

Specific aggregates in the form of cardinality and weight constraints are elaborated by

Ferraris and Lifschitz (2005), Liu and You (2013), and Simons et al . (2002).

A rule has the form

p1 ∨ · · · ∨ pm ← A1 ∧ · · · ∧An, (2)

where m ≥ 0, n ≥ 0, p1, . . . , pm are propositional atoms, and A1, . . . , An are aggregate

expressions. For a rule r as in (2), let H(r) = {p1, . . . , pm} and B(r) = {A1, . . . , An}
denote the head and body of r. We say that r is non-disjunctive if |H(r)| ≤ 1, in which

case the consequent of (2) is either of the form p1 or ⊥, the latter representing an empty

disjunction, that is, a contradiction. The rule r is also called a constraint if H(r) = ∅,
and a fact if B(r) = ∅, where an empty conjunction in the antecedent of (2) is denoted by

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 163

�. While the bodies of rules do not explicitly allow for (negated) propositional atoms p,

they can easily be represented by aggregate expressions of the form sum[1 : p] > 0 or

sum[1 : p] < 1, so that the syntax at hand includes disjunctive rules (Eiter and Gottlob

1995; Gelfond and Lifschitz 1991). A program P is a finite set of rules, and we call P a

non-disjunctive program if each r ∈ P is non-disjunctive.

An interpretation X ⊆ P is represented by the set of its true propositional atoms. It

allows us to map each aggregate expression A of the form (1) to a multiset ω(A,X) =

[wi | 1 ≤ i ≤ n, pi ∈ X] of weights, and then to an expression α(A,X) where

• for agg = sum, α(A,X) =
∑

w∈ω(A,X) w,

• for agg = times, α(A,X) =
∏

w∈ω(A,X) w,

• for agg = avg, α(A,X) =

{∑
w∈ω(A,X) w/|ω(A,X)|, if |ω(A,X)| > 0,

ε , if |ω(A,X)| = 0,

• for agg = min, α(A,X) = min{w | w ∈ ω(A,X)}, and
• for agg = max, α(A,X) = max{w | w ∈ ω(A,X)}.

Note that the average over a (non-empty) multiset of weights can be a rational number,

for example, (1 + 2)/|[1, 2]| = 3/2. The ε outcome of taking the average over the empty

multiset stands for undefined, while other aggregation functions map the empty multiset

to their neutral elements:
∑

w∈[] w = 0,
∏

w∈[] w = 1, min{w | w ∈ []} = ∞, and

max{w | w ∈ []} = −∞.

For � ∈ {<,≤,≥, >,=, 	=}, by X |= (α(A,X)�w0) we denote that α(A,X)�w0 holds,

and write X 	|= (α(A,X) � w0) otherwise. Note that X |= (∞ ≥ w0), X |= (∞ > w0),

X |= (∞ 	= w0), X |= (−∞ < w0), X |= (−∞ ≤ w0), and X |= (−∞ 	= w0) apply

independently of the (integer) bound w0, while X 	|= (∞ < w0), X 	|= (∞ ≤ w0), X 	|=
(∞ = w0), X 	|= (−∞ ≥ w0), X 	|= (−∞ > w0), X 	|= (−∞ = w0), and X 	|= (ε�w0), for

� ∈ {<,≤,≥, >,=, 	=}, are the cases in which α(A,X)� w0 cannot hold.

An aggregate expression A of the form (1) is satisfied by an interpretation X, also

written X |= A, if X |= (α(A,X) � w0), and otherwise X 	|= A denotes that A is

unsatisfied by X. The body of a rule r as in (2) is satisfied by X, written X |= B(r),

if X |= A for each A ∈ B(r), and unsatisfied by X, indicated by X 	|= B(r), otherwise.

Likewise, the head of r is satisfied by X, X |= H(r), if H(r) ∩ X 	= ∅, and otherwise

X 	|= H(r) expresses that H(r) is unsatisfied by X. The rule r is satisfied by X, that is,

X |= r, if X |= B(r) implies X |= H(r), while r is unsatisfied by X, X 	|= r, otherwise.

Note that we have X 	|= H(r) when r is a constraint, so that X 	|= B(r) is necessary to

satisfy a constraint r by X. For a fact r, X |= B(r) is instantaneous, and r is satisfied

by X only if X |= H(r). Finally, X is a model of a program P , denoted by X |= P , if

X |= r for every r ∈ P , and we write X 	|= P otherwise.

Example 1

Consider the program P1 consisting of three rules as follows:

p← sum[1 : p,−1 : q] ≥ 0 (r1)

p← sum[1 : q] > 0 (r2)

q ← sum[1 : p] > 0 (r3)

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

164 M. Alviano et al.

Intuitively, rule r1 requires p to be true if p is true or q is false, rule r2 requires p true

if q is true, and rule r3 requires q true if p is true. The four interpretations over the set

P = {p, q} of propositional atoms are X1 = ∅, X2 = {p}, X3 = {q}, and X4 = {p, q}. We

have that α(sum[1 : p,−1 : q] ≥ 0, X1) = 0, so that X1 |= B(r1) but X1 	|= H(r1). For

X2 and X3, α(sum[1 : p] > 0, X2) = 1 and α(sum[1 : q] > 0, X3) = 1 yield X2 |= B(r3)

and X3 |= B(r2), while X2 	|= H(r3) and X3 	|= H(r2). That is, neither X1, X2, nor X3 is

a model of P1. The remaining interpretation X4 is such that X4 |= B(r) and X4 |= H(r)

for every r ∈ P1, so that X4 is a model of P1. �

2.2 Satisfiability of aggregates

With the syntax and satisfaction of aggregate expressions at hand, let us turn to the

complexity of deciding whether an aggregate expression A is satisfiable, that is, checking

whether there is some interpretation X ⊆ P such that X |= A. To this end, we first

note that determining the smallest and greatest feasible outcome, denoted by lb(A) and

ub(A), of the aggregation function in A of the form (1) can be accomplished as follows

(where ε denotes an undefined outcome):

• for agg = sum, lb(A) =
∑

p∈at(A),α(A,{p})<0 α(A, {p}),

ub(A) =
∑

p∈at(A),α(A,{p})>0 α(A, {p}),
• for agg = times, let π± =

∏
p∈at(A),α(A,{p}) �=0 α(A, {p}),

π0 =
∏

p∈at(A),α(A,{p})=0 α(A, {p}), and

w = max{α(A, {p}) | p ∈ at(A), α(A, {p}) < 0} in

lb(A) =

⎧⎪⎪⎨
⎪⎪⎩
π± , if π± < 0,

π±/w, if π± > 0 and w 	= −∞,

π0 , if w = −∞,

ub(A) =

{
π± , if π± > 0,

π±/w, if π± < 0,

• for agg = avg, lb(A) =

{
min{α(A, {p}) | p ∈ at(A)}, if at(A) 	= ∅,

ε , if at(A) = ∅,

ub(A) =

{
max{α(A, {p}) | p ∈ at(A)}, if at(A) 	= ∅,

ε , if at(A) = ∅,
• for agg = min, lb(A) = min{α(A, {p}) | p ∈ at(A)},

ub(A) =∞,

• for agg = max, lb(A) = −∞,

ub(A) = max{α(A, {p}) | p ∈ at(A)}.
For the sum aggregation function, the lower and upper bound are obtained by summing

over all atoms associated with a negative or positive weight, respectively. In case of avg,

we just pick an atom with the smallest or greatest weight, provided that some atom occurs

in A. For min and max, either the upper or the lower bound is trivial, and the respective

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 165

counterpart is obtained by applying the aggregation function to all weights. The times

aggregation function is the most sophisticated, as negative weights may swap the sign

of its outcome. If the product π± over all atoms with a non-zero weight is negative, π±
yields the lower bound, while it is otherwise divided by the greatest negative weight w

(i.e., smallest absolute value), provided that it exists, to achieve a negative outcome. In

the remaining case that no negative outcome is feasible, the lower bound π0 is zero when

there is some atom with the weight zero, or it defaults to one. Finally, the upper bound is

given by π± if it is positive, and otherwise we divide π± by the greatest negative weight w

to obtain the greatest positive outcome.

Given lb(A) and ub(A) for an aggregate expression A of the form (1),

lb(A) = ub(A) = ε indicates that A is unsatisfiable regardless of the comparison

operator �, which applies only when A matches avg[]�w0. Otherwise, if the comparison

operator� is< or≤, we have that A is satisfiable if and only if lb(A) < w0 or lb(A) ≤ w0

holds, respectively. The comparison operators > and ≥ are dual, and an aggregate

expression A including one of them is satisfiable if and only if either ub(A) > w0 or

ub(A) ≥ w0 holds. In case � is 	=, we have that A is satisfiable if and only if lb(A) 	= w0

or ub(A) 	= w0 holds. These considerations show that checking the satisfiability of an

aggregate expression with a comparison operator other than = is tractable, that is, in the

complexity class P. The situation gets more involved when � is =, where the aggregation

functions min and max still allow for tractable decisions: an aggregate expression A with

agg either min or max and = for � is satisfiable if and only if α(A, {p}) = w0 for some

p ∈ at(A). Unlike that, for agg = sum and agg = times, deciding whether there is some

(non-empty) subset X of at(A) such that α(A,X) = w0 amounts to the NP-complete

subset sum or subset product problem (Garey and Johnson 1979). Concerning agg = avg,

subset sum can be reduced to checking whether an aggregate expression A with bound

0 is satisfiable: sum[w1 : p1, . . . , wn : pn] = w0 with positive integers w0, . . . , wn is

satisfiable if and only if avg[w1 : p1, . . . , wn : pn,−w0 : p] = 0 is satisfiable, where p ∈ P
is some new atom. As constants like w0+1 can be added to each weight and the bound of

an aggregate expression with avg, we have NP-completeness of checking whether A with

agg ∈ {sum,times,avg} and = for � is satisfiable, which applies regardless of whether

the included weights and bound are restricted to be positive or negative integers only.

Example 2

Consider aggregate expressions constructed as follows:

sum[1 : p1, 3 : p2, 3 : p3,−4 : p4]� w0 (A1)

times[0 : p1, 3 : p2,−2 : p3,−4 : p4]� w0 (A2)

avg[1 : p1, 2 : p2, 3 : p3, 6 : p4]� w0 (A3)

min[0 : p1, 3 : p2,−2 : p3,−4 : p4]� w0 (A4)

max[1 : p1, 3 : p2, 3 : p3,−4 : p4]� w0. (A5)

By summing up negative or positive weights, respectively, we get lb(A1) = −4 and

ub(A1) = 7. Hence, A1 is satisfiable for � = < and any bound w0 greater than −4, for
� = ≤ and w0 not smaller than −4, for � = ≥ and w0 not greater than 7, for � = >

and w0 smaller than 7, and for � = 	= with any bound w0. When � is =, satisfiability

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

166 M. Alviano et al.

is more intricate, and one can check that A1 is satisfiable for bounds w0 other than −2
and 5 in the range from lb(A1) = −4 to ub(A1) = 7.

The product of non-zero weights, two of which are negative, for A2 is 24. To obtain the

lower bound for A2, we have thus to divide by the greatest negative weight −2, leading to

lb(A2) = −12, while ub(A2) = 24. For � ∈ {<,≤,≥, >, 	=}, satisfiability is determined

similar to A1, yet w.r.t. the lower and upper bound for A2. When � is =, we have that

A2 is satisfiable for w0 ∈ {−12,−6,−4,−2, 0, 1, 3, 8, 24}, and unsatisfiable otherwise.

Concerning A3, we get lb(A3) = 1 and ub(A3) = 6, and satisfiability for � ∈ {<,≤
,≥, >, 	=} w.r.t. these bounds is analogous. As 1, 2, 3, 4, and 6 are the feasible integer

outcomes, A3 with = for � is satisfiable for such outcomes as w0, and unsatisfiable for

any other bound w0.

Turning to A4 and A5, the lower and upper bounds are lb(A4) = −4, ub(A4) = ∞,

lb(A5) = −∞, and ub(A5) = 3. For � ∈ {<,≤,≥, >, 	=}, satisfiability is determined

similar to A1, where A4 is satisfiable for � = ≥, � = >, and � = 	= regardless of the

bound w0, and likewise A5 for � = <, � = ≤, and � = 	=. When � is =, we have

that A4 and A5 are satisfiable for bounds w0 matching their contained weights, that is,

w0 ∈ {−4,−2, 0, 3} or w0 ∈ {−4, 1, 3}, respectively. �

2.3 Monotonicity of aggregates

A relevant property related to satisfiability concerns the (non)monotonicity of aggregate

expressions (cf. Faber et al . (2011); Liu et al . (2010)) and the notion of convex aggregates

introduced by Liu and Truszczyński (2006). An aggregate expression A is convex if

X ⊆ Y , X |= A and Y |= A imply Z |= A for any interpretation Z between X and

Y , that is, X |= A and Y |= A yield Z |= A for all X ⊆ Z ⊆ Y . Otherwise, the

aggregate expression is non-convex. Two frequent special cases of convexity are given

by monotone and anti-monotone aggregate expressions, for which X |= A implies that

P |= A or ∅ |= A, respectively. That is, a monotone aggregate expression A remains

satisfied when adding (true) propositional atoms to an interpretation X satisfying A,

while the satisfaction of an anti-monotone A is preserved when propositional atoms from

X are falsified.

Specific monotonicity properties that follow from the aggregation functions and com-

parison operators of aggregate expressions are summarized in Figure 3 in the introduc-

tion. For the sum and times aggregation functions, restrictions to positive or negative

weights and bounds affect monotonicity, and the subscripts + and − indicate such par-

ticular conditions. Unlike that, the signs of weights and bounds are immaterial for avg,

min, and max, and we also disregard special cases like the unsatisfiability of avg[]�w0,

which makes aggregate expressions with avg over the empty multiset monotone, anti-

monotone, and convex.

While aggregate expressions with sum are in general non-convex regardless of the

comparison operator, restrictions to positive or negative weights and bounds make them

convex for comparison operators other than 	=, given that the sum of weights can merely

increase or decrease when propositional atoms are added to an interpretation. More

specifically, positive weights and bounds lead to an anti-monotone aggregate expression

for < or ≤ as comparison operator, and to a monotone aggregate expression for ≥ or

>, where dual properties apply in case of negative weights and bounds only. For either

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 167

restriction, the comparison operator 	= does not lead to more regular monotonicity though

because a respective aggregate expression may be satisfied by the empty interpretation ∅,
become unsatisfied when atoms whose weights sum up to the bound w0 are made true,

and then get satisfied again by adding further propositional atoms to the interpretation.

Aggregate expressions with times are generally non-convex, even if weights and

bounds are restricted to be negative only. This is due to the condition that negative

weights swap the sign of the outcome, so that satisfaction may switch back and forth

for any comparison operator. With positive weights and bounds (excluding zero), the

outcome increases when more propositional atoms are included in an interpretation.

Hence, such aggregate expressions yield similar monotonicity as sum with positive

weights and bounds, and entries for sum+ and times+ in Figure 3 match.

For the remaining aggregation functions, avg, min, and max, the signs of weights do

not make a difference regarding monotonicity. In fact, the outcome of avgmay increase or

decrease when propositional atoms are added to an interpretation, so that corresponding

aggregate expressions are generally non-convex regardless of the comparison operator.

The outcomes of min and max monotonically decrease or increase, respectively, with

growing interpretations, leading to (anti-)monotonicity for the comparison operators <

or ≤ and ≥ or >, as well as convexity for =. Similar to the other aggregation functions,

no matter whether weights and bounds are positive, negative, or unrestricted, 	= as com-

parison operator makes aggregate expressions with min and max non-convex in general,

as they are satisfied by the empty interpretation ∅, may become unsatisfied and then

satisfied again when the interpretation is extended by propositional atoms.

Example 3

The aggregate expression

sum[1 : p1, 2 : p2, 2 : p3, 3 : p4]� 5 (A6)

is monotone for � = ≥ or � = >, anti-monotone for � = < or � = ≤, convex when

� is =, and non-convex with 	= for �. The three mutually incomparable interpretations

{p1, p2, p3}, {p2, p4}, and {p3, p4} satisfying A6 with = for � meet the condition for con-

vexity, but neither the additional requirements for monotonicity nor anti-monotonicity.

Moreover, they witness the non-convexity of A6 when � is 	=, as there are interpretations

with both fewer and more propositional atoms such that their (positive) weights do not

sum up to the bound 5 and satisfy A6 for � = 	=. �

3 Answer set semantics of aggregates

This section characterizes the main answer set semantics proposed for logic programs with

aggregate expressions (Denecker et al . 2001; Faber et al . 2011; Ferraris 2011; Gelfond and

Zhang 2019; Liu et al . 2010; Marek and Remmel 2004; Pelov et al . 2007). Their common

essence is to extend the notion of provability of the true propositional atoms in a model

to programs that include aggregate expressions. In Section 3.1, we review aggregate

semantics based on ⊆-minimal models of a program reduct. Section 3.2 then gathers

several constructive approaches to capture the provability of true atoms. Correspondences

between different aggregate semantics w.r.t. the monotonicity of aggregate expressions

are analyzed in Section 3.3.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

168 M. Alviano et al.

3.1 Model-based semantics

In line with Gelfond and Lifschitz (1988), Gelfond and Lifschitz (1991), we let the reduct

of a program P relative to an interpretation X ⊆ P be PX = {r ∈ P | X |= B(r)}. In
other words, the reduct is obtained from P by dropping rules whose bodies are unsatisfied

by X. (Note that the original definition of reduct provided by Gelfond and Lifschitz

(1988) also removes negative literals, which are not part of the language considered in

this paper.) Hence, we have that X is a model of P if and only if X is a model of PX .

Different answer set semantics inspect the reduct in specific ways to check the prov-

ability of true atoms. We note that our reduct notion matches the definitions given by

Faber et al . (2011) and Ferraris (2011), as it does not eliminate false atoms or falsified

expressions, respectively. The latter would happen for negated atoms with the seminal

Gelfond–Lifschitz reduct (Gelfond and Lifschitz 1988; 1991), and entirely with the reduct

by Ferraris (2011). However, the syntax of aggregate expressions and rules in (1)–(2) is

chosen such that specific reducts do not make a difference regarding answer sets.

The model-theoretic approaches by Faber et al. 2011 and Ferraris (2011) agree in

focusing on ⊆-minimal models of the reduct PX of a program P relative to an interpre-

tation X ⊆ P. We use the convention to indicate particular semantics by their proposers,

and call X an FFLP-answer set of P if X is a ⊆-minimal model of PX . That is, an

FFLP-answer set of P fulfills two conditions:

• X is a model of P , that is, X |= P , and

• for any interpretation Y ⊂ X, we have that Y 	|= PX .

While the first condition is equivalent to X |= PX , exchanging Y 	|= PX for Y 	|= P in

the second condition would yield a different semantics.

Example 4

Consider the program P2 containing the following two rules:

p← sum[1 : p] > 0 (r4)

p← sum[1 : p] < 1 (r5)

Intuitively, rule r4 requires p true if p is true, and rule r5 requires p true if p is false. The

interpretation X1 = ∅ is not a model of P2 because α(sum[1 : p] < 1, X1) = 0 yields that

X1 |= B(r5) but X1 	|= H(r5). For X2 = {p}, we have that α(sum[1 : p] < 1, X2) = 1, so

that X2 	|= B(r5). Hence, PX2
2 consists of the rule r4 only. Since X1 ⊂ X2 is such that

α(sum[1 : p] > 0, X1) = 0, X1 	|= B(r4), and X1 |= PX2
2 , the interpretation X1 shows

that X2 is not a ⊆-minimal model of PX2
2 . As a consequence, the program P2 does not

have any FFLP-answer set. However, note that X2 is the ⊆-minimal model of P2 in view

of X2 |= P2 and X1 	|= P2. �

Example 5

Reconsider the program P1 from Example 1:

p← sum[1 : p,−1 : q] ≥ 0 (r1)

p← sum[1 : q] > 0 (r2)

q ← sum[1 : p] > 0 (r3)

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 169

As checked in Example 1, we have that X4 = {p, q} is the unique model of P1 (over

the set P = {p, q} of propositional atoms). Given that X4 |= B(r) for every r ∈ P1, we

obtain PX4
1 = P1, which shows that X4 is an FFLP-answer set of P1. �

Example 6

Consider the program P3 consisting of the following rules:

x1 ← sum[1 : y1] < 1 (r6)

y1 ← sum[1 : x1] < 1 (r7)

x2 ← sum[1 : y2] < 1 (r8)

y2 ← sum[1 : x2] < 1 (r9)

z1 ← sum[1 : p] > 0 (r10)

z2 ← sum[1 : p] > 0 (r11)

p← sum[1 : y1, 2 : y2, 2 : z1, 3 : z2] 	= 5 (r12)

⊥ ← sum[1 : p] < 1 (r13)

As will be clarified later in Section 4 and Example 14, P3 (under FFLP-, LPST-, or

DPB-answer set semantics) encodes an instance of generalized subset sum (Berman et al .

2002), specifically

∃y1y2∀z1z2(1 · y1 + 2 · y2 + 2 · z1 + 3 · z2 	= 5).

Intuitively, rules r6 and r7 are intended to select exactly one of x1 and y1, and similarly

rules r8 and r9 are intended to select exactly one of x2 and y2; these rules represent the

existential variables of the generalized subset sum instance. Rules r10 and r11 require z1
and z2 to be true if p is true; these rules represent the universal variables of the generalized

subset sum instance. Rule r13 enforces p true, but does not provide a justification for it,

which instead must be provided by rule r12, encoding the inequality of the generalized

subset sum instance. Note that P3 follows the saturation technique by Eiter and Gottlob

(1995) to express that z1 and z2 are universally quantified: z1 and z2 must be true because

of p (they are saturated), while p (and z1, z2) are provable if and only if the universal

quantification holds w.r.t. the chosen (true) subset of {y1, y2}.
Let us focus on interpretations that are potential candidates for FFLP-answer sets of

P3. In view of the constraint r13, each model of P3 must include the atom p, and then

the atoms z1 and z2 because of the rules r10 and r11. Regarding xi and yi for 1 ≤ i ≤ 2,

having both atoms false yields unsatisfied rules r6 and r7 or r8 and r9, while both atoms

true lead to a reduct excluding r6 and r7 or r8 and r9. In the latter case, falsifying xi

and yi gives a smaller model of the reduct, so that the original interpretation cannot be

an FFLP-answer set of P3.

The previous considerations leave the models X1 = {x1, x2, z1, z2, p}, X2 =

{x1, y2, z1, z2, p}, X3 = {y1, x2, z1, z2, p}, and X4 = {y1, y2, z1, z2, p} as potential FFLP-
answer sets of P3. For each of these interpretations, the reduct includes either of the rules

r6 or r7 as well as r8 or r9, so that falsifying an atom xi or yi leads to unsatisfaction of

the rule with the atom in the head. A smaller model of the reduct must thus falsify p

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

170 M. Alviano et al.

along with an appropriate combination of the atoms z1 and z2, in order to establish the

unsatisfaction of B(r12). Note that the reduct does not include the constraint r13, which

enables the falsification of p, provided that B(r12) is unsatisfied.

For X1, the observation that α(sum[1 : y1, 2 : y2, 2 : z1, 3 : z2] 	= 5, X1) = 5 yields

X1 	|= B(r12) and r12 /∈ PX1
3 , so that Y1 |= PX1

3 , for each {x1, x2} ⊆ Y1 ⊆ X1 \ {p},
disproves X1 to be an FFLP-answer set of P3. Regarding X2 and X4, we have that Y2 =

X2 \ {z1, p} = {x1, y2, z2} and Y4 = X4 \ {z2, p} = {y1, y2, z1} furnish counterexamples

satisfying the respective reduct in view of Y2 	|= B(r12) and Y4 	|= B(r12). It thus remains

to investigate X3, where PX3
3 = {r7, r8, r10, r11, r12} and α(sum[1 : y1, 2 : y2, 2 : z1,

3 : z2] 	= 5, X3) = 6. That is, an interpretation Y3 ⊂ X3 with α(sum[1 : y1, 2 : y2, 2 : z1,

3 : z2] 	= 5, Y3) = 5 can only be obtained by falsifying y1, which leads to Y3 	|= r7. In turn,

Y |= B(r12) is the case for every model Y ⊆ X3 of PX3
3 , leaving Y = X3 as the unique

such interpretation. Hence, we conclude that X3 is a ⊆-minimal model of PX3
3 and thus

an FFLP-answer set of P3. �

3.2 Construction-based semantics

While the aggregate semantics by Faber et al . (2011) and Ferraris (2011) build on ⊆-
minimal models of a reduct, without considering the calculation of such models in the first

place, the semantics given by Gelfond and Zhang (2019), Liu et al. 2010, Marek and Rem-

mel (2004), and Denecker et al. 2001 focus on constructive characterizations for checking

the provability of true atoms. In particular, the semantics by Gelfond and Zhang (2019)

and Liu et al . (2010), referred to as GZ- and LPST-answer set semantics indicated by

their proposers, are based on a monotone fixpoint construction to check the stability of

an answer set candidate X, which amounts to testing whether all atoms of X (and only

those) can be constructed/derived from the rules, assuming that atoms not contained

in X are fixed to false. The family of semantics by Pelov et al . (2007), defined in terms

of approximation fixpoint theory, provides a strongly related approach: for each suitable

choice of a three-valued truth assignment function mapping each aggregate expression

to true, false, or unknown w.r.t. a partial interpretation, the framework induces an an-

swer set, a well-founded, and a Kripke–Kleene semantics. As shown by Vanbesien et al .

(2021), the particular truth assignment functions for trivial and ultimate approximating

aggregates (Pelov et al . 2007) lead exactly to the GZ- or LPST-answer set semantics, re-

spectively. In addition, Pelov et al . (2007) proposed a truth assignment function for bound

approximating aggregates, based on evaluating lower and upper bounds like lb(A) and

ub(A) in Section 2.2, which achieves provability for more answer set candidates than the

GZ-answer set semantics without increasing the computational complexity. Given such

close relationships, we do not separately address trivial, ultimate, and bound approxi-

mating aggregates, but focus on the so-called ultimate semantics, originally introduced

in earlier work (Denecker et al . 2001), as a complementary instance of the framework by

Pelov et al . (2007).

In the following, we describe the constructions characterizing the aforementioned se-

mantics by dedicated extensions of the well-known immediate consequence operator TP
(van Emden and Kowalski 1976; Lloyd 1987) to programs with aggregate expressions. We

start by specifying particular notions of satisfaction, again indicated by the proposers of

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 171

a semantics, of an aggregate expression A relative to two interpretations Y ⊆ P, X ⊆ P,
where X is an answer set candidate and Y is the reconstructed model:

• (Y,X) |=GZ A if X |= A and at(A) ∩ Y = at(A) ∩X,

• (Y,X) |=LPST A if Z |= A for every interpretation Y ⊆ Z ⊆ X, and

• (Y,X) |=MR A if X |= A and there is some interpretation Z ⊆ Y such that Z |= A.

When Y ⊆ X, the satisfaction relations |=GZ, |=LPST, and |=MR can apply only if X |= A,

which parallels the idea of a reduct relative to X. Their second purpose is to determine

partial interpretations (Y,X), where the truth of atoms in X \Y is considered unknown,

for which an aggregate expression A should be regarded as provably true: (Y,X) |=GZ A

expresses that no unknown atoms from X \ Y occur in A, (Y,X) |=LPST A means that

A is satisfied no matter which unknown atoms are taken to be true or false, respectively,

and (Y,X) |=MR A merely requires the satisfaction of A by some subset of the true

atoms in Y . Unlike that, the ultimate semantics relies on the conventional satisfaction

of aggregate expressions, as introduced in Section 2.2. Similar to X |= B(r), we extend

|=Δ, for Δ ∈ {GZ,LPST,MR}, to the body of a rule r by writing (Y,X) |=Δ B(r) if

(Y,X) |=Δ A for each A ∈ B(r), and indicate that (Y,X) 	|=Δ A, for some A ∈ B(r), by

(Y,X) 	|=Δ B(r).

Example 7

Let us investigate the aggregate expression

sum[1 : y1, 2 : y2, 2 : z1, 3 : z2] 	= 5 (A7)

along with the interpretation X = {y1, z1, z2}, where α(A7, X) = 6 and thus X |=
A7. The condition for (Y,X) |=GZ A7 additionally requires at(A7) ∩ Y = at(A7) ∩
X = {y1, z1, z2}, so that Y = X = {y1, z1, z2} is the only subset of X for which |=GZ

applies. For identifying interpretations Y ⊆ X such that (Y,X) |=LPST A7, observe that

α(A7, {z1, z2}) = 5 and {z1, z2} 	|= A7. That is, any subset of X that excludes y1 can be

filled up to the interpretation Z = {z1, z2} for which A7 is unsatisfied. In turn, such a Z

does not exist for interpretations {y1} ⊆ Y ⊆ X, and we have (Y,X) |=LPST A7 for each

subset Y of X that includes y1. Regarding (Y,X) |=MR A7, it is sufficient to observe that

α(A7, ∅) = 0 and ∅ |= A7, so that |=MR applies for every subset Y of X. �

Provided that Y ⊆ X ⊆ P, we have that (Y,X) |=GZ A implies (Y,X) |=LPST A,

and also that (Y,X) |=LPST A implies (Y,X) |=MR A. Moreover, (Y,X) |=Δ A yields

(Z,X) |=Δ A for interpretations Y ⊆ Z ⊆ X and Δ ∈ {GZ,LPST,MR}. These proper-

ties carry forward to the body B(r) of a rule r.

Given the specific satisfaction relations, we now formulate immediate consequence op-

erators characterizing semantics based on constructions for a program P and interpre-

tations Y ⊆ P, X ⊆ P:

T Δ
P,X(Y) =

⋃
r∈P,(Y,X)|=ΔB(r)

H(r), for Δ ∈ {GZ,LPST,MR},

T DPB

P,X (Y) =
⋂

Y⊆Z⊆X

(⋃
r∈P,Z|=B(r)

H(r)

)
.

Each operator T Δ
P,X , for Δ ∈ {GZ,LPST,MR,DPB}, joins the heads of rules such that

the underlying satisfaction relation applies to their bodies. This would yield unintended

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

172 M. Alviano et al.

results for (proper) disjunctive rules like p ∨ q ← �, having {p} and {q} as its standard
answer sets (Gelfond and Lifschitz 1991), while any of the operators T Δ

P,X would produce

the non-minimal model {p, q}. In fact, such immediate consequence operators have been

devised with non-disjunctive rules in mind, and in the following we assume that |H(r)| ≤
1 for rules r under consideration. For the sake of completeness, we point out that the

semantics by Gelfond and Zhang (2019), Liu et al . (2010), and Marek and Remmel

(2004) additionally allow for aggregate expressions in heads of rules, understood as choice

constructs (Simons et al . 2002), and Gelfond and Zhang (2019) also handle disjunctive

rules, as their original concept builds on a specific reduct rather than an operational

characterization.

The operators T Δ
P,X have in common that T Δ

P,X(Y) ⊆ T Δ
P,X(Z) when Y ⊆ Z ⊆ X.

Considering T DPB

P,X , this is because the intersection over interpretations between Z and

X involves fewer elements than with Y , while (Y,X) |=Δ B(r) implies (Z,X) |=Δ B(r)

for the remaining operators T Δ
P,X and any rule r ∈ P . Provided that X is a model of P ,

in which case T GZ

P,X(X) = T LPST

P,X (X) = T MR

P,X (X) = T DPB

P,X (X) ⊆ X, the least fixpoint of

T Δ
P,X is thus guaranteed to exist and can be constructed as follows:

T Δ
P,X ↑ 0 = ∅,

T Δ
P,X ↑ i+ 1 = T Δ

P,X(T Δ
P,X ↑ i).

That is, starting from the empty interpretation ∅ for T Δ
P,X ↑ 0, the iterated application

of T Δ
P,X leads to T Δ

P,X ↑ i+ 1 = T Δ
P,X(T Δ

P,X ↑ i) = T Δ
P,X ↑ i for some i ≥ 0, and we denote

this least fixpoint by T Δ
P,X ↑ ∞. For Δ ∈ {GZ,LPST,MR,DPB}, we call X a Δ-answer

set of P if X is a model of P such that T Δ
P,X ↑ ∞ = X.

Example 8

Reconsider the program P2 from Example 4:

p← sum[1 : p] > 0 (r4)

p← sum[1 : p] < 1. (r5)

We have that X = {p} is the unique model of P2 (over P = {p}). Then, α(sum[1 : p] <

1, X) = 1 yields X 	|= B(r5) and (∅, X) 	|=Δ B(r5) for Δ ∈ {GZ,LPST,MR}. Moreover,

(∅, X) 	|=Δ B(r4) follows from α(sum[1 : p] > 0, ∅) = 0 and ∅ 	|= B(r4). As a consequence,

for Δ ∈ {GZ,LPST,MR}, we obtain T Δ
P2,X

↑ ∞ = T Δ
P2,X

↑ 0 = ∅, so that X is not a

Δ-answer set of P2.

Unlike that, ∅ |= B(r5) and X |= B(r4) with H(r5) = H(r4) = {p} lead to T DPB

P2,X
↑

∞ = T DPB

P2,X
↑ 1 = T DPB

P2,X
(∅) = {p} = X. Hence, we conclude that X is a DPB-answer set

of P2. �

Example 9

Recall from Example 5 that X = {p, q} is the unique model and FFLP-answer set of P1:

p← sum[1 : p,−1 : q] ≥ 0 (r1)

p← sum[1 : q] > 0 (r2)

q ← sum[1 : p] > 0. (r3)

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 173

Considering the empty interpretation ∅, we have that at(A) ∩X 	= ∅ for each aggregate

expression A ∈ B(r1) ∪ B(r2) ∪ B(r3). Hence, T GZ

P1,X
↑ ∞ = T GZ

P1,X
↑ 0 = ∅ yields that

X is not a GZ-answer set of P1. Regarding T LPST

P1,X
, observe that ∅ 	|= B(r2), ∅ 	|= B(r3),

and {q} 	|= B(r1) in view of α(sum[1 : p,−1 : q] ≥ 0, {q}) = −1. This means that

(∅, X) 	|=LPST B(r) for all r ∈ P1, so that T LPST

P1,X
↑ ∞ = T LPST

P1,X
↑ 0 = ∅ disproves X to

be an LPST-answer set of P1.

When we turn to T MR

P1,X
, then α(sum[1 : p,−1 : q] ≥ 0, ∅) = α(sum[1 : p,−1 : q] ≥

0, X) = 0 shows that (∅, X) |=MR B(r1) and T MR

P1,X
↑ 1 = T MR

P1,X
(∅) = {p}. Given that

({p}, X) |=MR B(r3), this leads on to T MR

P1,X
↑ ∞ = T MR

P1,X
↑ 2 = T MR

P1,X
({p}) = {p, q} = X,

from which we conclude that X is an MR-answer set of P1.

For obtaining the least fixpoint of T DPB

P1,X
, consider the rules r1 and r2, and observe

that ∅ |= B(r1), {p} |= B(r1), {q} |= B(r2), and X |= B(r1) as well as X |= B(r2). That

is, for each interpretation Z ⊆ X, the body of some rule with p in the head is satisfied

by Z. Hence, we get T DPB

P1,X
↑ 1 = T DPB

P1,X
(∅) = {p}, which in view of {p} |= B(r3) and

X |= B(r3) brings us further to T DPB

P1,X
↑ ∞ = T DPB

P1,X
↑ 2 = T DPB

P1,X
({p}) = {p, q} = X. This

means that X is also a DPB-answer set of P1.

Let us modify the program P1 to P ′
1 over P = {p, q, s}, in which r1 and r3 are replaced

by:

s← sum[1 : p,−1 : q] ≥ 0 (r′1)

q ← sum[1 : s] > 0. (r′3)

Intuitively, rule r′1 requires s true if p is true or q is false, and rule r′3 requires q true if

s is true (recall that r2 requires p true if q is true). One can check that X ′ = {p, q, s}
is the unique model as well as an FFLP- and MR-answer set of P ′

1. Turning again to

T DPB

P ′
1,X

′ , we have that ∅ 	|= B(r2), ∅ 	|= B(r′3), {q} 	|= B(r′1), {q} 	|= B(r′3), and the heads

of r′1 and r2 are disjoint for the modified program P ′
1. (Each interpretation Z ′ ⊆ X ′

is such that Z ′ |= B(r′1) or Z ′ |= B(r2), yet H(r′1) ∩ H(r2) = {s} ∩ {p} = ∅.) Given

these considerations, we conclude that T DPB

P ′
1,X

′ ↑ ∞ = T DPB

P ′
1,X

′ ↑ 0 = ∅, so that P ′
1 does

not have any DPB-answer set. This shows that FFLP-answer sets are not necessarily

DPB-answer sets as well. �

Example 10

In Example 6, we have checked that X = {y1, x2, z1, z2, p} is the unique FFLP-answer

set of P3:

x1 ← sum[1 : y1] < 1 (r6)

y1 ← sum[1 : x1] < 1 (r7)

x2 ← sum[1 : y2] < 1 (r8)

y2 ← sum[1 : x2] < 1 (r9)

z1 ← sum[1 : p] > 0 (r10)

z2 ← sum[1 : p] > 0 (r11)

p← sum[1 : y1, 2 : y2, 2 : z1, 3 : z2] 	= 5 (r12)

⊥ ← sum[1 : p] < 1. (r13)

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

174 M. Alviano et al.

Inspecting T GZ

P3,X
, we get T GZ

P3,X
↑ 1 = T GZ

P3,X
(∅) = {y1, x2} because X |= B(r7), X |=

B(r8), and at(sum[1 : x1] < 1) ∩ X = at(sum[1 : y2] < 1) ∩ X = ∅. Given that X 	|=
B(r6), X 	|= B(r9), at(sum[1 : p] > 0) ∩ {y1, x2} = ∅ 	= {p} = at(sum[1 : p] > 0) ∩X,

and at(sum[1 : y1, 2 : y2, 2 : z1, 3 : z2] 	= 5) ∩ {y1, x2} = {y1} 	= {y1, z1, z2} = at(sum[1 :

y1, 2 : y2, 2 : z1, 3 : z2] 	= 5) ∩X, we obtain T GZ

P3,X
↑ ∞ = T GZ

P3,X
↑ 1 = {y1, x2}, so that X

is not a GZ-answer set of P3.

For Δ ∈ {LPST,DPB}, we also have that T Δ
P3,X

↑ 1 = T Δ
P3,X

(∅) = {y1, x2}, as

Z |= B(r7) and Z |= B(r8) for each Z ⊆ X, while the interpretation {z1, z2} ⊆ X is

such that {z1, z2} 	|= sum[1 : p] > 0 and {z1, z2} 	|= sum[1 : y1, 2 : y2, 2 : z1, 3 : z2] 	= 5.

However, Z |= sum[1 : y1, 2 : y2, 2 : z1, 3 : z2] 	= 5 is the case for every {y1, x2} ⊆ Z ⊆ X,

which leads to T Δ
P3,X

↑ 2 = T Δ
P3,X

({y1, x2}) = {y1, x2, p}. Then, Z |= sum[1 : p] > 0, for

any interpretation {y1, x2, p} ⊆ Z, yields T Δ
P3,X

↑ ∞ = T Δ
P3,X

↑ 3 = T Δ
P3,X

({y1, x2, p}) =
{y1, x2, z1, z2, p} = X, which shows that X is an LPST- and a DPB-answer set of P3.

Regarding T MR

P3,X
, in view of X |= sum[1 : y1, 2 : y2, 2 : z1, 3 : z2] 	= 5 and α(sum[1 : y1,

2 : y2, 2 : z1, 3 : z2] 	= 5, ∅) = 0, we get T MR

P3,X
↑ 1 = T MR

P3,X
(∅) = {y1, x2, p} in the first

step, and then T MR

P3,X
↑ ∞ = T MR

P3,X
↑ 2 = T MR

P3,X
({y1, x2, p}) = {y1, x2, z1, z2, p} = X.

On the one hand, this means that X is an MR-answer set of P3. On the other hand,

the interpretations X2 = {x1, y2, z1, z2, p} and X4 = {y1, y2, z1, z2, p} (according to the

naming scheme of Example 6) are obtained as additional MR-answer sets of P3 that are

not backed up by any of the other semantics. In fact, counting on the existence of some

interpretation Z ⊆ T MR

P,X ↑ i such that Z |= A, for an aggregate expression A belonging

to the body of a rule r ∈ P , to proceed with (potentially) adding H(r) to T MR

P,X ↑ i

disregards the satisfaction of A by T MR

P,X ↑ i itself as well as interpretations extending it.

For this reason, Vanbesien et al . (2021) classify T MR

P,X as not well-behaved, while T Δ
P,X is

well-behaved for Δ ∈ {GZ,LPST,DPB}. �

The programs considered in Example 8–10 did not have GZ-answer sets because of the

strong condition at(A)∩Y = at(A)∩X for (Y,X) |=GZ A. Its intention is to circumvent

so-called vicious circles (Gelfond and Zhang 2019), where the satisfaction of an aggregate

expression A has some influence on the outcome of the aggregation function in A, which

happens in Example 8–10, for example, with the rule p ← sum[1 : p,−1 : q] ≥ 0 to

conclude p from an aggregate expression mentioning p.

To make circularity more formal, for a program P , let GP = (P, {(p, q) | r ∈ P,

p ∈ H(r), A ∈ B(r), q ∈ at(A)}) be the (directed) atom dependency graph of P . If

GP is acyclic (and the rules in P are non-disjunctive), one can show that there is at

most one Δ-answer set of P , for Δ ∈ {FFLP,GZ,LPST,MR,DPB}, and that all

aggregate semantics under consideration coincide. Provided that P does not include

constraints, acyclicity of GP is sufficient for the existence of a GZ-answer set of P .

However, such acyclicity is not a necessary condition, for example, GZ-answer sets match

standard answer sets (Gelfond and Lifschitz 1988) when aggregate expressions of the

form sum[1 : p] > 0 or sum[1 : p] < 1 replace (negated) propositional atoms p, no matter

whether GP is acyclic or not, and this correspondence applies to all but the DPB-answer

set semantics (cf. Example 8). In fact, vicious circles are not identified syntactically, but

rather the construction of a GZ-answer set X of P by T GZ

P,X witnesses the non-circular

provability of all atoms in X.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 175

Fig. 4. Dependency graph of program P4 from Example 11.

Example 11

Consider the program P4, which constitutes a propositional version of the company con-

trols problem encoding introduced in Section 1 for the instance given in Figure 2:

oa,b ← � (r14)

oa,c ← � (r15)

ob,c ← � (r16)

ca,b ← sum[80 : oa,b] > 50 (r17)

ca,c ← sum[30 : oa,c, 30 : ca,b] > 50 (r18)

cb,c ← sum[30 : ob,c, 30 : cb,a] > 50. (r19)

The atom dependency graph GP4
= ({oa,b, oa,c, ob,c, ca,b, ca,c, cb,a, cb,c}, {(ca,b, oa,b),

(ca,c, oa,c), (ca,c, ca,b), (cb,c, ob,c), (cb,c, cb,a)}), shown in Figure 4, is acyclic, and the in-

terpretation X = {oa,b, oa,c, ob,c, ca,b, ca,c} is a model of P4. Let us construct T GZ

P4,X
↑ ∞

to check that X is a GZ-answer set of P4. In the first step, (∅, X) |=GZ B(r) applies for

the facts r ∈ {r14,r15,r16}, so that T GZ

P4,X
↑ 1 = T GZ

P4,X
(∅) = {oa,b, oa,c, ob,c}. Then, we

have that at(sum[80 : oa,b] > 50) ∩ T GZ

P4,X
↑ 1 = at(sum[80 : oa,b] > 50) ∩ X = {oa,b},

and X |= B(r17) in view of α(sum[80 : oa,b] > 50, X) = 80. We thus get T GZ

P4,X
↑

2 = T GZ

P4,X
({oa,b, oa,c, ob,c}) = {oa,b, oa,c, ob,c, ca,b}, and at(sum[30 : oa,c, 30 : ca,b] >

50) ∩ T GZ

P4,X
↑ 2 = at(sum[30 : oa,c, 30 : ca,b] > 50) ∩ X = {oa,c, ca,b} along with

α(sum[30 : oa,c, 30 : ca,b] > 50, X) = 60 and X |= B(r18) lead to T GZ

P4,X
↑ 3 = T GZ

P4,X
({oa,b,

oa,c, ob,c, ca,b}) = {oa,b, oa,c, ob,c, ca,b, ca,c} = X. Given that X 	|= B(r19), the least fix-

point T GZ

P4,X
↑ ∞ = T GZ

P4,X
↑ 3 = X yields that X is a GZ-answer set of P4.

However, note that X is no longer a GZ-answer set of P ′
4, obtained by replacing r17

with

ca,b ← sum[80 : oa,b, w : ca,c] > 50 (r′17)

for some weight w ≥ 0. While we still obtain T GZ

P ′
4,X
↑ 1 = T GZ

P ′
4,X

(∅) = {oa,b, oa,c, ob,c},
we end up with T GZ

P ′
4,X
↑ ∞ = T GZ

P ′
4,X
↑ 1 because at(sum[80 : oa,b, w : ca,c] > 50) ∩

T GZ

P ′
4,X
↑ 1 = {oa,b} 	= {oa,b, ca,c} = at(sum[80 : oa,b, w : ca,c] > 50) ∩ X and thus

(T GZ

P ′
4,X
↑ 1, X) 	|=GZ B(r′17). That is, X is rejected as a GZ-answer set of P ′

4 in view

of the circularity between ca,b and ca,c, which are involved in aggregate expressions in

the bodies of r′17 and r18. When considering standard answer sets of programs without

(sophisticated) aggregates (Gelfond and Lifschitz 1988; 1991), circular rules alone do not

yield provability of atoms in their heads. Unlike that, not all propositional atoms subject

to an aggregation function may be needed to satisfy a respective aggregate expression, so

that rejecting any circularity is a very strong condition for programs with aggregates. In

fact, without going into the details, we have that X is the unique Δ-answer set of both

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

176 M. Alviano et al.

Table 1. Relationships between semantics for non-disjunctive programs with (monotone,

anti-monotone, convex, or arbitrary) aggregate expressions, showing when Monotonicity

conditions guaranteeing answer sets according to the semantics in rows to be answer sets

according to the semantics in columns

GZ LPST DPB FFLP MR

GZ – arbitrary arbitrary arbitrary arbitrary
LPST none – arbitrary arbitrary arbitrary
DPB none (anti-)monotone – (anti-)monotone (anti-)monotone
FFLP none convex convex – arbitrary
MR none convex convex convex –

P4 and P ′
4 for Δ ∈ {FFLP,LPST,MR,DPB}, that is, all aggregate semantics other

than GZ. �

3.3 Semantic relationships

As mentioned above, the satisfaction relation |=GZ is a subset of |=LPST, which is in

turn a subset of |=MR. That is, given a model X of a (non-disjunctive) program P , we

immediately get T LPST

P,X ↑ ∞ = X from T GZ

P,X ↑ ∞ = X, and T MR

P,X ↑ ∞ = X from

T LPST

P,X ↑ ∞ = X, which means that a GZ-answer set X of P is an LPST-answer set as

well, and an LPST-answer set X of P also an MR-answer set. The converse relationships

do not apply in general, yet may come into effect for programs restricted to monotone,

anti-monotone, or convex aggregate expressions only. Moreover, the question arises how

DPB-answer sets determined by the operator T DPB

P,X and model-based FFLP-answer sets

relate to the other aggregate semantics. A part of these relationships have already been

studied by Ferraris (2011) and Liu et al . (2010), and in the following we give a complete

account for the aggregate semantics under consideration, assuming programs in question

to be non-disjunctive.

Figure 5 and Table 1 visualize the relationships between different aggregate semantics,

where arcs without label express that answer sets under one semantics are preserved by

another semantics for programs with arbitrary, that is, possibly non-convex, aggregate

expressions. The restriction of such a correspondence to programs with convex, monotone,

or anti-monotone aggregate expressions only is indicated by the arc label ±, +, or −,
respectively. Transitive relationships, for example, the fact that each GZ-answer set is an

MR-answer set as well, are not stated by explicit arcs for better readability. A summary of

the logic programs used to illustrate the similarities and differences between the aggregate

semantics in Sections 3.1 and 3.2 is given in Table 2.

The most restrictive semantics is obtained with GZ-answer sets, in the sense that the

fewest models X of a program P pass the construction by means of T GZ

P,X . As T LPST

P,X

relaxes the conditions for concluding head atoms, LPST-answer sets are guaranteed to

include GZ-answer sets, as indicated by an arc without label in Figure 5. The observation

that (Y,X) |=LPST B(r), for some rule r ∈ P and Y ⊆ X, implies Z |= B(r) for every

interpretation Y ⊆ Z ⊆ X yields that H(r) ⊆ T DPB

P,X (Y), so that each LPST-answer set

X of P is a DPB-answer set as well. Moreover, when Y ⊂ X for an LPST-answer set

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 177

Fig. 5. Relationships between aggregate semantics, where an arc indicates that answer sets
carry forward from the origin to the target semantics for non-disjunctive programs with

monotone (arc label +), anti-monotone (arc label −), convex (arc label ±), or arbitrary (no
arc label) aggregate expressions, respectively.

Table 2. Summary of examples showing differences between aggregate semantics, where

X = {oa,b, oa,c, ob,c, ca,b, ca,c}

Program FFLP GZ LPST MR DPB

P1 {p, q} – – {p, q} {p, q}
Example 1 Example 5 Example 9 Example 9 Example 9 Example 9

P ′
1 {p, q, s} – – {p, q, s} –

Example 9 Example 9 Example 9 Example 9 Example 9 Example 9

P2 – – – – {p}
Example 4 Example 4 Example 8 Example 8 Example 8 Example 8

{x1, y2, z1, z2, p},
{y1, y2, z1, z2, p},

P3 {y1, x2, z1, z2, p} – {y1, x2, z1, z2, p} {y1, x2, z1, z2, p} {y1, x2, z1, z2, p}
Example 6 Example 6 Example 10 Example 10 Example 10 Example 10

P4 X X X X X
Example 11 Example 11 Example 11 Example 11 Example 11 Example 11

P ′
4 X – X X X

Example 11 Example 11 Example 11 Example 11 Example 11 Example 11

X of P , the fact that T LPST

P,X (Y) � Y shows that Y is not a model of the reduct PX ,

which in turn witnesses that X is a ⊆-minimal model of PX and thus an FFLP-answer

set of P . The last general relationship that applies for programs with arbitrary aggregate

expressions expresses that each FFLP-answer set X of P is also an MR-answer set, given

that Y 	|= PX , for any interpretation Y ⊂ X, implies that T MR

P,X (Y) � Y . As discussed

in Examples 8 and 9, FFLP- and DPB-answer sets can be mutually distinct, so that no

(transitive) general relationship is obtained between these two aggregate semantics.

Considering relationships for convex, monotone, or anti-monotone aggregate expres-

sions, an MR-answer set X of P is also an LPST-answer set when the program P

includes convex aggregate expressions only. This follows from the observation that, for

a convex aggregate expression A and each interpretation Y ⊆ X, the conditions X |= A

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

178 M. Alviano et al.

and Z |= A, for some Z ⊆ Y , of (Y,X) |=MR A yield the condition of (Y,X) |=LPST A

that Z |= A for every Y ⊆ Z ⊆ X. The general relationship between LPST- and

FFLP-answer sets then further implies that X is an FFLP-answer set of P as well, so

that FFLP-, LPST-, and MR-answer sets coincide for programs with convex aggregate

expressions only. For establishing similar correspondences to DPB-answer sets, as Ex-

ample 8 shows, programs with convex or both monotone and anti-monotone aggregate

expressions, respectively, are still too general. However, when the aggregate expressions

in a program P are monotone or anti-monotone only, for interpretations Y ⊆ X, the

intersection over all Y ⊆ Z ⊆ X taken by T DPB

P,X (Y) collapses to checking whether rule

bodies are satisfied by Y or X, respectively, while satisfaction by other interpretations

Z is a consequence of (anti-)monotonicity. Hence, we have that T LPST

P,X (Y) = T DPB

P,X (Y),

which means that each DPB-answer set X of P is also an LPST-answer set in case

of monotone or anti-monotone aggregate expressions only. By (transitive) general

relationships, this correspondence carries forward to FFLP- and MR-answer sets.

Interestingly, GZ-answer sets do not correspond to the other semantics even for pro-

grams whose aggregate expressions are restricted to be monotone. For instance, the pro-

gram P consisting of the rule p ← sum[1 : p] ≥ 0, which includes the monotone as well

as anti-monotone aggregate expression sum[1 : p] ≥ 0, has {p} as an answer set under all

aggregate semantics but GZ, where the latter is due to T GZ

P,{p} ↑ ∞ = T GZ

P,{p} ↑ 0 = ∅ in
view of at(sum[1 : p] ≥ 0)∩{p} 	= ∅. As {p} is the unique model of P , this means that P

does not have any GZ-answer set, even though P includes only one aggregate expression

that is both monotone and anti-monotone. Such a behavior is justified by Gelfond and

Zhang (2019) by a more uniform treatment of recursive symbolic rules like the following:

p :- #sum{1 : p} >= 0.

p :- #sum{1 : p} = S, S >= 0.

In fact, a program consisting of the second rule above, would be instantiated as

p← sum[1 : p] = 0

p← sum[1 : p] = 1

which has no answer sets according to all semantics discussed in this paper.

4 Computational complexity of aggregates

The expressiveness of programs with aggregate expressions can be assessed in terms

of the computational complexity (Garey and Johnson 1979) of specific reasoning

tasks. To this end, we investigate the following two decision problems for Δ ∈
{FFLP,GZ,LPST,MR,DPB}:

Check: For a program P and an interpretation X ⊆ P, decide whether X is a Δ-answer

set of P .

Exist: For a program P , decide whether there is some Δ-answer set of P .

The complexity of both tasks is well-understood (Dantsin et al . 2001) for programs P in

which rule bodies consist of (negated) propositional atoms p, corresponding to aggregate

expressions of the form sum[1 : p] > 0 or sum[1 : p] < 1, under standard answer set

semantics (Gelfond and Lifschitz 1988; 1991). Here the complexity of reasoning tasks

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 179

Table 3. Computational complexity of the Exist and Check reasoning tasks for differ-

ent aggregate semantics and the monotonicity of aggregate expressions included in non-

disjunctive programs, where cases in which elevated complexity relies on the NP-hardness

of deciding whether aggregate expressions under consideration are satisfiable are indicated

by lower complexity classes obtained with tractable satisfiability checks in parentheses

Monotonicity GZ MR LPST FFLP DPB

Monotone P P P P P C
h
eck

Anti-monotone P P P P P

Convex P P P P coNP

Arbitrary P NP (P) coNP (P) coNP coNP

Monotone P P P P P E
x
ist

Anti-monotone NP NP NP NP NP

Convex NP NP NP NP ΣP

2

Arbitrary NP NP ΣP

2 (NP) ΣP

2 ΣP

2

depends on whether P is non-disjunctive or not, Check is P-complete (i.e., tractable)

in the non-disjunctive case, and coNP-complete otherwise. The Exist task, where no

interpretation X ⊆ P is fixed, is NP-complete when P is non-disjunctive, and in general

ΣP

2 -complete in the presence of (proper) disjunctive rules. The latter means that two

orthogonal combinatorial problems are interleaved, one about determining candidate

models X among an exponential number of interpretations, and the other concerning

the check that no Y ⊂ X is a model of the reduct relative to X (again, the search space

for Y is exponential).

Given that (proper) disjunctive rules lead to elevated computational complexity al-

ready for the simple forms of aggregate expressions resembling (negated) propositional

atoms, we again assume programs to be non-disjunctive in the following. This allows

us to study the complexity of the Check and Exist tasks for Δ-answer sets relative to

Δ ∈ {FFLP,GZ,LPST,MR,DPB} and the monotonicity of aggregate expressions,

where the obtained complexity classes are summarized in Table 3. Except for the com-

plexity class P, for which we indicate membership but not necessarily hardness, our

considerations address completeness, that is, membership along with hardness for some

complexity class beyond P. In Section 4.1, we investigate the computational complexity

of the Check task in detail, and Section 4.2 provides a closer study of the Exist task.

4.1 Answer set checking

Starting with Check for (non-disjunctive) programs P including monotone or anti-

monotone aggregate expressions only, we have that the task stays in P for all aggregate

semantics. An intuitive explanation is that all but the GZ-answer set semantics coin-

cide for such programs and that a construction, for example, by means of T DPB

P,X (Y), for

some Y ⊆ X, can focus on concluding head atoms of rules r ∈ P such that Y |= B(r) or

X |= B(r), respectively. For T GZ

P,X(Y), also the additional condition at(A)∩Y = at(A)∩X
needs to be checked for each aggregate expression A ∈ B(r). Regardless of the partic-

ular semantics, all relevant checks can be accomplished in polynomial time: X |= P to

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

180 M. Alviano et al.

make sure that X is a model of P , Y |= B(r) or X |= B(r) for rules r ∈ P , and possi-

bly at(A) ∩ Y = at(A) ∩ X for aggregate expressions A ∈ B(r). The strong condition

at(A)∩Y = at(A)∩X for (Y,X) |=GZ A also circumvents elevated complexity of Check

under GZ-answer set semantics when turning to programs with convex or arbitrary, that

is, possibly non-convex, aggregate expressions.

In case of convex aggregate expressions, which include monotone as well as

anti-monotone aggregate expressions, the Check task remains tractable for Δ ∈
{FFLP,LPST,MR}, given that the three semantics coincide, and for an aggregate ex-

pression A, checking Y |= A and X |= A is sufficient to conclude that (Y,X) |=LPST A

as well as (Y,X) |=MR A. Unlike that, Check becomes more complex, that is, coNP-

complete, for DPB-answer sets of programs with convex aggregate expressions, where

Denecker et al . (2004) show coNP-hardness by reduction from deciding whether a propo-

sitional formula in disjunctive normal form is a tautology. Notably, the logic program

given in this reduction does not refer to (sophisticated) aggregates, and the simulta-

neous availability of monotone and anti-monotone aggregate expressions of the form

sum[1 : p] > 0 or sum[1 : p] < 1 to express (negated) propositional atoms p is already

sufficient. This complexity does also not increase any further in the presence of non-

convex aggregate expressions, as for disproving X to be a DPB-answer set of P , it is

sufficient to check that X 	|= P , or otherwise to determine a collection of (not necessarily

distinct) interpretations Y1 ⊆ X, . . . , Y|X| ⊆ X such that Z ⊆ Y and Z ⊂ X hold for

Y = Y1 ∩ · · · ∩ Y|X| and

Z =
(⋃

r∈P,Y1|=B(r)H(r)
)
∩ · · · ∩

(⋃
r∈P,Y|X||=B(r)H(r)

)
∩X.

In the latter case, we have that T DPB

P,X (Y) ⊆ Y and T DPB

P,X (Y) ⊂ X for Y = Y1∩· · ·∩Y|X| ⊆
X, which in turn implies that T DPB

P,X ↑ ∞ ⊆ T DPB

P,X (Y) ⊂ X. Moreover, when T DPB

P,X ↑ ∞ ⊂
X, note that at most |X\T DPB

P,X ↑ ∞| ≤ |X|many interpretations T DPB

P,X ↑ ∞ ⊆ Y ⊆ X are

needed to show that none of the atoms in X \T DPB

P,X ↑ ∞ belongs to T DPB

P,X (T DPB

P,X ↑ ∞), so

that Check under DPB-answer set semantics stays in coNP for programs with arbitrary

aggregate expressions.

For Δ ∈ {FFLP,LPST,MR}, arbitrary aggregate expressions make a difference re-

garding the complexity of the Check task. Concerning FFLP-answer sets, membership

in coNP is immediate as checking that X 	|= P or Y |= PX , for some Y ⊂ X, is

tractable. The coNP-hardness can be established by a reduction from disjunctive pro-

grams to programs with nested implications due to Ferraris (2011), which replaces a

disjunctive rule like p ∨ q ← � by two rules p ← (p← q) and q ← (q ← p). (Note

that rule bodies with nested implications are underlined to avoid any ambiguity with

rules.) These nested implications are satisfied by the empty interpretation ∅, become

unsatisfied by {q} or {p}, respectively, and are satisfied by the remaining interpreta-

tions, in particular, the extended interpretation {p, q}. Such satisfaction can in turn be

captured in terms of non-convex aggregate expressions like sum[1 : p,−1 : q] ≥ 0 and

sum[−1 : p, 1 : q] ≥ 0 for (p← q) or (q ← p), respectively, and various other representa-

tions, for example, max[1 : p,−1 : q] 	= −1 or avg[0 : x,−1 : p, 1 : q] ≥ 0, where x ← �
is used as an auxiliary fact, yield the same effect. This shows that Check under FFLP-

answer set semantics is coNP-complete for programs including non-convex aggregate

expressions (Alviano and Faber 2013).

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 181

Turning to LPST-answer sets, an interpretation Y ⊂ X disproves a model X of P

to be an LPST-answer set of P , if for each rule r ∈ P with H(r) � Y , we find an

aggregate expression A ∈ B(r) along with some Y ⊆ Z ⊆ X such that Z 	|= A. As

the problem of checking the existence of such a counterexample Y belongs to NP, the

complementary Check task for LPST-answer sets is a member of coNP. The coNP-

hardness though depends on the complexity of deciding whether (Y,X) |=LPST A for an

aggregate expression A, which is intractable if and only if deciding the satisfiability of

the complement of A, obtainable by inverting the comparison operator of A, for example,

agg[w1 : p1, . . . , wn : pn] = w0 when A is of the form agg[w1 : p1, . . . , wn : pn] 	= w0,

is NP-complete. As discussed in Section 2.2, such elevated complexity applies to agg ∈
{sum,times,avg} in combination with the (complementary) comparison operator =.

Hence, Check for LPST-answer sets is only coNP-complete when P includes aggregate

expressions agg[w1 : p1, . . . , wn : pn] 	= w0 with agg ∈ {sum,times,avg}, while it drops
to P otherwise, even in the presence of other forms of non-convex aggregate expressions

like avg[w1 : p1, . . . , wn : pn] ≥ w0 or min[w1 : p1, . . . , wn : pn] 	= w0.

Example 12

Consider the program P5 as follows:

x1 ← sum[1 : p] > 0 (r20)

x2 ← sum[1 : p] > 0 (r21)

x3 ← sum[1 : p] > 0 (r22)

p← sum[2 : x1, 2 : x2, 3 : x3] 	= 5 (r23)

For deciding whether the interpretation X = {x1, x2, x3, p} is an LPST-answer set of

P5, starting from T LPST

P5,X
↑ 0 = ∅, we need to check the condition of (∅, X) |=LPST B(r23)

that Z |= sum[2 : x1, 2 : x2, 3 : x3] 	= 5 for every Z ⊆ X. This condition fails if and only if

the complementary aggregate expression A = sum[2 : x1, 2 : x2, 3 : x3] = 5 is satisfiable,

that is, when α(A,Z) = 5 for some Z ⊆ X. As Z1 = {x1, x3} and Z2 = {x2, x3} are such
that α(A,Z1) = α(A,Z2) = 5, the complementary aggregate expression A is satisfiable,

so that (∅, X) 	|=LPST B(r23) and T LPST

P5,X
↑ ∞ = T LPST

P5,X
↑ 0 = ∅ disproves X to be an

LPST-answer set of P5.

When we replace the rule r23 by

p← sum[2 : x1, 2 : x2, 3 : x3] 	= 6 (r′23)

to obtain P ′
5, there is no interpretation Z ⊆ X such that α(sum[2 : x1, 2 : x2, 3 :

x3] = 6, Z) = 6. In turn, we have that Z |= sum[2 : x1, 2 : x2, 3 : x3] 	= 6 for every

Z ⊆ X, which means that the condition of (∅, X) |=LPST B(r′23) applies and T LPST

P ′
5,X

↑
1 = T LPST

P ′
5,X

(∅) = {p}. Given that α(sum[1 : p] > 0, Z) = 1 for all interpretations {p} ⊆ Z,

we get ({p}, X) |=LPST B(r) for every r ∈ P ′
5, which leads to T LPST

P ′
5,X

↑ ∞ = T LPST

P ′
5,X

↑ 2 =

T LPST

P ′
5,X

({p}) = {x1, x2, x3, p} = X. This shows that X is an LPST-answer set of P ′
5.

The programs P5 and P ′
5 illustrate that the Check task for LPST-answer sets can

be used to decide whether an instance of the NP-complete subset sum problem is

(un)satisfiable, as programs following the same scheme along with an interpretation con-

sisting of all atoms capture the complement of subset sum for arbitrary multisets of

weights and bounds. Moreover, Section 2.2 discusses reductions of subset sum and the

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

182 M. Alviano et al.

likewiseNP-complete subset product problem to the satisfiability of aggregate expressions

with avg or times, respectively, so that their complementary aggregate expressions with

	= as comparison operator also make the Check task coNP-complete. �

For a program P with arbitrary aggregate expressions and a given model X of P ,

the Check task of deciding whether X is an MR-answer set of P can be accomplished

by guessing, for each aggregate expression A ∈
⋃

r∈PX B(r), an interpretation ZA ⊆ X

such that ZA |= A. Given that X |= A, such an interpretation ZA exists for every A

under consideration and can be used to witness that (Y,X) |=MR A for interpretations

ZA ⊆ Y ⊆ X. Checking whether ZA ⊆ Y instead of taking the condition of (Y,X) |=MR A

as such, in order to approximate T MR

P,X (Y) for some Y ⊆ X, yields a tractable immediate

consequence operator, whose least fixpoint matches T MR

P,X ↑ ∞ for well-chosen interpre-

tations ZA. This shows that the Check task for MR-answer sets stays in NP also in the

presence of non-convex aggregate expressions.

For establishing NP-hardness, the complexity of checking the existence of some Z ⊂
at(A) ∩X such that Z |= A for an aggregate expression A with X |= A matters, as the

construction of T MR

P,X ↑ ∞ gets tractable and the complexity of Check drops to P when the

satisfiability of aggregate expressions (by some smaller interpretation) can be determined

in polynomial time. As the discussion in Section 2.2 shows, deciding satisfiability is NP-

hard only for aggregate expressions with sum, times, or avg along with the comparison

operator =, so that any other (non-convex) aggregate expressions do not make the Check

task NP-complete. However, for an aggregate expression A of the form times[w1 : p1, . . . ,

wn : pn] = w0 such that w0 = 0, only singletons Z = {p} with α(A,Z) = 0 are relevant

as subsets Z ⊂ at(A) ∩X such that Z |= A. Otherwise, if w0 	= 0, we have to guarantee

that α(A,X \ Z) = 1, so that a linear collection of (⊆-minimal) subsets Z ⊂ at(A) ∩X

with Z |= A is obtained by excluding atoms p ∈ X such that α(A, {p}) = 1 together

with a maximum even number of atoms p ∈ X such that α(A, {p}) = −1. As there are

at most |at(A) ∩X| relevant Z ⊂ at(A) ∩X in either case, aggregate expressions with

times do not yield NP-completeness of the Check task for MR-answer sets. The next

example illustrates that this is different for aggregate expressions with sum or avg along

with the comparison operator =.

Example 13

Let us investigate the model X = {x1, x2, x3, p} of the following program P6:

x1 ← � (r24)

x2 ← � (r25)

x3 ← � (r26)

p← sum[2 : x1, 2 : x2, 3 : x3,−2 : p] = 5 (r27)

In order to decide whether X is an MR-answer set of P6, we need to construct T MR

P6,X
↑ ∞,

where T MR

P6,X
↑ 1 = T MR

P6,X
(∅) = {x1, x2, x3} in view of the facts r24, r25, and r26. Then,

the condition of ({x1, x2, x3}, X) |=MR B(r27) is fulfilled if there is some interpretation

Z ⊆ {x1, x2, x3} such that α(sum[2 : x1, 2 : x2, 3 : x3,−2 : p] = 5, Z) = 5. This is the

case for Z = {x1, x3} (and Z = {x2, x3}), so that

T MR

P6,X ↑ ∞ = T MR

P6,X ↑ 2 = T MR

P6,X({x1, x2, x3}) = {x1, x2, x3, p} = X.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 183

When we replace the rule r27 by

p← sum[2 : x1, 2 : x2, 3 : x3,−1 : p] = 6 (r′27)

in the modified program P ′
6, there is no Z ⊆ {x1, x2, x3} such that α(sum[2 : x1, 2 : x2,

3 : x3,−1 : p] = 6, Z) = 6, so that T MR

P ′
6,X
↑ ∞ = T MR

P ′
6,X
↑ 1 = {x1, x2, x3} disproves

X to be an MR-answer set of P ′
6. Both programs P6 and P ′

6 are devised such that the

construction of T MR

P6,X
↑ ∞ or T MR

P ′
6,X
↑ ∞, respectively, involves checking whether an

instance of the subset sum problem is satisfiable. If so, the weight associated with the

atom p to be concluded is set such that the desired bound is obtained by summing up all

weights. As programs following the same scheme along with an interpretation consisting

of all atoms can be used to decide arbitrary instances of subset sum, the Check task for

MR-answer sets is NP-complete in the presence of non-convex aggregate expressions of

the form sum[w1 : p1, . . . , wn : pn] = w0.

Rules like r27 and r′27 can also be adjusted to use the aggregation function avg instead

of sum by introducing an additional fact x ← � and taking the inverse of the original

bound as weight for x:

p← avg[2 : x1, 2 : x2, 3 : x3,−5 : x,−2 : p] = 0 (r28)

p← avg[2 : x1, 2 : x2, 3 : x3,−6 : x,−1 : p] = 0 (r′28)

The condition of ({x1, x2, x3, x}, X ∪{x}) |=MR B(r28) or ({x1, x2, x3, x}, X ∪{x}) |=MR

B(r′28), respectively, then again amounts to deciding the satisfiability of an underlying

instance of subset sum. Hence, we have that the Check task for MR-answer sets is like-

wise NP-complete for programs including non-convex aggregate expressions of the form

avg[w1 : p1, . . . , wn : pn] = w0. �

4.2 Answer set existence

The Exist reasoning task addresses the decision problem of whether a program P has

some Δ-answer set for Δ ∈ {FFLP,GZ,LPST,MR,DPB}, that is, a decision problem

similar to Check but having no fixed interpretationX ⊆ P. The summary of completeness

properties for particular complexity classes is provided in Table 3, where completeness

now also applies for P in view of the well-known P-completeness of deciding whether the

⊆-minimal model of a positive program includes some atom of interest (Dantsin et al .

2001). In fact, when using (monotone) aggregate expressions of the form sum[1 : p] > 0 to

represent propositional atoms p in the bodies of rules, all Δ-answer set semantics repro-

duce the ⊆-minimal model of a positive program as the unique Δ-answer set. Given that

our notion of non-disjunctive programs syntactically allows for constraints, a program

does not necessarily have a (⊆-minimal) model though, even when all aggregate expres-

sions are monotone, which makes the Exist task non-trivial and thus P-complete. While

going beyond the simple form sum[1 : p] > 0 of monotone aggregate expressions lets

the GZ-answer set semantics diverge from the other aggregate semantics, as observed on

Example 11, such additional syntactic freedom does not increase the computational com-

plexity any further because the Δ-answer set semantics, for Δ ∈ {FFLP,LPST,MR,

DPB}, still coincide and the constructions by means of different immediate consequence

operators remain tractable.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

184 M. Alviano et al.

Regarding anti-monotone and convex aggregate expressions, the rows for the Exist

task in Table 3 follow the pattern of Check, where P-membership or coNP-completeness,

respectively, of Check leads to NP- or ΣP

2 -completeness of Exist. For NP-hardness,

anti-monotone aggregate expressions of the form sum[1 : p] < 1 are sufficient, as they

allow for representing negated propositional atoms p in rule bodies, which directly lead

to elevated complexity of deciding whether some (standard) answer set exists (Marek

and Truszczyński 1991). Likewise, the ΣP

2 -hardness of Exist for DPB-answer sets follows

from the simultaneous availability of monotone and anti-monotone aggregate expressions

of the form sum[1 : p] > 0 or sum[1 : p] < 1, as the reduction from quantified Boolean

formulas (with one quantifier alternation) by Denecker et al . (2004) shows.

The additional availability of non-convex aggregate expressions in programs with ar-

bitrary aggregate expressions does not increase the complexity of Exist beyond NP

for GZ- as well as MR-answer sets. Regarding GZ-answer sets, the strong condition

at(A) ∩ Y = at(A) ∩ X for (Y,X) |=GZ A is unaffected by the monotonicity of an

aggregate expression A (Alviano and Leone 2015), as already observed on the tractabil-

ity of the Check task. The latter reasoning task happens to be in NP for MR-answer

sets, so that deciding whether a program including non-convex aggregate expressions

has some MR-answer set does not involve orthogonal combinatorial problems. Unlike

that, the ΣP

2 -hardness of Exist for DPB-answer sets is established already for programs

with convex aggregate expressions, and non-convex aggregate expressions do not make

a difference here because neither determining candidate models X of a program P nor

checking whether T DPB

P,X ↑ ∞ = X becomes more complex in their presence.

The complexity of Exist for FFLP-answer sets correlates to the monotonicity of ag-

gregate expressions, given the same consideration as for Check that (proper) disjunc-

tive rules can be captured in terms of non-disjunctive programs including non-convex

aggregate expressions (Ferraris 2011). This yields ΣP

2 -completeness of the Exist task for

FFLP-answer sets of programs with non-convex aggregate expressions regardless of their

particular aggregation functions, comparison operators, weights and bounds (Alviano and

Faber 2013). While the complexity of Exist is in general the same for LPST-answer sets,

the ΣP

2 -hardness again depends on the complexity of deciding the satisfiability of the com-

plement of a (non-convex) aggregate expression A. That is, the complexity drops to NP

without aggregate expressions agg[w1 : p1, . . . , wn : pn] 	= w0 such that agg ∈ {sum,
times,avg} because the underlying Check task for LPST-answer sets gets tractable

when programs do not involve aggregate expressions of this form. As further detailed in

the next example, aggregate expressions with sum or avg along with the comparison op-

erator 	= allow for expressing the ΣP

2 -complete generalized subset sum problem (Berman

et al . 2002), so that the same complexity is obtained for LPST-answer sets of programs

including such non-convex aggregate expressions. Although we are unaware of literature

addressing the complexity of a corresponding generalized version of the subset product

problem, the coNP-hardness of the Check task suggests that Exist remains ΣP

2 -hard

with times as well.

Example 14

As checked in Examples 6 and 10, the interpretation X = {y1, x2, z1, z2, p} is the unique

Δ-answer set, for Δ ∈ {FFLP,LPST,DPB}, of the program P3:

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 185

x1 ← sum[1 : y1] < 1 (r6)

y1 ← sum[1 : x1] < 1 (r7)

x2 ← sum[1 : y2] < 1 (r8)

y2 ← sum[1 : x2] < 1 (r9)

z1 ← sum[1 : p] > 0 (r10)

z2 ← sum[1 : p] > 0 (r11)

p← sum[1 : y1, 2 : y2, 2 : z1, 3 : z2] 	= 5 (r12)

⊥ ← sum[1 : p] < 1. (r13)

In fact, {y1, y2} ∩X = {y1} represents the single solution to the instance

∃y1y2∀z1z2(1 · y1 + 2 · y2 + 2 · z1 + 3 · z2 	= 5)

of the generalized subset sum problem. The rules r6, r7, r8, and r9 make use of the

auxiliary atoms x1 and x2 to express exclusive choices between x1 and y1 as well as

x2 and y2, where the chosen atoms yi stand for a solution candidate. If the candidate

is indeed a solution, any truth assignment of the atoms zi leads to a weighted sum

that is different from the bound, which is 5 for our instance. In this case, we have that

Z |= B(r12) for every interpretation {y1, y2}∩X ⊆ Z ⊆ X, so that the head atom p must

necessarily be true and is also concluded by the operators T LPST

P3,X
as well as T DPB

P3,X
. The

remaining rules r10 and r11 establish that the atoms zi follow from p, which makes sure

that a potential counterexample, that is, some truth assignment of the atoms zi such

that the weighted sum matches the given bound, corresponds to a smaller interpretation

Y ⊂ X disproving X to be a Δ-answer set of P3. Finally, the constraint r13 expresses

that p must be true, while its provability relies on r12, and thus eliminates any solution

candidate that would directly give the bound as weighted sum when all of the atoms zi
are assigned to false.

Introducing an additional fact x← � and replacing r12 by

p← avg[1 : y1, 2 : y2, 2 : z1, 3 : z2,−5 : x] 	= 0 (r′12)

leads to a modified program P ′
3 including a non-convex aggregate expression with avg

instead of sum. This aggregate expression takes the inverse of the original bound as

weight for a necessarily true atom x, so that the average happens to be 0 if and only

if the weighted sum over the remaining (true) atoms matches the bound. Hence, we

have that Δ-answer sets X ∪ {x} of P ′
3 correspond to Δ-answer sets X of P3 for Δ ∈

{FFLP,LPST,DPB}.
Given that programs following the scheme of P3 or P ′

3, respectively, allow for express-

ing arbitrary instances of generalized subset sum, we conclude that the Exist task for

the three aggregate semantics of interest, in particular, LPST-answer sets of programs

with non-convex aggregate expressions as used in P3 and P ′
3, is Σ

P

2 -hard. Such elevated

complexity is not obtained for GZ- and MR-answer sets, and as discussed in Example 10,

the program P3 does not have any GZ-answer set although the corresponding instance

of generalized subset sum is satisfiable, while X and two more interpretations that do

not represent solutions are MR-answer sets of P3. �

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

186 M. Alviano et al.

Finally, note that the computational complexity of the Check and Exist reasoning

tasks is a common subject of investigation for specific logic programs. In this regard, the

comparably low complexity for GZ-answer sets does not come as a surprise, as avoiding

so-called vicious circles (Gelfond and Zhang 2019) circumvents elevated complexity due

to (sophisticated) aggregate expressions. Hardness properties concerning DPB-answer

sets are immediate consequences of the simultaneous availability of monotone and anti-

monotone aggregate expressions, given the computational complexity of the so-called

ultimate semantics (Denecker et al . 2004), and the complexity of reasoning tasks for

FFLP-answer sets has been thoroughly studied in the corresponding literature (Alviano

and Faber 2013; Faber et al . 2011; Ferraris 2011). For LPST-answer sets, the elevated

complexity due to aggregate expressions of the form sum[w1 : p1, . . . , wn : pn] 	= w0

or avg[w1 : p1, . . . , wn : pn] 	= w0 has been put forward by Son and Pontelli (2007),

and we here add times[w1 : p1, . . . , wn : pn] 	= w0 to these considerations. To our

knowledge, the computational complexity of reasoning tasks for MR-answer sets has not

been investigated in depth, and the NP-hardness of Check for programs with aggregate

expressions sum[w1 : p1, . . . , wn : pn] = w0 or avg[w1 : p1, . . . , wn : pn] = w0 was

unrecognized before.

5 Discussion

As the variety of proposals investigated in Section 3 shows, the design of a general

semantics of aggregates and efficient implementations thereof have been long-standing

challenges. The intricacy results from two particularities: unlike for conjunctions of liter-

als, aggregate expressions can yield a non-convex satisfiability pattern, and the handling

of (explicit) negation by the not connective requires additional care. In the following,

we discuss such phenomena, related rewriting methods and first-order semantics used to

implement or generalize aggregates, respectively, and further extensions of logic programs

to custom aggregate expressions.

The pioneering smodels system (Simons et al . 2002) handles weight constraints

sum[w1 : �1, . . . , wn : �n] ≥ w0 such that each �i, for 1 ≤ i ≤ n, is a literal of the

form �i = p or �i = not p over some atom p ∈ P. While negative weights wi can be

supplied in the input, weighted literals wi : �i are transformed according to

τ(wi : �i) =

{
wi : �i , if wi ≥ 0,

−wi : �i , if wi < 0,

where �i = not p, if �i = p, or �i = p, if �i = not p, denotes the complement of a

literal �i, in the mapping to sum[τ(wi : �i) | 1 ≤ i ≤ n] ≥ w0 −
∑

1≤i≤n,wi<0 wi, based

on the idea that sanctioning some literal by a negative weight is in terms of satisfiability

the same as associating its complement with the corresponding positive amount. Given

that the reduct adopted by smodels evaluates negative literals, the transformed weight

constraints without negative weights become monotone in the context of checking the

provability of true atoms. Hence, deciding whether a given interpretation is an answer

set gets tractable, which diverges from the coNP-completeness of FFLP-answer set

checking for programs with non-convex aggregate expressions (cf. Table 3), as already

established in the absence of negative literals built by means of the not connective. This

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 187

complexity gap brings about peculiarities, considering that {p} is an answer set produced

by smodels as well as a Δ-answer set, for Δ ∈ {FFLP,LPST,MR,DPB}, of a program

with just the rule p ← sum[0 : p] ≥ 0. When the rule is changed to p ← sum[1 : p,−1 :

p] ≥ 0, we have that {p} remains a Δ-answer set, while smodels transforms the rule

to p ← sum[1 : p, 1 : not p] ≥ 1 and takes p ← sum[1 : p] ≥ 1 as reduct relative to

the unique model {p} – In practice, negative weights are eliminated by the front-end

lparse (Syrjänen 2001) during grounding, which then passes the transformed weight

constraints on to smodels or other ASP solvers. This yields the empty interpretation ∅
as a smaller model disproving {p}, so that the transformation by smodels leads to

different semantics of the rules p ← sum[0 : p] ≥ 0 and p ← sum[1 : p,−1 : p] ≥ 0.

A common issue about transformations of logic programs, in general, and of aggregate

expressions, in particular, is that satisfiability preservation does not necessarily yield

equitable provability of atoms. For guaranteeing replaceability regardless of the specific

program context, strong equivalence (Lifschitz et al . 2001) needs to be established, and

Bomanson et al . (2020), Ferraris (2011), and Gebser et al . (2015a) investigate this concept

for aggregate expressions.

According to Ferraris and Lifschitz (2005), a weight constraint sum[w1 : �1, . . . , wn :

�n] ≥ w0 with positive weights wi, for 1 ≤ i ≤ n, is equivalent to∨
I⊆{1,...,n},∑i∈I wi≥w0

∧
i∈I�i,

where the disjunction can be understood as a shorthand for several alternative rule bod-

ies. Similar unfoldings of aggregate expressions have been investigated by Pelov et al .

(2003) and Son et al . (2006), and yield semantic correspondences to LPST-answer sets

(Son and Pontelli 2007). More compact rewritings of weight constraints to aggregate-free

rules, devised for increasing the range of applicable solving systems, are based on se-

quential weight counters (Ferraris and Lifschitz 2005) or merge-sorting (Bomanson et al .

2014), inspired by corresponding encodings of pseudo-Boolean constraints in proposi-

tional logic (Bailleux et al . 2009; Hölldobler et al . 2012; Roussel and Manquinho 2009).

In general, when the joint use of positive and negative weights makes a weight constraint

non-convex, the more sophisticated formula∧
I⊆{1,...,n},∑i∈I wi<w0

(∧
i∈I�i →

∨
i∈{1,...,n}\I�i

)
has been shown to be semantic-preserving (Ferraris 2011). This scheme introduces nested

implications, which lead to elevated complexity of reasoning tasks, as discussed in Sec-

tion 4.1. Such complex constructs are not directly supported by the ASP systems clingo

and dlv, whose propagation procedures (Faber et al . 2008; Gebser et al . 2009) are de-

signed for (anti-)monotone aggregate expressions – A convex aggregate expression can be

decomposed into the conjunction of a monotone and an anti-monotone aggregate expres-

sion (Liu and Truszczyński 2006), for example, by syntactically taking the comparison

operators ≤ and ≥ to represent =. Reasoning on non-convex aggregate expressions can

still be accomplished by means of a rewriting to disjunctive rules with monotone aggre-

gate expressions (Alviano et al . 2015), where (proper) disjunctive rules are needed only

if a non-convex aggregate expression occurs in positively recursive rules, which are neces-

sary to express a ΣP

2 -hard problem like generalized subset sum in Example 14. Since this

rewriting is implemented in the grounding procedure of clingo (Gebser et al . 2015b),

any disjunctive ASP solver that handles recursive monotone aggregate expressions, for

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

188 M. Alviano et al.

example, used to encode company controls, can be applied to reason on non-convex aggre-

gate expressions as well. The input language of clingo (Gebser et al . 2015a), however,

excludes the aggregation functions times and avg, which are also not part of the ASP-

Core-2 specification of a common first-order language for ASP systems (Calimeri et al .

2019). Moreover, clingo rewrites aggregate expressions with min or max to aggregate-

free rules, so that only count and sum effectively lead to monotone aggregate expressions

that use the sum aggregation function at the ground level.

Current ASP solvers deal with weight constraints sum[w1 : �1, . . . , wn : �n] ≥
w0 with positive weights wi, and grounding (components of) systems like clingo

(Gebser et al . 2015b), dlv (Calimeri et al . 2020), and lparse (Syrjänen 2001) es-

tablish such a format, using transformations like those given by Alviano et al . (2015).

In the context of non-disjunctive programs, translational approaches to propositional

logic (Janhunen and Niemelä 2011) rely on the aforementioned rewritings to aggregate-

free rules (Ferraris and Lifschitz 2005; Bomanson et al . 2014), and even more com-

pact, linear representations in terms of pseudo-Boolean constraints or integer pro-

gramming (Gebser et al . 2014) enable the use of corresponding back-end solvers

to compute answer sets. The ASP systems clingo, dlv, and smodels incorporate

propagation procedures (Faber et al . 2008; Gebser et al . 2009; Simons et al . 2002)

that extend Boolean constraint propagation (Roussel and Manquinho 2009) from

pseudo-Boolean constraints to logic programs. Their restrictions are that smodels

handles non-disjunctive programs only, aggregate expressions must be non-recursive

for dlv, and clingo does not use compact data structures for aggregate expres-

sions in positively recursive rules such that their head atoms occur together in some

(proper) disjunctive rule head (i.e., the program part under consideration is not head-

cycle-free Ben-Eliyahu and Dechter 1994), while more space-consuming rewriting to

aggregate-free rules is performed otherwise. Moreover, the recent ASP solver wasp

(Alviano et al . 2019) implements a collective propagation procedure (Alviano et al . 2018)

for aggregate expressions sum[w1 : �1, . . . , wn : �n] ≥ w0 with the same weighted literals

w1 : �1, . . . , wn : �n and different bounds w0, and the lazy-grounding ASP system alpha

(Weinzierl et al . 2020) features an incremental on-demand rewriting (Bomanson et al .

2019) to aggregate-free rules.

While the semantics by Faber et al . (2011) and Ferraris (2011) agree for the syntax

of aggregate expressions considered in this survey, that is, aggregates over propositional

atoms, the different reduct notions, which either eliminate falsified expressions and thus

negative literals or not, lead to distinct outcomes in the presence of not. For instance,

the reduct of p ← sum[1 : p, 1 : not p] ≥ 1 relative to the interpretation {p} is the

rule itself according to Faber et al . (2011), and p ← sum[1 : p] ≥ 1 by Ferraris’ 2011

definition. Hence, either {p} or ∅ is obtained as ⊆-minimal model of the reduct, so that

the semantics disagree about whether {p} is an answer set. Similarly, p ← not sum[1 :

p] < 1 yields the rule as such or p← � as the reduct relative to {p}, resulting in either

∅ or {p} as ⊆-minimal model. That is, answer sets according to Faber et al . (2011)

and Ferraris (2011) can be mutually distinct when the not connective is used in front

of aggregate expressions or propositional atoms subject to aggregation functions. To

circumvent such discrepancies, the ASP-Core-2 language specification (Calimeri et al .

2019) requires aggregate-stratification (Faber et al . 2008), which restricts occurrences of

aggregate expressions in a program to be non-recursive. Under this condition, apart from

DPB-answer sets that differ already for aggregate-free programs (Denecker et al . 2001;

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 189

2004), the aggregate semantics investigated in Section 3 agree, and aggregate expressions

may not increase the computational complexity of reasoning tasks. Harrison and Lifschitz

(2019) relax the aggregate-stratification condition and show that answer sets according

to Faber et al . (2011) and Ferraris (2011) coincide when recursive aggregate expressions

do not involve the not connective, that is, they are of the form (1), while no syntactic

restrictions are imposed otherwise, for example, for aggregate expressions occurring in

constraints. Notably, the correspondence in Harrison and Lifschitz (2019) is established at

the first-order level, thus connecting prior first-order generalizations of the two semantics

(Bartholomew et al . 2011; Gebser et al . 2015a) based on second-order logic or infinitary

formulas, respectively. Moreover, answer sets according to Faber et al . (2011) and Ferraris

(2011) can be characterized in terms of each other (Lee and Meng 2009; Truszczyński

2010), so that their expressiveness is the same regardless of semantic differences arising

on the not connective.

Beyond their use for a compact representation of properties on sets of atoms, seman-

tics for aggregate expressions have been taken as basis for defining the answer sets of

logic programs with further extensions, such as description logic and higher-order logic

programs with external atoms (Shen et al . 2014). Similar to aggregate expressions, mono-

tonicity properties of external atoms affect reasoning about them, and dedicated solving

techniques take advantage of so-called assignment-monotonicity (Eiter et al . 2018). Ex-

tensions of ASP systems by theory propagators (Cuteri et al . 2020; Elkabani et al . 2004;

Janhunen et al . 2017; Lierler and Susman 2017) likewise interpret specific atoms as cus-

tom aggregate expressions and incorporate respective procedures for propagating their

truth values. In this broad sense, the notion of an aggregate includes any method of

evaluating atoms as a compound, where some frequently used aggregation functions, in

particular, the sum aggregation function, are accommodated off-the-shelf in the modeling

language of ASP.

While there is already a considerable body of work on aggregates, there clearly are

numerous open issues to be addressed. We would like to outline some of them, of course

without any claim of completeness. First of all, identifying sublanguages on which dif-

ferent semantics coincide is still a relevant topic. As mentioned earlier, most semantics

agree on aggregate-stratified programs, and many also correspond for programs with con-

vex aggregates. Another issue is that encodings with unstratified aggregate occurrences

are fairly rare at the moment, especially when considering “real-world” applications. We

believe, however, that providing a meaningful semantics for language constructs is im-

portant also when there are no frequent applications for them. Nevertheless, potential

application fields might lie, for instance, in the area of analysis of dynamic systems, for

example, addressing the location of fixpoints in biological systems. A related question is

whether the proposed languages are actually fit for various practical purposes. We believe

that postulating formal properties that semantics for programs with aggregates should

satisfy is important and still lacking. For example, formalizations of the Closed World

Assumption (Reiter 1977) for programs with aggregates would be of interest. There is

also work arguing that certain programs are not handled well by the existing semantics,

yet suggestions as, for example, by Alviano and Faber (2019) for “repairing” existing

approaches to cover such cases do not seem satisfactory so far. Finally, we would like

to mention that more implementations are needed. Most proposed semantics have never

been supported by any system, making comparisons difficult and applications impossible,

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

190 M. Alviano et al.

and merely clingo implements non-convex aggregate expressions in positively recursive

rules (under FFLP-answer set semantics). Hence, even implementations that are not at

all geared towards efficiency would be useful. In summary, there is a substantial amount

of room for future work on aggregates in ASP.

References

Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M. and Ricca, F. 2019.
Evaluation of disjunctive programs in WASP. In Proceedings of the Fifteenth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’19), M. Balduc-
cini, Y. Lierler and S. Woltran, Eds. Lecture Notes in Artificial Intelligence, vol. 11481.
Springer-Verlag, 241–255.

Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P. and Zangari, J. 2017. The ASP system DLV2. In Proceedings of the Fourteenth
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’17),
M. Balduccini and T. Janhunen, Eds. Lecture Notes in Artificial Intelligence, vol. 10377.
Springer-Verlag, 215–221.

Alviano, M., Dodaro, C. and Maratea, M. 2018. Shared aggregate sets in answer set pro-
gramming. Theory and Practice of Logic Programming 18, 3-4, 301–318.

Alviano, M. and Faber, W. 2013. The complexity boundary of answer set programming
with generalized atoms under the FLP semantics. In Proceedings of the Twelfth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’13), P. Cabalar
and T. Son, Eds. Lecture Notes in Artificial Intelligence, vol. 8148. Springer-Verlag, 67–72.

Alviano, M. and Faber, W. 2019. Chain answer sets for logic programs with generalized
atoms. In Proceedings of the Sixteenth European Conference on Logics in Artificial Intelligence
(JELIA’19), F. Calimeri, N. Leone and M. Manna, Eds. Lecture Notes in Computer Science,
vol. 11468. Springer-Verlag, 462–478.

Alviano, M., Faber, W. and Gebser, M. 2015. Rewriting recursive aggregates in answer
set programming: Back to monotonicity. Theory and Practice of Logic Programming 15, 4-5,
559–573.

Alviano, M. and Leone, N. 2015. Complexity and compilation of GZ-aggregates in answer
set programming. Theory and Practice of Logic Programming 15, 4-5, 574–587.

Apt, K., Blair, H. andWalker, A. 1987. Towards a theory of declarative knowledge. In Foun-
dations of Deductive Databases and Logic Programming, J. Minker, Ed. Morgan Kaufmann
Publishers, Chapter 2, 89–148.

Bailleux, O., Boufkhad, Y. and Roussel, O. 2009. New encodings of pseudo-Boolean con-
straints into CNF. In Proceedings of the Twelfth International Conference on Theory and
Applications of Satisfiability Testing (SAT’09), O. Kullmann, Ed. Lecture Notes in Computer
Science, vol. 5584. Springer-Verlag, 181–194.

Bartholomew, M., Lee, J. and Meng, Y. 2011. First-order semantics of aggregates in answer
set programming via modified circumscription. In Proceedings of the AAAI Spring Symposium
on Logical Formalizations of Commonsense Reasoning, E. Davis, P. Doherty and E. Erdem,
Eds. AAAI Press, 16–22.

Ben-Eliyahu, R. and Dechter, R. 1994. Propositional semantics for disjunctive logic pro-
grams. Annals of Mathematics and Artificial Intelligence 12, 1-2, 53–87.

Berman, P., Karpinski, M., Larmore, L., Plandowski, W. and Rytter, W. 2002. On
the complexity of pattern matching for highly compressed two-dimensional texts. Journal of
Computer and System Sciences 65, 2, 332–350.

Bomanson, J., Gebser, M. and Janhunen, T. 2014. Improving the normalization of weight
rules in answer set programs. In Proceedings of the Fourteenth European Conference on Logics

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 191

in Artificial Intelligence (JELIA’14), E. Fermé and J. Leite, Eds. Lecture Notes in Artificial
Intelligence, vol. 8761. Springer-Verlag, 166–180.

Bomanson, J., Janhunen, T. and Niemelä, I. 2020. Applying visible strong equivalence in
answer-set program transformations. ACM Transactions on Computational Logic 4, 21, 33:1–
33:41.

Bomanson, J., Janhunen, T. and Weinzierl, A. 2019. Enhancing lazy grounding with lazy
normalization in answer-set programming. In Proceedings of the Thirty-third National Confer-
ence on Artificial Intelligence (AAAI’19), P. Van Hentenryck and Z. Zhou, Eds. AAAI Press,
2694–2702.

Brewka, G., Eiter, T. and Truszczyński, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Bruynooghe, M., Blockeel, H., Bogaerts, B., De Cat, B., De Pooter, S., Jansen,

J., Labarre, A., Ramon, J., Denecker, M. and Verwer, S. 2015. Predicate logic as a
modeling language: Modeling and solving some machine learning and data mining problems
with IDP3. Theory and Practice of Logic Programming 15, 6, 783–817.

Calimeri, F., Dodaro, C., Fuscà, D., Perri, S. and Zangari, J. 2020. Efficiently coupling
the I-DLV grounder with ASP solvers. Theory and Practice of Logic Programming 20, 2,
205–224.

Calimeri, F., Faber, W.,Gebser, M., Ianni, G.,Kaminski, R.,Krennwallner, T., Leone,
N., Maratea, M., Ricca, F. and Schaub, T. 2019. ASP-Core-2 input language format.
Theory and Practice of Logic Programming 20, 2, 294–309.

Codd, E. 1970. A relational model of data for large shared data banks. Communications of the
ACM 13, 6, 377–387.

Codd, E. 1972. Relational completeness of data base sublanguages. Research Report/RJ/IB-
M/San Jose, California RJ987.

Cuteri, B., Dodaro, C., Ricca, F. and Schüller, P. 2020. Overcoming the grounding
bottleneck due to constraints in ASP solving: Constraints become propagators. In Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI’20),
C. Bessiere, Ed. ijcai.org, 1688–1694.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys 33, 3, 374–425.

Denecker, M., Marek, V. and Truszczyński, M. 2004. Ultimate approximation and its
application in nonmonotonic knowledge representation systems. Information and Computa-
tion 192, 1, 84–121.

Denecker, M., Pelov, N. and Bruynooghe, M. 2001. Ultimate well-founded and stable
semantics for logic programs with aggregates. In Proceedings of the Seventeenth International
Conference on Logic Programming (ICLP’01), P. Codognet, Ed. Lecture Notes in Computer
Science, vol. 2237. Springer-Verlag, 212–226.

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence 15, 3-4, 289–323.

Eiter, T., Kaminski, T., Redl, C. and Weinzierl, A. 2018. Exploiting partial assignments
for efficient evaluation of answer set programs with external source access. Journal of Artificial
Intelligence Research 62, 665–727.

Elkabani, I., Pontelli, E. and Son, T. 2004. Smodels with CLP and its applications: A simple
and effective approach to aggregates in ASP. In Proceedings of the Twentieth International
Conference on Logic Programming (ICLP’04), B. Demoen and V. Lifschitz, Eds. Lecture
Notes in Computer Science, vol. 3132. Springer-Verlag, 73–89.

Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175, 1, 278–298.

Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T. and Ielpa, G. 2008. Design and imple-
mentation of aggregate functions in the DLV system. Theory and Practice of Logic Program-
ming 8, 5-6, 545–580.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

192 M. Alviano et al.

Ferraris, P. 2011. Logic programs with propositional connectives and aggregates. ACM Trans-
actions on Computational Logic 12, 4, 25:1–25:40.

Ferraris, P. and Lifschitz, V. 2005. Weight constraints as nested expressions. Theory and
Practice of Logic Programming 5, 1-2, 45–74.

Ganguly, S., Greco, S. and Zaniolo, C. 1995. Extrema predicates in deductive databases.
Journal of Computer and System Sciences 51, 2, 244–259.

Garey, M. and Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. Freeman and Co., New York.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V. and Schaub, T. 2015a. Abstract
Gringo. Theory and Practice of Logic Programming 15, 4-5, 449–463.

Gebser, M., Janhunen, T. and Rintanen, J. 2014. Answer set programming as SAT modulo
acyclicity. In Proceedings of the Twenty-first European Conference on Artificial Intelligence
(ECAI’14), T. Schaub, G. Friedrich, and B. O’Sullivan, Eds. IOS Press, 351–356.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2009. On the implementation
of weight constraint rules in conflict-driven ASP solvers. In Proceedings of the Twenty-fifth
International Conference on Logic Programming (ICLP’09), P. Hill and D. Warren, Eds.
Lecture Notes in Computer Science, vol. 5649. Springer-Verlag, 250–264.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2019. Multi-shot ASP solving
with clingo. Theory and Practice of Logic Programming 19, 1, 27–82.

Gebser, M., Kaminski, R. and Schaub, T. 2015b. Grounding recursive aggregates: Prelimi-
nary report. In Proceedings of the Third Workshop on Grounding, Transforming, and Modu-
larizing Theories with Variables (GTTV’15), M. Denecker and T. Janhunen, Eds.

Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187-188, 52–89.

Gelfond, M. and Leone, N. 2002. Logic programming and knowledge representation — the
A-Prolog perspective. Artificial Intelligence 138, 1-2, 3–38.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In Proceedings of the Fifth International Conference and Symposium of Logic Programming
(ICLP’88), R. Kowalski and K. Bowen, Eds. MIT Press, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385.

Gelfond, M. and Zhang, Y. 2019. Vicious circle principle, aggregates, and formation of sets
in ASP based languages. Artificial Intelligence 275, 28–77.

Harrison, A. and Lifschitz, V. 2019. Relating two dialects of answer set programming.
Theory and Practice of Logic Programming 19, 5-6, 1006–1020.

Hölldobler, S., Manthey, N. and Steinke, P. 2012. A compact encoding of pseudo-Boolean
constraints into SAT. In Proceedings of the Thirty-fifth Annual German Conference on Artifi-
cial Intelligence (KI’12), B. Glimm and A. Krüger, Eds. Lecture Notes in Computer Science,
vol. 7526. Springer-Verlag, 107–118.

Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S. and Wanko,

P. 2017. Clingo goes linear constraints over reals and integers. Theory and Practice of Logic
Programming 17, 5-6, 872–888.

Janhunen, T. and Niemelä, I. 2011. Compact translations of non-disjunctive answer set
programs to propositional clauses. In Logic Programming, Knowledge Representation, and
Nonmonotonic Reasoning: Essays Dedicated to Michael Gelfond on the Occasion of his 65th
Birthday, M. Balduccini and T. Son, Eds. Lecture Notes in Computer Science, vol. 6565.
Springer-Verlag, 111–130.

Kemp, D. and Stuckey, P. 1991. Semantics of logic programs with aggregates. In Proceedings
of the 1991 International Symposium on Logic Programming (ISLP’91), V. Saraswat and
K. Ueda, Eds. MIT Press, 387–401.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

Aggregate semantics for propositional answer set programs 193

Klug, A. 1982. Equivalence of relational algebra and relational calculus query languages having
aggregate functions. Journal of the ACM 29, 3, 699–717.

Lee, J. and Meng, Y. 2009. On reductive semantics of aggregates in answer set program-
ming. In Proceedings of the Tenth International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’09), E. Erdem, F. Lin and T. Schaub, Eds. Lecture Notes in
Artificial Intelligence, vol. 5753. Springer-Verlag, 182–195.

Lierler, Y. and Susman, B. 2017. On relation between constraint answer set programming
and satisfiability modulo theories. Theory and Practice of Logic Programming 17, 4, 559–590.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelligence 138, 1-
2, 39–54.

Lifschitz, V., Pearce, D. and Valverde, A. 2001. Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 4, 526–541.

Liu, G. and You, J. 2013. Relating weight constraint and aggregate programs: Semantics and
representation. Theory and Practice of Logic Programming 13, 1, 1–31.

Liu, L., Pontelli, E., Son, T. and Truszczyński, M. 2010. Logic programs with abstract
constraint atoms: The role of computations. Artificial Intelligence 174, 3-4, 295–315.

Liu, L. and Truszczyński, M. 2006. Properties and applications of programs with monotone
and convex constraints. Journal of Artificial Intelligence Research 27, 299–334.

Lloyd, J. 1987. Foundations of Logic Programming. Springer-Verlag.

Marek, V. and Remmel, J. 2004. Set constraints in logic programming. In Proceedings of
the Seventh International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’04), V. Lifschitz and I. Niemelä, Eds. Lecture Notes in Artificial Intelligence, vol.
2923. Springer-Verlag, 167–179.

Marek, V. and Truszczyński, M. 1991. Autoepistemic logic. Journal of the ACM 38, 3,
588–619.

Marek, V. and Truszczyński, M. 1999. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: A 25-Year Perspective, K. Apt, V. Marek,
M. Truszczyński and D. Warren, Eds. Springer-Verlag, 375–398.

Mazuran, M., Serra, E. and Zaniolo, C. 2013. Extending the power of Datalog recursion.
Journal on Very Large Data Bases 22, 4, 471–493.

Mumick, I., Pirahesh, H. and Ramakrishnan, R. 1990. The magic of duplicates and ag-
gregates. In Proceedings of the Sixteenth International Conference on Very Large Data Bases
(VLDB’90), D. McLeod, R. Sacks-Davis and H. Schek, Eds. Morgan Kaufmann Publishers,
264–277.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 3-4, 241–273.

Özsoyoglu, G., Özsoyoglu, Z. and Matos, V. 1987. Extending relational algebra and re-
lational calculus with set-valued attributes and aggregate functions. ACM Transactions on
Database Systems 12, 4, 566–592.

Pelov, N., Denecker, M. and Bruynooghe, M. 2003. Translation of aggregate programs
to normal logic programs. In Proceedings of the Second International Workshop on Answer
Set Programming (ASP’03), M. de Vos and A. Provetti, Eds. CEUR Workshop Proceedings
(CEUR-WS.org), 29–42.

Pelov, N., Denecker, M. and Bruynooghe, M. 2007. Well-founded and stable semantics of
logic programs with aggregates. Theory and Practice of Logic Programming 7, 3, 301–353.

Reiter, R. 1977. On closed world data bases. In Proceedings of Workshop on Logic and
Databases, H. Gallaire and J. Minker, Eds. Plenum Press, 119–140.

Ross, K. 1994. Modular stratification and magic sets for Datalog programs with negation.
Journal of the ACM 41, 6, 1216–1266.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

194 M. Alviano et al.

Roussel, O. and Manquinho, V. 2009. Pseudo-Boolean and cardinality constraints. In Hand-
book of Satisfiability, A. Biere, M. Heule, H. van Maaren and T. Walsh, Eds. IOS Press,
Chapter 22, 695–733.

Schlipf, J. 1995. The expressive powers of the logic programming semantics. Journal of Com-
puter and System Sciences 51, 64–86.

Shen, Y., Wang, K., Eiter, T., Fink, M., Redl, C., Krennwallner, T. and Deng, J. 2014.
FLP answer set semantics without circular justifications for general logic programs. Artificial
Intelligence 213, 1–41.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model
semantics. Artificial Intelligence 138, 1-2, 181–234.

Son, T. and Pontelli, E. 2007. A constructive semantic characterization of aggregates in
answer set programming. Theory and Practice of Logic Programming 7, 3, 355–375.

Son, T., Pontelli, E. and Elkabani, I. 2006. An unfolding-based semantics for logic pro-
gramming with aggregates. CoRR abs/cs/0605038.

Sudarshan, S. and Ramakrishnan, R. 1991. Aggregation and relevance in deductive
databases. In Proceedings of the Seventeenth International Conference on Very Large Data
Bases (VLDB’91), G. Lohman, A. Sernadas and R. Camps, Eds. Morgan Kaufmann Publish-
ers, 501–511.

Syrjänen, T. 2001. Lparse 1.0 user’s manual. www.tcs.hut.fi/Software/smodels/.

Truszczyński, M. 2010. Reducts of propositional theories, satisfiability relations, and general-
izations of semantics of logic programs. Artificial Intelligence 174, 16-17, 1285–1306.

Vanbesien, L., Bruynooghe, M. and Denecker, M. 2021. Analyzing semantics of aggregate
answer set programming using approximation fixpoint theory. CoRR abs/2104.14789.

van Emden, M. and Kowalski, R. 1976. The semantics of predicate logic as a programming
language. Journal of the ACM 23, 4, 733–742.

Van Gelder, A. 1992. The well-founded semantics of aggregation. In Proceedings of the
Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’92), M. Vardi and P. Kanellakis, Eds. ACM Press, 127–138.

Weinzierl, A., Taupe, R. and Friedrich, G. 2020. Advancing lazy-grounding ASP solv-
ing techniques — restarts, phase saving, heuristics, and more. Theory and Practice of Logic
Programming 20, 5, 609–624.

Zaniolo, C., Yang, M., Das, A., Shkapsky, A., Condie, T. and Interlandi, M. 2017.
Fixpoint semantics and optimization of recursive Datalog programs with aggregates. Theory
and Practice of Logic Programming 17, 5-6, 1048–1065.

https://doi.org/10.1017/S1471068422000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000047

	Introduction
	Rules and programs with aggregates
	Syntax and satisfaction of aggregates
	Satisfiability of aggregates
	Monotonicity of aggregates

	Answer set semantics of aggregates
	Model-based semantics
	Construction-based semantics
	Semantic relationships

	Computational complexity of aggregates
	Answer set checking
	Answer set existence

	Discussion
	References

