On the Riesz-Riemann-Liouville Integral
By E. T. Corsox.
(Received 16th July 1946. Read 1st November, 1946.)

§ 1. Iniroduction.

In a lecture at the Oslo Congress in 1936, Marcel Riesz ! introduced
an important generalisation of the Riemann-Liouville integral of
fractional order. Riesz’s integral I°f of order a is a multiple integral
in m variables which converges uniformly when the real part of «
exceeds m—2 and so représents an analytic function of the complex
variable a. This integral is important in the theory of the generalised
wave equation, for it provides a direct method of solving Cauchy’s
initial-value problem. The most recent developments? show that it
is likely to be also of great importance in quantum electrodynamics.

Let us denote the m variables which appear in Riesz’s integral
by (£, 2,y %, . .. Z,), or, more briefly, by (¢, z,), so that m = n + 1. The
variable t is treated separately because it is to be the time-variable
in the applications of the theory. Let us denote the ‘“interval’ in
the sense of special relativity between the two point-events P(T';X,)
and Q(t;x;) by s, so that

st = (T — 1p — 3 (X, — ;). (L.1)
i=1

When P is fixed and @ varies, the equation s = 0 represents the
light-cone of special relativity; it is the characteristic cone of the
generalised wave equation

&2 n .52”’
L(u) = E z Wf = 0. (1.2)

Inside the characteristic cone, s?is positive, outside it, negative. The
half of the cone on which ¢ < T is called the retrograde cone and will
be denoted by D(P).

In the problem of Cauchy for the wave equation (1.2), we have
to find the solution, given the values taken by u and its first partial
derivatives on an n-dimensional manifold or hypersurface S. 8 is

1 Comples rendus du congrés international des mathématiciens (Uslo, 1936). Tome 2,
pp. 44-45.

? See a letter in Natwure, 157, 734 (1946), by T. Gustafson.
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spatially-directed in the sense of special relativity; thatis, the tangent-
plane to § at any point R cuts the characteristic cone with vertex R
only at B. The surface S and the retrograde cone D(P) bound a
hypervolume which we denote by D(P,S). The Riesz integral is
then defined to be

FAP) = g | @ s ae (1)
P, s)

where d@) denotes the element of hypervolume at @ and
H,(a) = 71 22711 )T'(3 @ — 3m + 1). (1.4)

The integral is then an analytic function of «, regular when
Rl a > Max (m — 2, 0), provided that f is continuous. Itscharacteristic
properties are expressed by the equations

IPIef=Jet8f,  L[Iat2f— [,
where L now refers to the variables (7, X ;).

In all applications, the fundamental problem is the analytical
continuation of /% f into the half-plane Rl a > 0. Riesz himself has
published no solution of this problem. The cases of greatest physical
importance are those for which m =3 or 4 and § is the hyperplane
£ = 0; in these cases it has been shown ! that the analytical continua-
tion can be carried out by a simple change of variable and integration
by parts. Quite recently, the general case has been discussed by
Fremberg,> who uses a rather complicated change of variable which
makes his work difficult to follow. In the present paper it is shown
that the methods used in the simpler cases are also applicable in the
general case and lead to the desired results. It is shown incidentally
that, when § is the hyperplane ¢ = — o , 1"~ 2f is simply the retarded
potential.

§2. A transformation of Riesz’s Inlegral.

Since I°f(P)is to be defined for all positive values of 7', the
hypersurface § and the retrograde cone D(P) must bound a hyper-
volume no matter how large 7'is. Hence S cannot be a closed surface.
We write the equation of S in the form S(¢, ;) = 0 where the function

! Baker and Copson, The Mathematical Theory of Huygens' Principle (Oxford, 1939),
pp- 60-61. Copson, Pruc. Roy. Soc. Edin. (A) 71, 260-272 (1943).

? Kunyl. Fysiografiska Scllskapets i Lund Forhandlingar, Bd. 15, Nr. 27 (1945).
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8 and its first partial derivatives are assumed to be continuous. Then
since § is spatially-directed,

<'°_§>2 _ X (ﬁ)z >0 (2.1)
cl AN Z

everywhere on §, a relation which implies that S is not a closed
surface and has no singular points. The analytical continuation with
respect to a is to be carried out for any fixed values of 7 and X ;. It
follows that the expression on the left-hand side of (2.1) has a positive
lower bound §, depending on 7 and X;, on the portion 8’ of § cut off
by the retrograde cone; thus on &',

(‘3@)2 > <§>2 >5 > 0. (2.2)
ot ©\ oz,

No radius vector from P inside D(P) can touch § since § is
spatially-directed. Moreover, every such radius vector cuts § in the
same number of distinct points, since S has no singular points. But
S and D(P) bound & hypervolume; hence every radius vector from P
inside D(P) cuts S in one point. We shall denote the point where the
radius vector from P(7T;X;) through @(t;z;) cuts § by R(7;¢;).
Similar considerations show that any line parallel to the axis of ¢ cuts
8§ in one point only, so that we may write the equation of § in the
form ¢ = S(z;). By (2.2), the inequality

z<§>2§_1—3<1 (2.3)
i 3:(1,7
then holds everywhere on S,
We now change to new variables (2, s, . . . .%,,) defined by
x;=x; (2=1,2,3,..., n=m—1)

L = +\/{(T_ t)z_ E (xi—X‘i)z}

1
where summation with respect to ¢ is always over the range 1,2, 3,. ..n.

This is a (1,1) transformation which maps the interior of the retro-
grade cone on z,, > 0. Since

a(xl, oy oo ey 1s xm) r
Riesz’s integral becomes

[ (1, X) = g | AT =7, )

where integration is over the hypervolume in z, > 0 bounded by the
hyperplane x,, = 0 and the hypersurface . whose equation is

—-m41
Zy* Mt

dxz, dz,. . dx, (2.4)
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{T_S (xi )}2 = 2’ (xi _Xi )2—{-2?,,,2. (25)

Evidently every radius vector from P'(X,, X,,... X,, 0), whichis
the image of P, cuts X in one point R’, since this radius vector is the
image of a radius vector through P. 1t is convenient to use spherical
polar coordinates (r, 6, ¢,, ¢,,...4,_;) defined by

2;=X;+1;rsin 6, z, =rcos b (2.6)

where l, = cos ¢,,

l,_1 = sin ¢, cos ¢,,

l.—o = sin ¢, sin ¢, cos ¢,,

l, = sin ¢, sin¢,....sin ¢,_, cos ¢, _,,

[, =sin ¢, sing,....sin ¢,_, sin ¢, _,.

If we make this change in (2.4), the angle 6 varies from 0 to =, whilst
the angles ¢ vary so that the line whose direction-cosines in
n-dimensional space are (I, l,,...l,) sweeps out the whole solid angle
Q,. Hence ¢,, ¢,,... ¢, vary from 0 to =, ¢,_, from 0 to 27. The
coordinates of R’ are then

&=X, + 1;psin 0, &n=pcosb (2.7)
where p is a continuous function of the variables 6 and ¢. With this
change of variable, we have?

1
If= H, (a)

1]

L jw j:) S —r, z;) r*—lcos*~m+19 sin™ —26 drd 8d(Q),, (2.8)

where '
dQ, =sin""2¢;sin*~3 ¢,....8in ¢, _, d, de,...d¢, _ ;.

The total solid angle is
2 in
Q, = j dQ,=- . 2.9
o, Lt n) ( ),
The analytical continuation of I°f depends on the formula (2.8),
which shows that, so far, I°f is regular when Rl « > Max (m—2, 0).

§3. A lemma.

We shall carry out the analytical continuation of I°f by in-
tegrating (2.8) by parts with respect to §. In doing so, we shall need
the following lemma.?

t Cf. Baker and Copson, loc. cit., p. 60, equation (7.41).
2 Cf, Fremberg, loc. cit., p. 270.
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If the first partial derivatives of S(¢;) are continuous, dp [ é0 = op cos ¢

21,08/0&; B
1 -+ sin 6 Ell aS/’G&,’.

The function o is continuous on .

If p is a continuous function of 8, ¢ satisfying an equation
¥ (p, 0, $) = 0, where ¢ has continuous first partial derivatives, then
dp / 08 exists and is given by

ap ()xﬁ 6:,[1

20 o6
at any point where 04 / 9p is not zero. In the present case it follows
from (2.5) that p satisfies the equation i = 0 where

where o= —

p=p—T+8(), § =X, + 1 psing,
and so
& __ ppcos
86 1+ psind
a8
wherd _leg

To complete the proof of the lemma, we have to show that
1 + psin 6 does not vanish on £. Now

oS 5 o8 o8
< ¥} —_
<Zl’ 6&) =“l"z<6fz> == a§> 1-9

by (2.3). Hence
l+psinf=21—{p|=Z1—4/(1-8)>1438

which was to be proved.

§ 4. The analytical continuation of I° f.

If f and S have continuous partial derivatives of order k <} (m — 1) and
if Rl o >Max (0, m — 2k — 2), then I*f is equal to

Ao
(« k)[ j I ’ fe (T —r,2;) ro—lcose - m+¥k+10 sin ™~ %~-20 drdfdQ,

1"

+ jn o I (p, &) prcos>—m+ 2k +1gginm =2k —1p dBdQ,l] (4.1)

where K,(a,k)=ntm-12:4% 1D (1a) T (}a — %m'—{— k4 1)
and fo=1f
of:
Josr = (m — 2k — 3) f,,.+2(x,-—X,-)§£—‘ (4.2)

i
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go=10
oy
+ acg,sin 8+ (m — 2k — 2) y,.. (4.3)

gis1=Fc(T —p, &) o + op sin 0%%"4—(1 +osinf) T (¢ — X,)

There are two points about the recurrence formule which must
be emphasised. 1In (4.2), we regard f, as a function of the independent
variables z,, «,,...%,, r and the spherical polar coordinates are intro-
duced only when we substitute for f;, in (4.1). Similarly in (4.3) g, is
a function of the independent variables &, &....£, p; it would be
more correct but more cumbrous to write

p Zl; a‘S/afi Sinf = — Z (& — X;) 08/8¢,
T et Z(—XeSjeg” O T T o N (6 — Xy) 0SjeE;

The theorem is evidently true when & = 0. We shall prove it in
the general case by induction. The functions f; and g, are continuous
if the kth partial derivatives of f and § are continuous; for, in
the construction of f, and ¢, by the recurrence formule starting
with f, and ¢, a discontinuity could arise only from the succlssive
derivatives of ¢ and o sin 6, and these are all continuous since 1 4 p

g =

sinfd>3%6>0.

We assume then that I°f is equal to the expression (1.1) that the
derivatives of order k£ - 1 are continuous and that Rl a > m — 2k—2 >1.
The expression (4.1) consists of two terms which we treat separately
The first term is .
f,,(la—,l;) L" :T Fi{p, 0)cos®—m+2k+1fgin ™ —2t = 2 § 46 dQ,,
where

11:-.

Fulp, 6)=|" full=r, 2) 1t dr.
0
If we integrate by parts with respect to 8, we obtain

— 1 ir a—m+2k4+20 _@_ [F 0) sip m—2k—3 0] 26 4O
fi= m Jﬂn jo cos a0 » (p, 0) sin »

the terms at the limits vanishing! since Rla > m — 2k — 2> 1,
Moreover

d . .
W[Fk (p,0) sinm— 2 ‘30]

P 1f m=2L+ 3, there is a contribution from the lower limit §=0, and this is im-
portant in § 6.
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¢6F‘ ap oF,.) - _ot—3 sym—2 —4

Zp 20 T a8 sin ™ 6 + (m — 2k — 3) F,sin fcos b

s & (T—r, 2,) 0%
ox; - 20

4 (m - 2k — 3) Fi sin®—2—4fcos §

= : fe (T —p, &) op® cos 8 -{—j

,,-n.—l dr}sin m—2k—3 2

l

Lginm—2k-3 g

—_—t—

fi: op®cos 6 + J: 217 cos Bg—ﬁ re=ldr

| + (m — 2k — 3) F.sin™"— 2" -4 fcos §
== fio p* cos f sin ™-%3 g +J‘(: 3 (2t — X;) aff »=ldrsin™—2%-4fcos 6
4 (m— 2k — 3) F.sin”"—2"~*% fcos §

3 . Y
= f. o p*cos fsin™~%-3 g 4 s Jigr (T —r, ;) r*=1dr sin™~* —*f cos §

where f, denotes f, (I'—p, &) and where f,, is defined by (4.2). We
have thus proved that I, is equal to

(a, k + 1) [.”,[ ferr(T ) r*=1 cos *-m+2k+30 ginm =% —49 drd6dQ),,

_‘ jfk op*coge M2+ 95in”“2k—39d9d§2n].
The second term in (4.1) is

o 1 b 3 o
L=k, (d”k) f f 9i (p, £1) p* 008 ==+ +1 G sin =% =1 § 49 dQ,

d
@—m4-2k+29 " Np® aip m =24 —2
K, (a, k+ 0 j j oo TR [f//(p,fl)p sin 9] d6 dQ,

on integrating by parts, the terms at the limits vanishing as before.
Remembering that ¢, = X; 4 1,psin §, we have

d B .
—g l!//: (p, &) pPsinm — 24 —2 9}

_ ' 0g: 9p o Ogr 0¢; a op) com -2k —2
Ik USE a P e m 9
= Tp 26T = % T Yigg P
+ (m — 2k — 2) g, p®sin™-2/=3 g cos 0
[ 5
=-(—’g;—0p0089+2ll T, £ (pcos 8 + o psinfcos 6)

+ ¢graocosf -p“ sinm-2%-2 § 4 (m—2k —2) g, p*sin™~2* 30 cos 6
}
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= p®sin m’z’é‘:”ecose%ap 99k &in 6 4 (1 + osin 6 T (¢,—X)) g’i
R 23

+aog,sinl+ (m — 2k — 2) ng-

= pesin™-%-30cos 0 {gr1 — of3}
where ¢,,, is defined by (4.3). Hence

1 bw -
I, = —m-’k—_}_—ljjﬂnjo {9 +1—0f1} p*cos e—m+2443 fginm-24-39 46 dQ), .

Adding the expressions for 7, and I,, we obtain

1 LR
=7 ’ a—1 a—m+24 +3 P m—2k—4
rf T K,,(a, k+1) [ jﬂnj jo fig1 747" cos fsin 0 drd 6dC2,,

¢]

+ J.Q I gk+1 pa,cosa—m+21~+33sinm—2/l-_30d0dQn:l (4.4)
nJo

which completes the induction, apart from the consideration of the
region in which (4.4) is valid. But both integrals converge uniformly
with respect to o when Rl a > Max (0, m — 2k — 4), and so the
result is proved.

§ 5. The limit of I°f as a = + 0 when m 18 even.

By § 4, I°f is regular in the half-plane Rl a > Max (0, m — 2k—2),
provided that the derivatives of f and S of order k<1 (m — 1) are
continuous. It is necessary to consider separately the cases when
m is even or odd. If m = 2p -+ 1, the largest possible value of
L isp — 1; and if the derivatives of order p — 1 are continuous,
If is regular in Rla > 1. I m =2p + 2, the largest possible
value of k is p; and if the derivatives of order p are continuous, /*f is
regular in Rl a« > 0. In the latter case, [°fis equal to

a2 3w jp. s I .
7P 2077 1 D(ka + 1) I'(3a + 1) [ Sﬂn jo Ofp re—1 cos 8 dr d6 4Q,,

+f r"gp p*cos*—10sin 6 d0dQ, |. (5.1)
0 ), |

By the recurrence formula (4.2) and (4.3), f, is independent of a,
whereas g, is a polynomial in « of degree p — 1.
The second term in square brackets in (5.1) evidently contributes

nothing to the limit of I°f as o - + 0. To deal with the first term,
we use the following lemma of Fremberg.!

1 Fremberg, loc. cit., p. 274. I am grateful to a referee for pointing out that

Fremberg's lemma, which omits reference to any *‘ unspecified parameters”, is really
insufficient. The unspecified parameters are to be the angle-variables ¢ , Paserr Dy 1
P -
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Let g (z, y) be a function of x and y and cerlain unspecified parameters,
which ts absolutely integrable over 0 = 2 =< a, 0y = b and which is
continuous at (0,0) untformly with respect to the parameters.

Let ja! g (x, y)ldx be bounded uniformly with respect to the paramelers
0

and with respect to y in 0 Sy = n < b.

3
Lej
0 |

and with respect tox in 0 = x = &< a. Then, as o—> -+ 0,
a b
azj j gz, y)z~1y*~! dedy—>g (0, 0),
0oJo

uniformly with respect to the parameters,

We have assumed throughout this work that thc surface § is
spatially-directed. It is readily seen that this implies that p, which
is a continuous function of the angle-variables 6 and 4, has a positive
lower bound a. Moreover, the part of the range of integration with
respect to r between a and p contributes nothing to the limit of 7¢f.

Hence we apply the lemma to

|
g (z,y) dy be bounded uniformly with respect to the parameters

ir ca
J= azjo jofp r*~1cos=1 g dr d@

— e a—1 ja—1 dr dy
N “2jo fof” R ARRVAT )
where y = cos 6. Evidently f,, being a continuous function of z, and
r, is a function of r and 6, and therefore of r and y, which fulfils the
conditions of the lemma; the ‘‘ unspecified parameters ** are the angle-
variables ¢. Hence, a8 a —> + 0,
Islf@-ra) o =pa .

r=

6=3m
But since the limit of J is independent of the variables ¢, we have

vm s——1/p (7, X)) (5.2)

lim If(T,X,) = -2— ‘)p+1 2/ (T, X;) = “2°T (p+1)

a—> 40
by (2.9) withn = 2p + 1.
From (4.2), we have
2°P(3m —3)
) = —_— f— ) 1 ) = 2 o
LT, X)=(m—2k—1)f._, (T, X,) I1(%7)1_11;_16)10(1', X)), (5.3)
In the present case, m = 2p + 2, so that

5@ x) =2EE Y iy x,)
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Substituting in (5.2), we obtain the final result that
lim I+f(T, X;) = f(T, X;)

a—> 40

when m = 2p + 2, provided that the partial derivatives of f and S of
order p are COnlinuous.

§ 6. The limit of I°f as a—> + 0 when m 1s odd.

If m = 2p + 1 and the derivatives of f and S of order p — 1 are
continuous, I°f is regular in Rl a > 1 and is equal to

- 1 i a—1 a—2 H (
TP—4 Qa+p -2 F(éa) F(%a—%) [ jQ,I .[O jof], -7 coSs 8sin 0 dr dad-)n

im
+ L Gp—1 p* €08 720 sin%f db dQn]. (6.1)
n 0

To continue the function into Rl ¢ > 0, we have to assume that the
derivatives of order p are continuous and again integrate by parts.
with respect to 6. The first term inside the square brackets is
1 i dcoge~14
—_——_— 7 i — d0 dQ,,
a—ljn jo Fy - ag d "
so that, when we integrate by parts, the terms at the limits do not

vanish: there is a non-vanishing term arising from the lower
limit 8 = 0.

Carrying out the integration by parts, we obtain for I°f

1
a?=4 22+P-1 I(la) I'(}a + 3)

H r" j” racosuazzi@;l:ldrdodgn
Q .

0 0 Zx;
%71'
0

P 2 _
+ "‘Qn { jO f?—] (T -7, xi) re~ldr };i?n + fﬂn j Upa' cos *0 fp—-l do dQ”

ir @ a j 3 agl"‘l
+ J.Q”J‘O p® COS 0(0p31n0 v

F(1osin 2 —X) 7 4 aog,, sin 6+gp_1}de a0,
(]

and this provides the analytical continuation into Rl a > 0. When

a—> + 0, all the terms inside the square brackets, except the second,

remain finite, and so contribute nothing to the limit of I+f. As for

the second term, we recall that p is a continuous function of # and ¢

with positive lower bound a, and the part of the range of integration
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with respect to » between a and p again contributes nothing. Hence,
since z; = X; when 0 == 0,

lim I¢f (T, X )

a—>40
. a 173

=u_1911_1:0 7=t 2°%7 T(}a + (e + 1) jnnjofp_l (T — 7, X;) r*=tdr dQ,
Q,

== lim a j fyor (T—r, X;) o= d,
0

the integrand now being independent of the angle-variables ¢.
To calculate this limit, we use the result that, if g (x) is con-

tinuous at 0,
lim ajag (z)x*~1dx = g (0).
> 40 0
Hence we have
lim I¢f (T, X;)
a=>+0
by (2.9) and (5.3). We have thus proved that
lim I+f(T, X;) = f(T, X;)
a=—>+40 )
when m = 2p + 1 provided that the partial derivatives of f and S of order
p are conlinuous. The results of § 5 and § 6 agree with those of

Fremberg.

— Q2P

T 2ppp

fp—2 (T, X3) = F(T, X;)

§ 7. Retarded potentials.

The transformation (2.4) of Riesz’s integral leads to an interesting
generalisation of the ordinary retarded potential. Let us suppose
that m = 4, that f and 9f/ ot are continuous and that § is the hyper-
plane t = —a. Then, when Rla > m — 2,

1 x a—m-+1
1= |10 =)
14

where integration is over the hypervolume V bounded by z, =0,
r == T 4+ a. We shall denote the boundary of V by X and the direction-
cosines of the outward normal by (A,,....A,).

Integrating by parts, we have

dx, dx,. . . .dz,,,

1 j xma—-m+2
of — T—r, z) ") 42
! (a—m+2)Hm(a)tjf( nE) T ‘

p

o [f ) \
— a—m+2 _~__ (<L
jxm m . <r)dx1 dx2....da:,,,j,
v
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But since Rl a > m — 2, the portion ¥, of £ on which z, vanishes
makes no contribution, and we may replace integration over X by
integration over X,, the curved part of 2. 'The resulting formuls
provides the analytical continuation into Rla :>m — 4, as may be
seen by introducing spherical polar coordinates.

In particular, we have

m—2F__ 1 f(T 'r 2')
I f"' gm—2 dm —1 F(%m—-l j Ay dx

a f —r % m
- ) { = )1 dz, dz, . .. dz ]
17
If we integrate by parts again and remember that A, = — 1 on X,, we
obtain
m—=2f _ 1 f(T-—T, xi)
I f— gm —2 w%m—lI‘(%m_l) j ‘_—Tﬁﬁ az.

<

On %,, d¥ = d=z, dz,... dz, and integration is over
7

=3 (m— X,)? < (T +a)2.

1

Lastly, if we make a—> + w0, we have

- 1 T —r, a;
Im—,f(j , Xz) ST T F(%?n - 1) j f( : R ,_;) dxl dxz. .. d:t,“

where integration is over the whole n-dimensional space. This
formula is a generalisation of the ordinary retarded potential, to which
it reduces when m = 4. For in the latter case we have

5= [fﬂr-’ll dz, dw, du,
which is a solution of Lu = f, since LI%f = I°f = f.
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