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In GARCH-mixed-data sampling models, the volatility is decomposed into the
product of two factors which are often interpreted as “short-run” (high-frequency)
and “long-run” (low-frequency) components. While two-component volatility mod-
els are widely used in applied works, some of their theoretical properties remain
unexplored. We show that the strictly stationary solutions of such models do not
admit any small-order finite moment, contrary to classical GARCH. It is shown
that the strong consistency and the asymptotic normality of the quasi-maximum
likelihood estimator hold despite the absence of moments. Tests for the presence of
a long-run volatility relying on the asymptotic theory and a bootstrap procedure are
proposed. Our results are illustrated via Monte Carlo experiments and real financial
data.

1. INTRODUCTION

Despite their ability to capture a number of empirical characteristics of financial
returns, the restrictive features of “one-factor” classical GARCH models are well
known. The parameter β in a GARCH(1,1) has to be close to 1 to ensure high-
volatility persistence, but this may induce undesirable restrictions on the marginal
distribution of the returns. Moreover, parameters governing the short-run effect of
shocks (α in the usual GARCH(1,1) parameterization, as in the equation of σ 2

t
in Model (1)) also impact the long-run response through the coefficients (αβ i)
of the asymptotic expansion of the volatility as a function of the past squared
returns. This lack of flexibility, in particular, the necessity to disentangle short- and
long-run impacts of shocks, has motivated the introduction of alternative volatility
specifications in the econometric and finance literatures. Additive component
GARCH models were introduced by Ding and Granger (1996) and Engle and
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INFERENCE ON GARCH-MIDAS MODELS 1423

Lee (1999) but, in recent years, multiplicative component GARCH processes have
attracted more attention. In such models, called GARCH-mixed-data sampling
(GARCH-MIDAS), the volatility is decomposed into the product of two factors
which may receive different interpretations, generally in terms of “short-run”
(high-frequency) and “long-run” (low-frequency) components. To cite just a few
recent references, the reader is referred to Engle, Ghysels, and Sohn (2013), Wang
and Ghysels (2015), Amado and Teräsvirta (2017), Conrad, Custovic, and Ghysels
(2018), and Conrad and Engle (2021).

While GARCH-MIDAS volatility models are widely used in applied works,
some of their theoretical properties remain unexplored. An exception is the paper
by Wang and Ghysels (2015) who consider stationarity and ergodicity, as well
as asymptotic theory for the quasi-maximum likelihood (QML) estimator, under
assumptions, we will further discuss. In this paper, we consider three issues: first,
the existence of small-order moments for the strictly stationary solution of the two-
component volatility model; second, the consistency and asymptotic normality of
the QML estimator; and third, testing the existence of a long-run volatility. The first
two issues are closely related because all existing proofs of the consistency and
asymptotic normality of QML estimators in standard GARCH models rely on the
existence of small-order moments. The third issue was also considered by Conrad
and Schienle (2020) who proposed a score-based test in a general multiplicative
component model.

One characteristic of most commonly used GARCH-type models is that strict
stationarity entails the existence of a small-order moment. Hence, even if stationary
solutions (rt) of standard GARCH models are generally characterized by heavy
tails (a desirable property for the modeling of financial returns), a maximal moment
exponent exists: for a sufficiently small power s (depending on both the volatility
parameters and the innovations distribution), we have E|rt|s < ∞. In a sense, this
means that such one-factor volatility models are too constrained, as the conditions
ensuring stability of the dynamics produce unexpected restrictions on the marginal
distributions. By contrast, the models we consider in this paper have the surprising
property of admitting strictly stationary solutions that do not have any power
moment (unless a very restrictive condition is imposed on the errors distribution).
This heaviness of the tails of the marginal distribution entails formidable statistical
difficulties for proving the consistency and asymptotic normality of the QML
estimator. Indeed, the existence of a small moment for the observed process is
crucial to derive the asymptotic properties of the QMLE in most GARCH-type
models (see, for instance, Francq and Zakoïan, 2019, Section 7.4). In particular,
contrary to the standard GARCH case, the proof of the consistency cannot rely
on the existence of a limiting QML criterion. To circumvent the absence of
moments, we use a property of exponential control of the trajectories which will
be detailed below.

The rest of the paper is organized as follows: In the next section, we study the
existence of strictly stationary solutions to the GARCH-MIDAS volatility model
and their moment properties. Section 3 considers the estimation by QML of the
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1424 CHRISTIAN FRANCQ ET AL.

model parameters. In Section 4, we propose tests for the existence of a long-run
volatility. Two approaches are considered to handle the problem of unidentified
parameters under the null and bootstrap procedures are proposed. Numerical and
empirical results are presented in Section 5. Section 6 concludes. Proofs are given
in the Appendix.

2. MODEL AND AN UNEXPECTED PROPERTY OF THE STATIONARY
SOLUTION

We study, in this article, a class of GARCH-MIDAS processes (rt) defined by{
rt = τtεt, τ 2

t = 1+a0
∑Q

i=1 ϕi(ϑ0)RVt−i,

εt = σtηt, σ 2
t = ω0 +α0ε

2
t−1 +β0σ

2
t−1,

(1)

where (ηt) is an i.i.d. sequence with Eη2
t = 1, a0 ≥ 0, ω0 > 0, α0 ≥ 0, and

β0 ≥ 0, RVt = ∑N−1
i=0 r2

t−i is a rolling window realized volatility, Q and N are
positive integers, and ϕi(ϑ0) are positive weights, depending on some d-variate
parameter ϑ0. For the specification of the functions ϕi used to smooth the realized
volatilities Engle et al. (2013), under a slightly different parametrization,1 suggest
exponential weights

ϕi(ϑ0) = ϑ i
0∑Q

j=1 ϑ i
0

, ϑ0 ∈ (0,∞), (2)

or beta weights

ϕi(ϑ0) = {1− i/(Q+1)}ϑ0−1∑Q
j=1{1− j/(Q+1)}ϑ0−1

, ϑ0 ∈ (0,∞).2 (3)

The standard GARCH(1,1) is obtained for a0 = 0. For a0 > 0, the volatility
component τ 2

t is often referred to as the long-run volatility (for large q), whereas
the short-run volatility σ 2

t is a function of the normalized (long-run detrended)
squared returns r2

t−i/τ
2
t−i.

Model (1) can be written under the following form, which will be used through-
out,{

rt = τtεt, τ 2
t = 1+a0

∑q
i=1 φi(ϑ0)r2

t−i,

εt = σtηt, σ 2
t = ω0 +α0ε

2
t−1 +β0σ

2
t−1,

(4)

where the φi(ϑ0)’s are nonnegative, with at least one strictly positive coefficient.
Model (4) is the model we focus on, and is more general than the GARCH-

1Engle et al. (2013) considered a unit-variance GARCH(1,1) equation, σ 2
t = 1−α0 −β0 +α0ε

2
t−1 +β0σ

2
t−1 for the

short-run volatility and introduced an intercept m in the equation of τ 2
t . This choice is guided by the necessity to

identify short- and long-run volatilities. The alternative identifiability condition we adopt here is a unit intercept,
m = 1, in the long-term volatility dynamics. This constraint is not restrictive, whereas imposing a unit-variance for
the short-run volatility requires α0 +β0 < 1, which is not necessary for strict stationarity. Note that Engle et al. (2013)
also allow for an intercept in the equation of rt .
2In these examples, the weight parameter ϑ0 is scalar, and therefore is not shown in bold.
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INFERENCE ON GARCH-MIDAS MODELS 1425

MIDAS for which we have q = N + Q − 1. Without loss of generality, assume
that

∑q
i=1 φi(ϑ0) = 1.

Next, we turn to the existence of strictly stationary solutions to Model (4).
Let δt = α0η

2
t +β0. Under the assumption

A1 γ := E logδ1 < 0,
the GARCH(1,1) equation in (4) admits the strictly stationary, non anticipative

and ergodic solution

εt = σtηt, σ 2
t = ω0

⎛⎝1+
∞∑

i=1

i∏
j=1

δt−j

⎞⎠ . (5)

Note that A1 is less restrictive than the condition α0 +β0 < 1 used in Wang and
Ghysels (2015).

It is known that, for r > 0,

E(σ 2r
t ) < ∞ if and only if Eδr

1 < 1. (6)

Therefore σt, and thus εt, cannot admit moments of any order when δt is not almost
surely bounded by 1, i.e., when

A2 P(δ1 > 1) �= 0.
Indeed, for ι > 0 such that P(δ1 > 1+ ι) > 0, we have

Eδr
1 ≥ (1+ ι)rP(δ1 > 1+ ι) → ∞,

as r → ∞. In particular, A2 is satisfied when η2
t is not bounded and α0 �= 0.3 It

follows from (6) thatE(σ 2r
t ) = ∞ for r large enough. This is a well-known property

dating back to Kesten (1973; see also Mikosch and Stărică, 2000).
Write (4) in matrix form as

rt = Atrt−1 +bt, (7)

where rt = (r2
t , . . . ,r

2
t−q+1)

′, bt = (ε2
t ,0

′
q−1)

′, and At = A(εt) is a companion-like
matrix:

At =

⎛⎜⎜⎜⎝
a0φ1(ϑ0)ε

2
t . . . a0φq−1(ϑ0)ε

2
t a0φq(ϑ0)ε

2
t

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

⎞⎟⎟⎟⎠ .

Noting that, under A1, the sequence (At,bt) is strictly stationary and ergodic,
equation (7) admits, by Brandt (1986, Thm. 1), the strictly stationary solution

rt = bt +
∞∑

i=1

⎛⎝ i∏
j=1

At+1−j

⎞⎠bt−i (8)

under the assumption

3This assumption is therefore very mild. Moreover, it can be verified in practice by estimating P(δ1 > 1).
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1426 CHRISTIAN FRANCQ ET AL.

A3 γA < 0, where γA = limk→∞ 1
kE log‖AkAk−1 . . . A1‖ < 0.

The top-Lyapounov exponent γA involved in A3 is well defined in [−∞,∞)

because E log+ ‖At‖ < ∞, in view of (9). Wang and Ghysels (2015) obtained
explicit conditions entailing A3 for particular submodels. The next assumption
guarantees that the long- and short-run volatilities τt and σt are not degenerate.

A4 a0 > 0 and α0 > 0.
According to Lemma 2.3 in Berkes, Horváth, and Kokoszka (2003), the strictly

stationary solution εt of the standard GARCH(1,1) equation satisfies

E|εt|s < ∞ for some s > 0. (9)

The following proposition shows that, surprisingly, this feature does not extend to
the solution (rt) of the GARCH-MIDAS model (4).

We start by proving the following lemma, of independent interest as it concerns
the GARCH(1,1) process (εt).

Lemma 1. Assume A1 and A2. For all integer k ≥ 2, all real numbers pj > 0 and
integers ij, j = 1, . . . k, there exists K ∈ (0,∞] such that

E|εt−i1 |p1 |εt−i1−i2 |p2 . . . |εt−i1−···−ik |pk ≥ KE|ε1|p1+···+pk .

The right-hand side, and thus the left-hand side, of the inequality is infinite when
p1 +·· ·+pk is large enough.

Proposition 1. Under A1 and A3, there exists a strictly stationary and ergodic
solution (rt) to (4). If in addition A2 and A4 hold, this solution does not admit any
moments, in the sense that

E|rt|s = ∞ for all s > 0. (10)

Note that Wang and Ghysels (2015) showed thatE|rt|2 = ∞, under slightly more
restrictive assumptions on the distribution of ηt (see their Proposition 3.9).

Remark 1. Without Assumption A2, the GARCH-MIDAS process may admit
moments at any order. Indeed, suppose that δ1 ∈ [0,1] with probability 1. It follows
that, for any s > 0, E|δt|s < 1 using (5). Since |ηt| is bounded when δt < 1, both
σ 2

t and ε2
t admit finite moments at any order. If in addition ε2

t is bounded with
probability 1 (which holds when |δ1| < δ < 1 with probability 1), let A the upper
bound of the matrices At componentwise. If the spectral radius of A is less than 1,
then Assumption A3 is satisfied and, by (8), r2

t admits moments at any order.

Example 1 (Trajectory of a process without any finite moment). Figure 1
displays a simulated trajectory of the simplest version of Model (4), which we
know, from Proposition 1 that it is a strictly stationary process without any finite
moment. Other simulations have been carried out, but the absence of any finite
moment is, to say the least, difficult to detect on the trajectories.
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Figure 1. Simulation of rt =
√

1+0.1r2
t−1εt with εt =

√
1+0.05ε2

t−1ηt , ηt ∼ N (0,1).

3. QMLE WITHOUT MOMENT ASSUMPTION ON THE OBSERVED
PROCESS

In this section, we study the estimation of the true parameter value θ0 =
(ω0,α0,β0,a0,ϑ

′
0)

′ in Model (4), assuming the functions φi are known and such
that

∑q
i=1 φi(·) = 1. We start by introducing a consequence of the strict stationarity

which will replace the existence of a small moment in the proof of the consistency
and asymptotic normality (CAN) of the QMLE.

3.1. Exponential Control of the Trajectories

Wang and Ghysels (2015) studied the asymptotic distribution of the QMLE of the
GARCH-MIDAS under the assumption that

E|rt|s < ∞ for some s > 0. (11)

This is a key assumption to show the CAN of the QMLE of GARCH (see
Berkes, Horváth, and Kokoszka, 2003; Francq and Zakoïan, 2004). To the authors’
knowledge, the consistency of the QMLE has never been shown without an
assumption that implies (11). Proposition 1 however entails that (11) cannot be
assumed in our framework.

To circumvent the failure of the small-order moment assumption, we will use
the following lemma, which is a consequence of Kandji (2023).

Lemma 2 (Kandji, 2023). Under A1 and A3, the strictly stationary solution of
(4) satisfies

limsup
k→∞

1

k
logr2

t+k ≤ 0, limsup
k→∞

1

k
logr2

t−k ≤ 0 a.s., (12)

for all t ∈ Z.
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1428 CHRISTIAN FRANCQ ET AL.

This property can be interpreted as an exponential control of the trajectories. It
is easy to see that (11) implies (12),4 but the converse is false.5

Assume that the observations r1, . . . ,rn constitute a realization (of length n) of
the two-factor GARCH process defined by (4), for the value θ0 of the parameter.
Let � a compact subset of (0,∞) × [0,∞)2 × [0,1) ×R

d and assume θ0 ∈ �.
For initial values r0, . . . ,r−q,σ̃

2
0 , and for θ ∈ �, the conditional Gaussian quasi-

likelihood is given by

L̃n(θ) = L̃n(θ;r1, . . . ,rn) =
n∏

t=1

1√
2πτ̃ 2

t σ̃ 2
t

exp

(
− r2

t

2τ̃ 2
t σ̃ 2

t

)
,

where the τ̃ 2
t and σ̃ 2

t are recursively defined, for t ≥ 1, by

τ̃ 2
t = τ̃ 2

t (θ) = 1+a
q∑

i=1

φi(ϑ)r2
t−i,

σ̃ 2
t = σ̃ 2

t (θ) = ω+αε̃2
t−1 +βσ̃ 2

t−1, ε̃2
t = r2

t

τ̃ 2
t

.

A QMLE of θ0 is defined as any measurable solution of

θ̂n = argmax
θ∈�

L̃n(θ) = argmin
θ∈�

1

n

n∑
t=1

�̃t(θ) := argmin
θ∈�

l̃n(θ),

where �̃t(θ) = r2
t

τ̃2
t σ̃ 2

t
+ log τ̃ 2

t + log σ̃ 2
t .

3.2. Asymptotic Properties of the QMLE

To establish the strong consistency of the QMLE, we need the following additional
assumptions.

A5 The support of the law of η2
t contains three distinct points.

A6 (φi(ϑ))i=1...,q = (φi(ϑ0))i=1...,q ⇒ ϑ = ϑ0.
A7 E logη2

t > −∞.
For the volatility of a standard GARCH to be nondegenerate, we know that

the support of the law of ηt must contain three distinct points. To show the
identifiability of the GARCH-MIDAS, we need the slightly stronger assumption
A5. This is due to the fact that the volatility of this model can be written as
a polynomial of order 2 in η2

t−1 (instead of order 1 in the GARCH case), with
coefficients belonging to the sigma-field generated by {ηu,u ≤ t −2}. Assumption
A6 is another identifiability condition which is satisfied, in particular, for the

4See, for instance, Exercise 4.12 in Francq and Zakoïan (2019).
5Let a sequence (Xt) of identically distributed random variables such that E|Xt| < ∞ but EX2

t = ∞. Then rt = e|Xt |/2

satisfies (12) because k−1 logr2
t+k = k−1|Xt+k| → 0 a.s. (see, for instance, Exercise 2.13 in Francq and Zakoïan,

2019). On the other hand, (11) is not satisfied because E|rt|s = Ees|Xt |/2 ≥ 1
2E(s|Xt|/2)2 = ∞, for any s > 0.
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INFERENCE ON GARCH-MIDAS MODELS 1429

exponential weights φi(ϑ) = ϑ i/
∑q

j=1 ϑ i (except when q = 1). The assumption is
also satisfied for the beta weighting schemes (3) (with obvious change of notation).
Assumption A7, precluding densities with too much mass around 0, is satisfied
by most commonly used distributions. It is not required for the consistency of
the standard GARCH (see Berkes, Horváth, and Kokoszka, 2003; Francq and
Zakoïan, 2004), but it is introduced here to circumvent the absence of any moments
(Proposition 1), which constitutes the major difficulty of the proof of the next
consistency result.

Theorem 1. Under Assumptions A1 and A3– A7, we have

θ̂n → θ0, a.s. as n → ∞.

We now turn to the asymptotic normality. We introduce the following additional
assumptions.

A8 θ0 ∈ ◦
�, where

◦
� denotes the interior of �.

A9 κη := Eη4
t < ∞.

Denote by ∇θ (resp. ∇2
θθ ′ ) the partial derivative operator (resp. the second-order

derivative operator) with respect to θ (resp. θ and θ ′). Similarly, we denote by ∇θi

the partial derivative with respect to any component θi of θ .
A10 The functions φi(·), for i = 1, . . . ,q, admit continuous second-order deriva-

tives and the matrix
[∇ϑφ1(ϑ0), . . . ,∇ϑφq(ϑ0)

]
has full-row rank.

A11 For i = 1, . . . ,q, either φi(·) = 0 or φi(ϑ0) �= 0.
Assumption A8 and A9 are also made in the standard GARCH case. Note that

A10 and A11 are satisfied in the cases of exponential and beta weights.
The next result establishes the asymptotic normality of the QMLE. Let Vt(θ) =

σ 2
t (θ)τ 2

t (ϑ).

Theorem 2. Under the Assumptions of Theorem 1 and A8–A11,

√
n(̂θn − θ0)

L→ N (0,(κη −1)J−1),

where

J := E

(
1

V2
t (θ0)

∇θVt(θ0)∇′
θVt(θ0)

)
(13)

is a positive-definite matrix.

Despite the absence of moments for the return process (which complicates the
proof), the form of the asymptotic variance is thus the same as in the standard
GARCH model (with obviously a multiplicative component volatility in the
definition of J).
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1430 CHRISTIAN FRANCQ ET AL.

4. TESTING THE EXISTENCE OF A LONG-RUN VOLATILITY

To test the existence of a long-term volatility component, i.e., the null hypothesis
H0 : a0 = 0, usual tests such as the Wald test may have nonstandard asymptotic
distributions due to the presence of the unidentified parameter ϑ under the null.
Indeed, it is known that in similar situations (see, e.g., Figure 1 in Francq, Horvàth,
and Zakoïan, 2010) the Wald, score, and likelihood-ratio (LR) test statistics do not
follow the standard distributions6 under the null. To solve the problem, we consider
two approaches. First, we fix the unidentified parameter to some value ϑ∗. This
gives rise to test procedures which have standard, χ2 or chi-bar-square, asymptotic
distributions under the null, but whose power properties depend on the arbitrary
choice of ϑ∗. We thus consider a second approach consisting in estimating by
QMLE all the parameters, including the unidentified parameter ϑ , and estimating
the critical value of the resulting Wald test by a residual-based bootstrap procedure.
Note that the identifiability problem is not present in the framework of Conrad
and Schienle (2020), in which a score-based test, not requiring the bootstrap, is
developed.

4.1. Fixing ϑ

The first approach relies on the auxiliary model{
rt = τtεt, τ 2

t = 1+a0
∑q

i=1 φi(ϑ
∗)r2

t−i,

εt = σtηt, σ 2
t = ω0 +α0ε

2
t−1 +β0σ

2
t−1,

(14)

where ϑ∗ is given, and the unknown parameter is θ0 = (ω0,α0,β0,a0)
′. Let θ̂n =

θ̂n(ϑ
∗) = (ω̂n,α̂n,β̂n,̂an)

′ be the QMLE of θ0. Denote also by θ̂G = (ω̂c,α̂c,β̂c)′

the QMLE of a standard GARCH(1,1) model. In other words, θ̂
c
n = (̂θ

′
G,0)′ is the

QMLE of θ0 under H0. Let ei be the ith column of the 4×4 identity matrix. Let also
η̂t = rt/Ṽ1/2

t (̂θn), where Ṽt(θ) = σ̃ 2
t (θ )̃τ 2

t (θ), and

η̂c
t = rt/Ṽ1/2

t (̂θ
c
n) = rt/σ̃t (̂θG),

κ̂n = n−1∑n
t=1 |̂ηt| 4, and κ̂c

n = n−1∑n
t=1

∣∣̂ηc
t

∣∣ 4. The Wald, score, and LR test
statistics are defined, respectively, by

Wn = n

κ̂n −1

â2
n

e′
4̂J

−1
n e4

, Ĵn = 1

n

n∑
t=1

1

Ṽ2
t

∇θ Ṽt∇′
θ Ṽt (̂θn),

Rn = n

κ̂c
n −1

∇′
θ l̃n(̂θ

c
n)
(̂

J
c
n

)−1 ∇θ l̃n(̂θ
c
n), Ĵ

c
n = 1

n

n∑
t=1

1

Ṽ2
t

∇θ Ṽt∇′
θ Ṽt (̂θ

c
n),

6χ2 for the score, chi-bar-square for the Wald, and LR statistics due to the positivity constraints on the estimator of
a0.
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and

Ln = 2
n

κ̂n −1

{
l̃n(̂θ

c
n)− l̃n(̂θn)

}
.

Denote by χ2
1 the chi-square distribution with one degree of freedom, and the

chi-bar-square distribution 1
2δ0 + 1

2χ2
1 that is the equal-weighted mixture of

the Dirac measure at 0 and the χ2
1 distribution. The following proposition gives

the asymptotic distributions of the previous test statistics under the null.

Proposition 2. Assume A1, A2, A3, A5, A7, A9 and that (ω0,α0,β0)
′ ∈ ◦

�G,

where
◦
�G denotes the interior of the GARCH(1,1) parameter space �G, a compact

subset of (0,∞)2 × [0,1). Under H0, we have Wn
L→ 1

2δ0 + 1
2χ2

1 , Rn
L→ χ2

1 , and

Ln
L→ 1

2δ0 + 1
2χ2

1 as n → ∞.

We will see in the numerical section that the finite sample distributions of the test
statistics are not always well approximated by their asymptotic laws. To solve the
problem, we will approximate the test statistic distributions by means of a residual-
based bootstrap procedure. Recent papers dealing with similar bootstrap inference
procedures are Leucht, Kreiss, and Neumann (2015), Beutner, Heinemann, and
Smeekes (2020), and Cavaliere, Nielsen, Pedersen, and Rahbek (2022).

Because the Wald test was found to be more powerful than the other tests
in our Monte Carlo experiments, we present the resampling scheme and study
its asymptotic behavior for the Wald-type statistic only. The algorithm is the
following.

1. On the observations r1, . . . ,rn, compute the QMLE θ̂G = (ω̂,α̂,β̂)′ of a
GARCH(1,1) model and compute the standardized residuals (discarding the
first n0 values the alleviate the effect of the initial values) η̂0

t = (̂ηc
t − mn)/sn,

for t = n0 +1, . . . ,n, where η̂c
t , mn, and sn are, respectively, the nonstandardized

GARCH residuals, their empirical mean and standard deviation. Denote by Fn

the empirical distribution of these standardized residuals. Also compute the
QMLE of the auxiliary GARCH-MIDAS model (14). Let ân be the estimator
of the parameter a.

2. Simulate a trajectory of length n of a GARCH(1,1) model with parame-
ter θ̂G and i.i.d. noise (η∗

t ) with distribution Fn, compute the QMLE θ̂
∗
n =

(ω̂∗
n,α̂

∗
n,β̂

∗
n ,̂a

∗
n)

′ of the GARCH-MIDAS model (14).
3. Repeat B times Step 2, and denote by â∗1

n , . . . ,̂a∗B
n the bootstrap estimates of a.

Approximate the p-value of the test H0 : a0 = 0 against H1 : a0 > 0 by p∗
B =

(1+#{̂a∗j
n ≥ ân;j = 1, . . . ,B})/(B+1).

To reduce the computational burden of bootstrap procedures, Kreiss et al. (2011)
and Shimizu (2013) proposed to simulate the distribution of the (Q)MLE by using
a Newton–Raphson-type iteration. This trick can not be used directly here because
θ0 belongs to the boundary of the parameter space under H0, which implies that
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the Bahadur-type approximation

√
n(̂θn − θ0) = J−1 1√

n

n∑
t=1

(
η2

t −1
) 1

Vt
∇θVt(θ0)+oP(1),

used for the Newton–Raphson iteration, is not valid when a0 = 0. By the arguments
of Francq and Zakoïan (2009), it can however be seen that in this case

√
n̂an = max

{
e′

4J−1 1√
n

n∑
t=1

(
η2

t −1
) 1

Vt
∇θVt(θ0),0

}
+o(1) a.s.

This suggests replacing â∗
n in Step 2 by

â∗
n = max

{
e′

4

(̂
J

c
n

)−1 1

n

n∑
t=1

(
η∗2

t −1
) 1

Ṽt
∇θ Ṽt (̂θ

c
n),0

}
. (15)

Since White (1982), it is known that the (Q)MLE of a misspecified model generally
converges to some pseudo-true value. The resampling algorithm is valid in the
following sense.

Theorem 3. Let the assumptions of Proposition 2 hold. Assume also that the
distribution of ηt admits a bounded density with respect to the Lebesgue measure.
Let â∗

n defined by (15). Under H0, for almost all realization (rt), as n → ∞ we
have, given (rt),
√

n̂a∗
n

L→ N1N≥0, N ∼ N
(
0,σ 2 := (κ −1)e4J−1e4

)
, (16)

and thus

W∗
n := n

κ̂n −1

(̂
a∗

n

)2
e′

4̂J
−1
n e4

L→ 1

2
δ0 + 1

2
χ2

1 .

Under H1 : a0 > 0, for almost all realization (rt), if θ̂G converges to some pseudo-
true value θG ∈ �G such that

J := E
1

V2
t

∇θVt∇θV ′
t

(
θG

0

)
exists and is invertible and if ân → a0 then p∗ → 0 as n → ∞, where p∗ =
limB→∞ p∗

B a.s.

The previous result thus shows that the distribution of â∗
n (resp. W∗

n) given (rt)

well mimics the (unconditional) distribution of ân (resp. Wn) under H0 when n is
large. It is also expected that in finite samples the bootstrap distribution of

√
n̂a∗

n
better approaches the distribution of

√
n̂an than its asymptotic distribution. The

consistency of the bootstrap is also ensured as soon as liminfn→∞ ân > 0 and√
n̂a∗

n = OP(1), which holds under the conditions of the theorem, but also under
more general conditions.
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4.2. Bootstrapping the Full Wald Test

The asymptotic properties of the test statistics defined in the previous section do
not depend on the fixed value of the parameter ϑ∗ in (14). However, the illustrations
presented in the numerical section show that the finite sample behavior of the tests
depends on this parameter. In addition, there is no obvious choice of the parameter
that one could recommend to the practitioner. When ϑ is estimated by QMLE,
together with the other parameters, the test statistics have nonstandard asymptotic
distributions under the null, and the bootstrap techniques become particularly
appealing. The resampling scheme is then modified as follows.

1. On the observations r1, . . . ,rn, compute the GARCH(1,1) QMLE θ̂G = (ω̂,α̂,β̂)′
and the standardized residuals η̂0

t ∼ Fn, exactly as in the previous algorithm.
Compute the QMLE of the GARCH-MIDAS model (4). Let ân be the estimator
of the parameter a.

2. Simulate a trajectory of length n of a GARCH(1,1) model with parame-
ter θ̂G and i.i.d. noise (η∗

t ) with distribution Fn, compute the QMLE θ̂
∗
n =(

ω̂∗
n,α̂

∗
n,β̂

∗
n ,̂a

∗
n,ϑ̂

∗′
n

)′
of the GARCH-MIDAS model (4).

3. Repeat B times Step 2, and compute the bootstrap estimated p-value p∗
B exactly

as in the previous algorithm.

Under H0, the distribution of ân in the QML estimation of the full GARCH-
MIDAS model (4) is an unknown function Gn(θ0,F) of the GARCH parameter
θ0 = (ω0,α0,β0)

′ and the distribution F of the noise ηt. The previous residual
bootstrap algorithm estimates Gn(θ0,F) by Gn(̂θG,Fn). A formal justification,
similar to that given in Theorem 3, would certainly rely on the strong consistency
of θ̂G and on the consistency of Fn, in the sense of (A.16), and would require
establishing a kind of continuity of Gn(·) and/or the asymptotic form of Gn as
n → ∞. To obtain the latter, techniques used to obtain the asymptotic distribution
of sup-type test statistics, as in Hansen (1996), could be considered but the problem
seems difficult because the parameter is on the boundary under the null hypothesis
(see Andrews, 2001). To the best of our knowledge, there is no available result
dealing with sup-tests when the parameter is on the boundary of the parameter set.

Note that the choice of B has little effect on the size and power of the test.
Consider the test which rejects the null when p∗

B ≤ 5%. If B = 19 or B = 99,
the size is exactly 5%. Note also that the bootstrap is a randomized procedure,
in the sense that the statistical decision depends not only on the observations
r1, . . . ,rn, but also on the random bootstrap trials (for a formal definition, see,
e.g., van der Vaart, 2000, p. 98). Taking a large value of B (we took B = 999
for the numerical illustrations of Section 5.2) has the advantage of reducing the
test randomness. To assess the performance of the bootstrap test on Monte Carlo
simulation experiments, the randomness of the procedure is not an issue. We thus
follow the so-called “warp-speed” methodology of Giacomini, Politis, and White
(2013) by computing ân on a large number K of Monte Carlo replications of
a GARCH-MIDAS model (1). For each of the K Monte Carlo simulations, we
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generated B = 1 bootstrap simulation and computed the corresponding bootstrap
statistic â∗

n. Let ξ ∗
α be the α-quantile of the K values of â∗

n. The size (resp. power)
of the bootstrap test of nominal level α is then approximated by the proportion
of ân > ξ ∗

1−α over the K replications when a0 = 0 (resp. a0 > 0) in the simulated
GARCH-MIDAS model.

5. NUMERICAL RESULTS

We first present the results of Monte Carlo experiments. Our objectives are
twofold: (i) evaluating the effect of the absence of moments on the accuracy
of the QMLE and (ii) assessing the performance of the QML in detecting and
estimating the two volatility components. Then, we will present an application on
real financial data.

5.1. Monte Carlo Experiments

The aim of our first Monte Carlo experiment is to study the effect of the absence
or presence of marginal moments on the empirical accuracy of the QMLE. We
simulated the simplest version of model (4) with q = 1, φi(ϑ) ≡ 1 and parameter
θ0 = (ω0,α0,β0,a0) given in the column “True” of Table 1. For the first data
generating process (DGP A), the noise ηt is N (0,1)-distributed, so that A2 is
satisfied, and the DGP is stationary but does not admit any moment. For the second
data generating process (DGP B), the noise ηt follows an equal-weighted mixture
of N (m,1) and N (−m,1) distributions truncated on the interval [−b,b], where m
is chosen such that Eη2

t = 1 and b = √
(1− ι−β)/α with 0 < ι < 1 − β. Since

at < 1− ι a.s., we have ε2
t ≤ bω/ι. If ι > abω, then aε2

t < 1, which entails that rt is
bounded. For DGP B, we took ι = 0.05, so that b = √

3, 0 < ι < 1−β = 0.2 and
ι > abω = 0.02

√
3. This DGP thus admits moments of any order.

The number of replications of each simulation is R = 1,000, with sample sizes
n = 2,000 and n = 4,000. The two DGPs have been estimated by QMLE. Table 1
displays the results of these Monte Carlo experiments. The columns “Min,” “Q1,”
“Q2,” “Q3,” “Max,” “Bias”, and “RMSE” provide, respectively, the minimum, the
first quartile, the median, the third quartile, the maximum, the bias, and the root
mean square error (RMSE) of the R estimated values of the parameter. The column
“MASE” refers to the estimated standard error based on the asymptotic theory.
The ith Mean Asymptotic Standard Error (MASE) is defined as the empirical
mean over the R replications of the estimated standard errors

√
�̂(i,i)/n, where

�̂ is the empirical estimator of the asymptotic variance � = (κη − 1)J−1 of the
QMLE. As expected, bias and RMSE decrease when the sample size increases. The
values of RMSE and MASE get closer as the sample size increases, which means
that the empirical distribution of the estimator becomes closer to its asymptotic
distribution. Unsurprisingly, the QMLE turns out to be more accurate when all
moments exist (DGP B) than when there is no moment (DGP A), but the difference
in accuracy is quite small.
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Table 1. Distribution of the QMLE over 1,000 replications

n True Min Q1 Q2 Q3 Max Bias RMSE MASE

DGP A satisfying A2 (no moments)

2,000 ω 0.2 0.023 0.146 0.221 0.343 1.391 0.076 0.206 0.760

α 0.05 0.000 0.037 0.054 0.082 0.240 0.015 0.045 0.043

β 0.8 0.000 0.676 0.781 0.849 0.978 −0.064 0.174 0.642

a 0.1 0.000 0.061 0.089 0.115 0.236 −0.012 0.044 0.046

4,000 ω 0.2 0.008 0.153 0.210 0.283 0.901 0.037 0.139 0.112

α 0.05 0.000 0.038 0.052 0.068 0.253 0.007 0.031 0.024

β 0.8 0.212 0.730 0.790 0.841 0.991 −0.031 0.120 0.098

a 0.1 0.000 0.076 0.096 0.115 0.193 −0.005 0.032 0.029

DGP B that does not satisfy A2 (moments at any order)

2,000 ω 0.2 0.008 0.149 0.227 0.340 1.030 0.073 0.197 0.310

α 0.05 0.000 0.038 0.055 0.081 0.205 0.014 0.041 0.040

β 0.8 0.161 0.680 0.774 0.846 0.992 −0.061 0.167 0.256

a 0.1 0.000 0.067 0.091 0.112 0.187 −0.012 0.039 0.039

4,000 ω 0.2 0.020 0.154 0.208 0.280 1.010 0.034 0.130 0.107

α 0.05 0.005 0.041 0.051 0.066 0.222 0.006 0.027 0.023

β 0.8 0.160 0.731 0.791 0.838 0.975 −0.028 0.111 0.093

a 0.1 0.000 0.081 0.097 0.113 0.181 −0.005 0.026 0.025

In a second set of Monte Carlo experiments, we assess the ability of our estima-
tion approach to estimate and detect the presence of long-term volatility. We chose
to estimate the GARCH-MIDAS specification of τt in (1), with beta weights given
by (3). We thus simulated 1,000 trajectories of size n = 4,000 of Model (1) with
N = 22, Q = 250, and (ω0,α0,β0,ϑ0,a0) = (0.028,0.115,0.831,2.067,0.056).7 For
the distribution of ηt, we took a standardized Student distribution with ν = 5.41
degrees of freedom.8 The estimation results are presented in the top panel of Table
2. Interestingly, the parameter a0 is estimated with a small bias, and its estimated
standard deviation is on average very close to the observed RMSE. We have redone
the estimation exercise on simulations of a standard GARCH (corresponding to
Model (4) with a0 = 0). The bottom panel of Table 2 shows that at least one half
of the estimated values of a are exactly equal to 0. Unsurprisingly, the estimations
of ϑ , whose true value is undefined when a0 = 0, are erratic. Figure 2 displays

7These parameters are those estimated on the NASDAQ index considered in Section 5.2, with RVs computed over
1 month and 1 MIDAS lag year, on a set of historical data of size n = 12,654 (for our simulations, we consider the
smallest sample size n = 4,000).
8The kurtosis thus corresponds to the empirical kurtosis of the residuals of the model fitted to the NASDAQ series.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466623000142
Downloaded from https://www.cambridge.org/core. IP address: 3.144.123.19, on 27 Dec 2024 at 04:43:14, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466623000142
https://www.cambridge.org/core
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Table 2. Distribution of the QMLE of a GARCH-MIDAS, when the DGP is a
GARCH-MIDAS (first part) and when it is a standard GARCH (second part of the
table)

True Min Q1 Q2 Q3 Max Bias RMSE MASE

ω 0.028 0.009 0.025 0.033 0.042 0.139 0.007 0.016 0.013

α 0.115 0.057 0.103 0.116 0.128 0.203 0.001 0.019 0.020

β 0.831 0.572 0.804 0.828 0.846 0.922 −0.008 0.037 0.033

ϑ 2.067 0.000 1.447 2.122 3.173 68.541 0.743 3.329 5.925

a 0.056 0.000 0.030 0.045 0.064 0.256 −0.005 0.033 0.032

ω 0.028 0.010 0.024 0.028 0.034 0.084 0.002 0.009 0.009

α 0.115 0.062 0.105 0.116 0.129 0.204 0.002 0.020 0.021

β 0.831 0.534 0.802 0.823 0.841 0.908 −0.012 0.038 0.033

ϑ UD 0.000 2.067 2.067 2.067 4,650.425 10.653 207.455 199.696

a 0 0.000 0.000 0.000 0.013 0.116 0.010 0.020 0.022

Note: In the latter case, the parameter ϑ is undefined (UD).

a typical example of estimates of the short- and long-term volatilities of the two
DGPs of Table 2. The distinction between the dynamics of the two DGPs is clear
from the figure, and can be confirmed by a formal test of the null hypothesis
H0 : a0 = 0. Figure 3 shows that the estimation of the volatilities is fortunately not
too sensitive to the choice of the integers N and Q in (1). Finally, we estimated a
(misspecified) standard GARCH(1,1) on simulations of a GARCH-MIDAS (with
same parameters as in the first part of Table 2). Table 3 presents the estimation
results. The columns “Mean” and “SD” stand for the mean and standard deviation
of the estimates over the 1,000 replications. It can be noted that the estimated value
of α+β is always very close to 1, a stylized fact that is often observed on real series.
Over a small sub-period of a randomly chosen simulation, Figure 4 graphically
compares the volatility estimates obtained by the correctly specified GARCH-
MIDAS model with those obtained by the misspecified standard GARCH(1,1).
Even if the volatility estimation of the standard GARCH is, as expected, dominated
by the GARCH-MIDAS estimation, the difference is not huge. Table 4 confirms
that the estimates obtained from the GARCH-MIDAS model are indeed better, but
only slightly better, than those obtained from the GARCH model, as measured by
the QLIK loss defined by

QLIK = 1

n

n∑
t=r0+1

V2
t

V̂2
t

+ log V̂2
t ,

where Vt denotes the true volatility and V̂t denotes the estimated volatility (for
the GARCH or the GARCH-MIDAS). We took r0 = 100 to avoid the effect
of the initial values required to compute the volatility estimates. The reader is
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Table 3. Distribution of the QMLE of a GARCH(1,1) when the DGP is the
GARCH-MIDAS of Table 2 (top panel)

Min Q1 Q2 Q3 Max Mean SD

ω 0.004 0.025 0.033 0.043 0.131 0.036 0.015

α 0.027 0.092 0.105 0.118 0.170 0.105 0.019

β 0.747 0.857 0.873 0.890 0.969 0.872 0.026

α +β 0.876 0.968 0.979 0.989 1.015 0.977 0.017

Table 4. Distribution of the QLIK losses over 1,000 replications when the
GARCH-MIDAS volatility is estimated by the GARCH-MIDAS model or by the
GARCH model

Model Min Q1 Q2 Q3 Max Mean SD

MIDAS 0.589 0.956 1.101 1.265 3.285 1.133 0.263

GARCH 0.591 0.959 1.108 1.272 3.301 1.139 0.265
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Figure 2. Examples of estimated short- and long-term volatilities when the GDP is a GARCH-
MIDAS (left) or a standard GARCH (right), with N = 22 and Q = 250.

referred to Patton (2011) for arguments in favor of the QLIK loss to compare
volatility forecasts/estimates. We did not use the MSE loss because we know from
Proposition 1 that σ 2

t does not admit any moment.
Table 5 gives the empirical relative frequency of rejection of the score, Wald,

and LR tests of Section 4.1 for the null of no long-run volatility. The DGP is that
used in Table 2, except that a0 = 0 (under the null) or a0 ∈ {0.01,0.05} (under the
alternative). The number of replications is 1,000. Different values of ϑ ≥ 1 are
used. With ϑ = 1, all the RVs involved in (1) have the same weight; the larger ϑ ,
the higher the weights of the most recent RVs. It can be seen from this table that
the three tests are conservative, but the size is better controlled with the score test.
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Table 5. Empirical relative frequency of rejection of the null that there exists no
long-run volatility (i.e., a0 = 0) using the score, Wald, and LR tests with a fixed
value of ϑ , for nominal levels varying from 0.1% to 20%

a0 ϑ Test 0.1% 1% 2% 3% 4% 5% 6% 7% 10% 20%

0 1 Rn 0 1 2 3.3 3.9 4.9 6.2 6.9 10.1 18.9

Wn 0 0 0 0 0 0 0.2 0.4 1.6 9.7

Ln 0 0.2 0.6 1.4 1.8 1.9 2 2.5 3.2 6.6

2 Rn 0 0.8 1.5 3 4.1 4.9 5.4 6.6 9.2 19.2

Wn 0 0 0 0 0.1 0.1 0.3 0.6 2.1 8.8

Ln 0 0.2 0.6 1 1.8 2.2 2.6 2.7 3.4 6.1

3 Rn 0 0.4 1.5 2.9 3.8 4.8 5.8 6.6 9.3 18.6

Wn 0 0 0 0.1 0.1 0.4 0.7 1.2 3.1 10.1

Ln 0 0.3 0.6 1.2 1.6 2.1 2.4 2.6 3.3 5.9

9 Rn 0.3 0.8 1.5 2.1 3.2 3.6 4.1 5.1 7.5 15.9

Wn 0 0 0.5 1.4 1.7 2.3 3.2 3.6 5.8 12.6

Ln 0 0.6 1.1 1.8 2.2 2.4 2.7 3.2 3.9 6.7

0.01 1 Rn 0.6 2.5 3.8 4.8 5.3 6.8 7.7 8.6 11.5 20.8

Wn 0 0 0.1 0.3 0.4 0.6 1.3 1.9 4.9 20.6

Ln 0.3 1.9 2.6 3.5 4.3 5 5.6 6.5 8.9 14.6

2 Rn 0.2 2.2 3.5 4.7 5.6 6.4 7.6 8.5 11.3 20.8

Wn 0 0.1 0.2 0.3 0.6 1.1 2 3 7.3 22.7

Ln 0.5 2.1 3.4 4.1 4.6 5.6 6.3 6.9 9.4 16.4

3 Rn 0.4 2.2 3.1 3.9 4.7 5.4 6.2 7.2 10.1 20.3

Wn 0 0.1 0.2 0.4 1.1 1.9 3 4.5 8.8 24.3

Ln 0.3 2.2 3 4.1 4.9 5.4 6 6.6 9.5 15.7

9 Rn 0.4 0.9 1.2 1.4 2.1 3.1 3.5 4 6 15

Wn 0 0.4 1.2 2.8 4.1 5.5 7.1 8.3 12.2 25.2

Ln 0.3 2 2.9 3.7 4.7 5.4 5.8 6.3 7.9 12.6

0.05 1 Rn 11.1 29.4 37.4 43.2 48.1 52.8 55.4 57.1 62.4 73.3

Wn 0.1 1.3 4.6 9.5 17.2 25.1 34 42.1 61.2 84.4

Ln 17.3 38.2 46.9 52.6 57.6 60.4 63.2 65.2 70.9 81

2 Rn 9.2 24.2 32.6 38.6 41 43.8 47 50.3 55.2 65.6

Wn 0 1.4 7.2 17.9 29.3 38.2 48.1 55.3 71.3 90.2

Ln 24.4 46.8 54.9 60.6 65 67.7 70.2 71.8 76.7 85

3 Rn 4.1 14.6 20.1 23.4 26.7 28.7 31 33.3 38.6 51.3

Wn 0 2 11.8 25.9 38.1 47.7 55.2 61.9 74.4 90.6

Ln 22.4 44.6 53.5 58.5 61.5 64.3 67.5 69.6 74.5 83.1

9 Rn 0.6 2.6 3.4 4.9 6.1 6.9 8.2 9.5 12.8 23.2

Wn 0 13.6 33.4 44.1 52.4 58.4 62 66.2 73.2 84.9

Ln 8.8 21.6 27.7 32.7 36.5 39.9 43.3 45.1 51.5 62.3
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Figure 3. As Figure 2 (left), with N = 44 and Q = 500.
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Figure 4. True and estimated volatility estimated by a GARCH-MIDAS and by a standard GARCH.

It can also be seen that the ranking of the three tests, in terms of power, vary a
lot with a0, the nominal level, and the parameter ϑ . Other numeric experiments,
not presented here, show that the Wald test seems slightly more powerful than the
two other tests when the sample size n is larger. The poor control of the error of
the first kind, as well as the sensitivity to the choice of the fixed parameter ϑ ,
motivated us to consider the bootstrapped Wald test of Section 4.2. Table 6 shows
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Table 6. Empirical relative frequency of rejection of the null that there exists no
long-run volatility (i.e., a0 = 0) using the bootstrapped version of the Wald test,
for nominal levels varying from 0.1% to 20%

a0 0.1% 1% 2% 3% 4% 5% 6% 7% 10% 20%

0 0.2 1.2 3.2 3.6 4.3 4.9 6.5 7.7 10.9 23.4

0.01 0.0 1.1 4.2 7.8 10.2 11.5 13.8 15.6 20.5 36.5

0.05 0.5 5.3 20.7 32.4 45.9 56.2 61.2 66.2 75.2 93.1

that this bootstrap test much better controls the error of the first kind, without
degrading the power. Note that these empirical sizes and powers are obtained from
the warp-speed methodology of Giacomini, Politis, and White (2013), as explained
in Section 4.2, with K = 1,000.

5.2. Application to Stock Indices

We estimated the GARCH-MIDAS model (1) with exponential weights on the
daily returns of the CAC 40, DAX, NASDAQ, and Hang Seng indices, from
March 1, 1990 to April 8, 2021. Table 7 displays the estimated coefficients when
N = 65 (corresponding to RVs over a quarter) and Q = 1,000 (corresponding to
4 MIDAS lag years). These values were advocated by Engle, Ghysels, and Sohn
(2013). We checked that the short- and long-term volatilities are not much modified
with other choices of these parameters (in particular with biannual rolling window
RV, i.e., N = 125, and 2 MIDAS lag years, or with N = 22 and Q = 250, i.e.,
RVs over 1 month and 1 MIDAS lag year). The last column of Table 7 displays
the estimated p-values of the bootstrap Wald test of Section 4.2 (with B = 999).
The most noticeable output of that table is that these p-values are small and the
estimated value of a is always clearly significant, except perhaps for the HSI series,
showing the existence of time-varying long-term volatilities. Figure 5 confirms that
the GARCH-MIDAS parameter estimate ân is well on the right of its estimated
distribution under the null H0 : a = 0. The latter distribution, which is a mixture of
a Dirac mass at 0 and a continuous distribution on (0,∞), has been estimated by
a Kernel density estimator (using the reflection method for boundary correction).
Figure 6 displays the estimated short- and long-term volatilities. The most striking
feature of this figure is that long-term volatility varies strongly, but as expected
slowly, over time. The volatilities of the CAC and DAX indices are surprisingly
similar, with in particular a strong increase in long-term volatility after the 2008
crisis and the recent COVID-19 crisis. The Nasdaq behaves similarly in the most
recent period, but reacted much more to the 2001 recession. The HSI behaves quite
differently, with an increase in long-term volatility after the Asian Crisis of 1997
and after the Global Financial Crisis of 2008, but with little response to the COVID-
19 pandemic.
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Table 7. GARCH-MIDAS fitted on stock returns

ω α β ϑ a p-value

CAC 0.031
0.007

0.110
0.011

0.846
0.017

16.308
6.656

0.013
0.005

0.003

DAX 0.027
0.008

0.095
0.012

0.867
0.018

11.724
5.729

0.012
0.005

0.010

NASDAQ 0.026
0.005

0.113
0.011

0.840
0.015

10.813
3.227

0.017
0.005

0.001

HSI 0.034
0.009

0.080
0.011

0.884
0.016

11.316
5.889

0.008
0.003

0.031

Note: The estimated standard deviations are displayed in small font, under the estimated values of the
coefficients. The last column gives the bootstrap estimated p-value of the Wald test of H0 : a = 0.
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Figure 5. Bootstrap estimate of the distribution of ân when a = 0 (in blue) and observed value of ân

(red vertical line).
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Figure 6. GARCH-MIDAS short- and long-term volatilities for four stock indices from March 1,
1990 to April 8, 2021.

6. CONCLUSION

In this article, we studied a class of models enabling long- and short-run volatilities.
We showed that strictly stationary solutions are so heavy tailed that not even
a small power moment exists. The main theoretical novelty with respect to the
literature on GARCH estimation comes from showing that strong consistency
and asymptotic normality of the QMLE hold despite the absence of moments.
We also proposed tests of the existence of a long-run volatility component.
Our numerical applications illustrated the ability of the QML to distinguish and
accurately estimate the two components in finite sample, but also confirmed that
a misspecified GARCH model can deliver reliable estimates of volatility. Other
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specifications of the long-run variance could be considered in further work, in
particular, those including exogenous variables (such as macroeconomic factors)
in the dynamics of τt, as in Conrad and Loch (2015), or Conrad and Schienle (2020)
among many others. Recently, Ibragimov, Kim, and Skrobotov (2023) proposed
a robust inference method for predictive regression models in which the error
term can follow a two-factor volatility model, but their long-run component is
nonstationary, in contrast with the GARCH-MIDAS studied in this paper.

GARCH-MIDAS is a complex model and several difficult questions remain
open. In particular, does stationarity entail the existence of log-moments? It seems
difficult to conjecture the result. On the one hand, it can be shown that (12) is
equivalent to the existence of a finite log-moment when (r2

t ) is i.i.d. and bounded
away from 0.9 On the other hand, Tanny (1974) provided an example of stationary
and ergodic sequence (rt) where (12) is true and the log-moment is infinite. At
least from a theoretical point of view, it would be interesting to know if this is
also the case for GARCH-MIDAS processes. Other interesting questions concern
the practical implications of the absence of moments. Starting from the general
principle that it is better for a model to share the same characteristics as the data to
which it applies, the question is whether financial returns (or other real-time series)
are devoid of a finite moment. It is too difficult a problem to solve here. It seems
from our experiments that the existence of moments might not be detectable from
the trajectories (see the graph in Example 1). Another interesting question raised
by a referee is the behavior of sample autocorrelations in the absence of theoretical
autocorrelations. From Davis and Resnick (1986), the empirical ACF of an AR(1)
with heavy-tailed i.i.d. innovations is known to converge to the AR coefficient.
More recently, Ibragimov, Pedersen, and Skrobotov (2021) derived the asymptotic
distribution of empirical autocorrelations of powers of absolute returns under
heavy-tailed assumptions. Do these results hold true when innovations follow the
GARCH-MIDAS model? The numerical experiments we have done lead us to
believe that the convergence holds but proving the result is beyond the scope of
this paper.

A. APPENDIX: Proofs

Proof of Lemma 1
Let Ft be the sigma-field generated by {ηu,u ≤ t}. Let μp = E|η1|p for any p > 0. Note
that μpi ∈ (0,∞] because μ2 = 1 implies that |η1| can not be equal to 0 with probability
1. Without loss of generality, assume i2 ≥ 1. We can also assume μp1 < ∞, otherwise the
result is trivial.

Since σt ≥ α
1/2
0 |εt−1|, for all positive random variable Xt−2 ∈ Ft−2, we have

E|εt−1|p1 Xt−2 = μp1Eσ
p1
t−1Xt−2 ≥ μp1α

p1
2

0 E|εt−2|p1 Xt−2.

9Using (i)–(iii) in Tanny (1974)
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By successive applications of this inequality, it follows that

E|εt−i1 |p1 |εt−i1−i2 |p2 . . . |εt−i1−···−ik |pk

≥
(

μp1α

p1
2

0

)i2
E|εt−i1−i2 |p1+p2 |εt−i1−i2−i3 |p3 . . . |εt−i1−···−ik |pk .

Iterating the argument, we obtain the result with

K =
(

μp1α

p1
2

0

)i2 (
μp1+p2α

p1+p2
2

0

)i3
· · ·
(

μp1+···+pk−1α

p1+···+pk−1
2

0

)ik

.

Under A2, E|εt|2r = ∞ for r large enough and the conclusion follows.

Proof of Lemma 2
First note that Xt = rt satisfies Stochastic Iterated Function Systems (2.1) in Kandji (2023),
with θt = (At,bt). Note that the assumptions of Theorem 2.1 in Kandji (2023) are satisfied:
(i) is satisfied because GARCH possess small order moments, (ii) is satisfied with �t the
operator norm of At, and (iii) is satisfied under A3. The lemma is thus a consequence
of Theorem 2.2 in Kandji (2023), since logr2

t+k ≤ 1
2 logd(rt+k,c) with c = 0 and d the

euclidean norm.

Proof of Proposition 1
The strictly stationary solution is obtained from (5) and (8), by taking rt equal to the square-
root of the first component of rt multiplied by the sign of ηt. Now, let i0 such that φ0 =
φi0(ϑ0) > 0. We have

τ2
t ≥ 1+a0φ0ε2

t−i0
τ2

t−i0
= 1+a0φ0ε2

t−i0
+a2

0φ2
0ε2

t−i0
ε2

t−2i0
+·· · .

We thus have |rt|s ≥ (a0φ0)ks/2|εt|s|εt−i0 |s · · · |εt−ki0 |s for any s > 0 and any k ≥ 1. By
A2, for any s > 0, there exists k ≥ 1 such that E|εt|ks = ∞. The conclusion follows from
Lemma 1.

Proof of Theorem 1
Let

ln(θ) = 1

n

n∑
t=1

�t(θ), �t(θ) = r2
t

τ2
t σ 2

t
+ logσ 2

t + logτ2
t ,

where τ2
t = τ2

t (θ) = 1+a
∑q

i=1 φi(ϑ)r2
t−i and σ 2

t = σ 2
t (θ) = ω+αε2

t−1(θ)+βσ 2
t−1, with

ε2
t (θ) = r2

t /τ2
t . Note that σ 2

t is well defined because

∞∑
k=0

βkε2
t−k−1(θ) ≤

∞∑
k=0

βkr2
t−k−1 < ∞, a.s.
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Since limsupk→∞ 1
k log

(
βkr2

t−k−1

)
≤ logβ < 0 by the second inequality in (12), the

convergence of the latter infinite sum follows from the Cauchy rule.
However, contrary to the standard GARCH case, the limiting criterion E�t(θ) might not

be defined, even at θ0, because if A2 holds the observed process has no moment.
The proof therefore relies on the following intermediate results which, contrary to the

standard GARCH case (see, for instance, Francq and Zakoïan, 2019, Sect. 7.4), do not
involve a limiting criterion:

(i) lim
n→∞ sup

θ∈�

|ln(θ)− l̃n(θ)| = 0, a.s.,

(ii) if σ 2
t (θ)τ2

t (θ) = σ 2
t (θ0)τ2

t (θ0) a.s., then θ = θ0,

(iii) if θ �= θ0, then E{�t(θ)−�t(θ0)} > 0,

(iv) any θ �= θ0 has a neighborhood V(θ) such that

liminf
n→∞

(
inf

θ∗∈V(θ)∩�
l̃n(θ∗)− l̃n(θ0)

)
> 0 a.s.

We first show (i). We have

sup
θ∈�

|ln(θ)− l̃n(θ)|

≤ 1

n

n∑
t=1

sup
θ∈�

{∣∣∣∣∣log

(
σ 2

t

σ̃ 2
t

)∣∣∣∣∣+ r2
t
|σ 2

t − σ̃ 2
t |

τ̃2
t σ 2

t σ̃ 2
t

+
∣∣∣∣∣log

(
τ2

t

τ̃2
t

)∣∣∣∣∣+ r2
t
|τ2

t − τ̃2
t |

τ̃2
t τ2

t σ 2
t

}
.

Noting that τ2
t = τ̃2

t for t > q, the last two terms asymptotically vanish and we have, for
t > q,

|σ 2
t − σ̃ 2

t | ≤ β|σ 2
t−1 − σ̃ 2

t−1| ≤ βt−q|σ 2
q − σ̃ 2

q |. (A.1)

Using the inequality |log(x/y)| ≤ |x− y|/(x∨ y) for x,y > 0, we deduce

sup
θ∈�

|ln(θ)− l̃n(θ)| ≤ K

n

n∑
t=1

ρt(1+ r2
t ),

where ρ = supθ∈� β < 1 and, in view of (A.1), K is Fq-measurable random variable. By
the first inequality in (12), we have

limsup
t→∞

1

t
logρtr2

t = logρ + limsup
t→∞

1

t
logr2

t ≤ logρ < 0, a.s.

from which it follows that ρtr2
t → 0, and then ρt(1+ r2

t ) → 0, a.s. as t → ∞. By Cesàro’s
lemma 1

n
∑n

t=1 ρt(1+ r2
t ) → 0, a.s. Because K is fixed (independent of n), the conclusion

follows.
Next, we turn to (ii). Letting Vt(θ) = σ 2

t (θ)τ2
t (θ), we have

Vt(θ) =
{
ω+α

Vt−1(θ0)

τ2
t−1(θ)

η2
t−1 +βσ 2

t−1(θ)

}⎧⎨⎩1+aφ1(ϑ)Vt−1(θ0)η2
t−1 +a

q∑
i=2

φi(ϑ)r2
t−i

⎫⎬⎭
:=bt−1(θ)η4

t−1 + ct−1(θ)η2
t−1 +dt−1(θ),
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where bt−1(θ),ct−1(θ),dt−1(θ) ∈ Ft−2. By Assumption A5, Vt(θ) = Vt(θ0) entails
bt−1(θ) = bt−1(θ0),ct−1(θ) = ct−1(θ0), and dt−1(θ) = dt−1(θ0). First, consider the
case φ1(ϑ0) �= 0. The equality bt−1(θ) = bt−1(θ0) then implies

τ2
t−1(θ)

τ2
t−1(θ0)

= aαφ1(ϑ)

a0α0φ1(ϑ0)
:= c. (A.2)

Now τ2
t−1(θ) = cτ2

t−1(θ0) writes

q∑
i=1

{aφi(ϑ)− ca0φi(ϑ0)}Vt−i(θ0)η2
t−i = c−1

which, because Vt−i(θ0) > 0 and by already given arguments, entails aφi(ϑ) = a0φi(ϑ0),
for i = 1, . . . ,q and c = 1. Because the φi(·)’s sum up to 1, we deduce a = a0 and
then, by Assumptions A4 and A6, ϑ = ϑ0. By (A.2), we also have α = α0. In view of
ct−1(θ) = ct−1(θ0), we obtain ω = ω0. In view of dt−1(θ) = dt−1(θ0), we get βσ 2

t−1(θ) =
β0σ 2

t−1(θ0) from which we deduce β = β0 by already given arguments. Now consider
the case φ1(ϑ0) = 0. The equality bt−1(θ) = bt−1(θ0) then implies φ1(ϑ) = 0, and
ct−1(θ) = ct−1(θ0) in turn implies τ2

t−1(θ0) = cτ2
t−1(θ) with c = α0/α, which allows us

to conclude by the previous arguments. Step (ii) is thus established.
Turning to (iii), let Wt(θ) = Vt(θ0)/Vt(θ) and, for K > 0, AK = [K−1,K], write

�t(θ)−�t(θ0) = g(Wt(θ),η2
t )1lWt(θ)∈AK +g(Wt(θ),η2

t )1lWt(θ)∈Ac
K
,

where, for x > 0,y ≥ 0, g(x,y) = − logx + y(x − 1). Introducing the negative part x− =
max(−x,0) of any real number x, we thus have

�t(θ)−�t(θ0) ≥ g(Wt(θ),η2
t )1lWt(θ)∈AK −

{
g(Wt(θ),η2

t )
}−

1lWt(θ)∈Ac
K

. (A.3)

The expectation of the first term in the r.h.s. is well defined and satisfies

E[g(Wt(θ),η2
t )1lWt(θ)∈AK ] = E[g(Wt(θ),1)1lWt(θ)∈AK ] ≥ 0,

since g(x,1) ≥ 0 for any x ≥ 0, with equality only if x = 1. By (ii), we have that Wt(θ) = 1
a.s. if and only if θ = θ0. We thus have, by Beppo Levi’s theorem,

lim
K→∞E[g(Wt(θ),η2

t )1lWt(θ)∈AK ] = E[g(Wt(θ),1) lim
K→∞1lWt(θ)∈AK ]

= E[g(Wt(θ),1)] > 0 for θ �= θ0.

To deal with the expectation of the second term in the r.h.s. of (A.3), we use the fact that for
y > 0, g(x,y) ≥ g(1/y,y). It follows that

−E

[{
g(Wt(θ),η2

t )
}−

1lWt(θ)∈Ac
K

]
≥ −E

[{
g(1/η2

t ,η
2
t )
}−

1lWt(θ)∈Ac
K

]
= −E

[{
g(1/η2

t ,η
2
t )
}−]

P[Wt(θ) ∈ Ac
K ]

→ 0 as K → ∞,

because, by A7, E

[{
g(1/η2

t ,η
2
t )
}−]

< ∞. This completes the proof of Step (iii).
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Now we prove (iv). For any θ ∈ �, we have

l̃n(θ)− l̃n(θ0) ≥ ln(θ)− ln(θ0)−|l̃n(θ)− ln(θ)|− |l̃n(θ0)− ln(θ0)|.
Hence, using (i),

liminf
n→∞

(
inf

θ∗∈V(θ)∩�
l̃n(θ∗)− l̃n(θ0)

)
≥ liminf

n→∞

(
inf

θ∗∈V(θ)∩�
ln(θ∗)− ln(θ0)

)
−2limsup

n→∞
sup
θ∈�

|l̃n(θ)− ln(θ)|

= liminf
n→∞

(
inf

θ∗∈V(θ)∩�
ln(θ∗)− ln(θ0)

)
. (A.4)

For any θ ∈ � and any positive integer k, let Vk(θ) the open ball of center θ and radius 1/k.
We have

liminf
n→∞

(
inf

θ∗∈Vk(θ)∩�
ln(θ∗)− ln(θ0)

)
≥ liminf

n→∞
1

n

n∑
t=1

inf
θ∗∈Vk(θ)∩�

�t(θ
∗)−�t(θ0). (A.5)

By arguments already given, under A7,

E

(
inf

θ∗∈Vk(θ)∩�
�t(θ

∗)−�t(θ0)

)−
≤ E

(
g(1/η2

t ,η
2
t ))
)−

< ∞.

Therefore, E
(

infθ∗∈Vk(θ)∩� �t(θ
∗)−�t(θ0)

)
exists in R∪{+∞}, and the ergodic theorem

applies (see Francq and Zakoïan, 2019, Exercises 7.3 and 7.4). From (A.5), we obtain

liminf
n→∞

(
inf

θ∗∈Vk(θ)∩�
ln(θ∗)− ln(θ0)

)
≥ E

(
inf

θ∗∈Vk(θ)∩�
�t(θ

∗)−�t(θ0)

)
.

The latter term into parentheses converges to �t(θ)− �t(θ0) as k → ∞, and, by standard
arguments using the positive and negative parts of infθ∗∈Vk(θ)∩� �t(θ

∗)−�t(θ0), we have
that

lim
k→∞E

(
inf

θ∗∈Vk(θ)∩�
�t(θ

∗)−�t(θ0)

)
= E {�t(θ)−�t(θ0)},

which by (i) is strictly positive. In view of (A.4), the proof of (iv) is complete.
Now we complete the proof of the theorem. The set � is covered by the union of an

arbitrary neighborhood V(θ0) of θ0 and, for any θ �= θ0, by neighborhoods V(θ) satisfying
(iv). Obviously, infθ∗∈V(θ0)∩� l̃n(θ∗) ≤ l̃n(θ0), a.s. Moreover, by compactness of �,
there exists a finite subcover of the form V(θ0),V(θ1), . . . ,V(θM). By (iv), for i = 1, . . . ,M,
there exists ni such that for n ≥ ni,

inf
θ∗∈V(θ i)∩�

l̃n(θ∗) > l̃n(θ0), a.s.

Thus, for n ≥ maxi=1,...,M(ni),

inf
θ∗∈⋃i=1,...,M V(θ i)∩�

l̃n(θ∗) > l̃n(θ0), a.s.

from which we deduce that θ̂n belongs to V(θ0) for sufficiently large n.
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Proof of Theorem 2
The proof relies on the following steps. There exists a neighborhood V(θ0) of θ0 such that:

(a) E sup
θ∈V(θ0)

∥∥∇θ�t(θ)∇′
θ�t(θ)

∥∥< ∞, E sup
θ∈V(θ0)

∥∥∥∇2
θθ ′�t(θ)

∥∥∥< ∞,

(b) J is invertible and
√

n∇θ ln(θ0)
L→ N (0,(κη −1)J),

(c) sup
θ∈V(θ0)

∥∥∥∥∥∥n−1/2
n∑

t=1

{
∇θ�t(θ)−∇θ �̃t(θ)

}∥∥∥∥∥∥→ 0 in probability as n → ∞,

sup
θ∈V(θ0)

∥∥∥∥∥∥n−1
n∑

t=1

{
∇2

θθ ′�t(θ)−∇2
θθ �̃t(θ)

}∥∥∥∥∥∥→ 0 in probability as n → ∞,

(d) n−1
n∑

t=1

∇2
θiθj

�t(θ
∗) → J(i,j) a.s. for any θ∗ between θ̂n and θ0.

We have

∇θ�t(θ) =
(

1− Vt(θ0)η2
t

Vt

)
1

Vt
∇θ Vt,

∇2
θθ ′�t(θ) =

(
1− Vt(θ0)η2

t
Vt

)
1

Vt
∇2

θθ ′Vt(θ)+
(

2
Vt(θ0)η2

t
Vt

−1

)
1

V2
t

∇θ Vt∇′
θ Vt(θ).

To establish (a), by the Hölder inequality, it thus suffices to show

E sup
θ∈V(θ0)

∣∣∣∣Vt(θ0)

Vt

∣∣∣∣2p1 < ∞, E sup
θ∈V(θ0)

∥∥∥∥∥ 1

V2
t

∇θ Vt∇′
θ Vt(θ)

∥∥∥∥∥
q1

< ∞, (A.6)

E sup
θ∈V(θ0)

∣∣∣∣Vt(θ0)

Vt

∣∣∣∣p2 < ∞, E sup
θ∈V(θ0)

∥∥∥∥ 1

Vt
∇2

θθ ′Vt(θ)

∥∥∥∥q2

< ∞, (A.7)

for some conjugate numbers pi,qi > 1 such that p−1
i + q−1

i = 1, with i = 1,2. We have
1
Vt

∇θ Vt(θ) = 1
τ 2

t (θ)
∇θ τ2

t (θ) + 1
σ 2

t (θ)
∇θσ 2

t (θ) and, omitting the dependence with respect

to θ , for a,α > 0 and β ∈ (0,1) (which holds in a neighborhood of θ0),

|τ−2
t ∇aτ2

t | ≤ 1/a, |σ−2
t ∇ασ 2

t | ≤ 1

α
, |σ−2

t ∇ωσ 2
t | ≤ 1/{ω(1−β)},

|σ−2
t ∇aσ 2

t | ≤ σ−2
t α

∑
k≥0

βkε2
t−k−1|τ−2

t−k−1∇aτ2
t−k−1| ≤ 1

a
.

Let I be the set of the indices i ∈ {1, . . . ,q} such that φi(ϑ0) > 0. Using A11 and the
continuity of φi(·), I is also the set of the indices i ∈ {1, . . . ,q} such that φi(ϑ) > 0 for
θ ∈ V(θ0), when V(θ0) is small enough. We thus obtain for θ ∈ V(θ0)
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‖τ−2
t ∇ϑ τ2

t ‖ ≤
∑
i∈I

‖∇ϑ logφi(ϑ)‖,

‖σ−2
t ∇ϑσ 2

t ‖ ≤ σ−2
t α

∑
k≥0

βkε2
t−k−1‖τ−2

t−k−1∇ϑ τ2
t−k−1‖ ≤

∑
i∈I

‖∇ϑ logφi(ϑ)‖.

Moreover, for all s0 ∈ (0,1), using x/(1+ x) ≤ xs0 when x ≥ 0,

|σ−2
t ∇βσ 2

t | = σ−2
t

∑
k≥0

(k +1)βk(ω+αε2
t−k−2)

≤ 1

(1−β)2
+ 1

β

∑
k≥0

(k +1)
αβk+1ε2

t−k−2

ω+αβk+1ε2
t−k−2

≤ 1

(1−β)2
+ 1

β

∑
k≥0

(k +1)

(
αβk+1ε2

t−k−2

ω

)s0

.

The inequality

τ2
t (θ0)

τ2
t (θ)

≤ 1+ a0

a

∑
i∈I

φi(ϑ0)

φi(ϑ)
∀θ ∈ V(θ0), (A.8)

A11 and (9) entail Esupθ∈V(θ0)
|εt(θ)|s < ∞. It follows that there exist K ∈ (0,∞) and

ρ ∈ (0,1) such that, for all q1 > 1 and s0 small enough,∥∥∥∥∥ sup
θ∈V(θ0)

∣∣∣σ−2
t ∇βσ 2

t

∣∣∣∥∥∥∥∥
2q1

≤ K +K
∑
k≥0

kρk

∥∥∥∥∥ sup
θ∈V(θ0)

∣∣εt−k−2(θ)
∣∣2s0

∥∥∥∥∥
2q1

< ∞.

The existence of the second expectation in (A.6) follows.
Let ι > 0 and V(θ0) such that β0/β < 1+ ι. For all θ ∈ V(θ0), using (A.8) and already

given arguments, there exist a generic K ∈ (0,∞) such that, for s0 ∈ (0,1),

σ 2
t (θ0)

σ 2
t (θ)

≤ K +K
∞∑

i=0

βi
0

r2
t−i−1

τt−i−1(θ0)

ω+αβi r2
t−i−1

τt−i−1(θ)

≤ K +K
∞∑

i=0

(1+ ι)iβis0ε
2s0
t−i−1(θ).

By choosing ι such that supθ∈V(θ0)
(1+ ι)βs0 < 1 and s0 sufficiently small, the expectation

of the supremum over V(θ0) of the last sum is finite. The existence of the first expectations
in (A.6) and (A.7) follows, for all values of p1 and p2.

Turning to second-order derivatives, we have

1

Vt
∇2

θθ ′Vt = 1

σ 2
t

∇2
θθ ′σ 2

t + 1

τ2
t

∇2
θθ ′τ2

t + 1

Vt
∇θ τ2

t ∇θ ′σ 2
t + 1

Vt
∇θσ 2

t ∇θ ′τ2
t . (A.9)

The matrix ∇2
θθ ′τ2

t has the form

∇2
θθ ′τ2

t =
⎛⎜⎝ 0 0 0

0 0
∑q

i=1 ∇ϑφi(ϑ)r2
t−i

0
∑q

i=1 ∇ϑ ′φi(ϑ)r2
t−i a

∑q
i=1 ∇2

ϑϑ ′φi(ϑ)r2
t−i

⎞⎟⎠ .
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Hence, by A11 and already used arguments, supθ∈V(θ0)

∥∥∥τ−2
t ∇2

θθ ′τ2
t

∥∥∥ is bounded by a con-

stant when V(θ0) is sufficiently small. We similarly show that supθ∈V(θ0)

∥∥∥σ−2
t ∇2

θθ ′σ 2
t

∥∥∥
admits moments of any order, which, using the triangle and Cauchy–Schwarz inequalities
in (A.9), allows to show the existence of the second expectation in (A.7) and to complete
the proof of (a).

Now we turn to (b). Suppose there exists a vector x = (x1,x2,x3,x4,x
′
5)′ ∈ R

d+4 such

that x′Jx = 0. Then, in view of ∇θ Vt(θ0) = σ 2
t (θ0)∇θ τ2

t (θ0)+τ2
t (θ0)∇θσ 2

t (θ0), we have

0 =x′∇θ Vt(θ0)

=σ 2
t x′
⎧⎨⎩(∇θ a0)

q∑
i=1

φi(ϑ0)r2
t−i +a0

q∑
i=1

∇θφi(ϑ0)r2
t−i

⎫⎬⎭
+ τ2

t x′ {∇θω0 + ε2
t−1∇θα0 −α0ε2

t−1∇θ logτ2
t−1 +σ 2

t−1∇θβ0 +β0∇θσ 2
t−1

}
:=et−1η4

t−1 + ft−1η2
t−1 +gt−1, a.s., (A.10)

where et−1,ft−1,gt−1 ∈ Ft−2. By Assumption A5, we must have et−1 = ft−1 = gt−1 = 0,
a.s. Therefore,

0 = et−1 =α0Vt−1σ 2
t−1x′ {φ1(ϑ0)∇θ a0 +a0∇θφ1(ϑ0)

}
+a0φ1(ϑ0)Vt−1σ 2

t−1x′ {∇θα0 −α0∇θ logτ2
t−1

}
,

from which we deduce

a0φ1(ϑ0)α0x′∇θ logτ2
t−1

=α0x′ {φ1(ϑ0)∇θ a0 +a0∇θφ1(ϑ0)
}+a0φ1(ϑ0)x′∇θα0 := c.

We thus have

a0φ1(ϑ0)α0x′∇θ τ2
t−1 = cτ2

t−1,

that is,

a0

q∑
i=1

[
φ1(ϑ0)α0x′ {a0∇θφi(ϑ0)+φi(ϑ0)∇θ a0

}− cφi(ϑ0)
]

r2
t−i = c.

By A5, it can be shown that any equality of the form
∑∞

i=1 bir
2
t−i = b0, where the bi’s are

real constants, entails bi = 0 for all i ≥ 0. We thus have c = 0 and, since a0α0 > 0,

φ1(ϑ0)
{
x4φi(ϑ0)+a0x′

5∇ϑφi(ϑ0)
}= 0, i = 1, . . . ,q.

First, suppose φ1(ϑ0) �= 0. Then, since
∑q

i=1 φi(ϑ0) = 1 and
∑q

i=1 ∇ϑφi(ϑ0) = 0, we
get x4 = 0. Thus, x′

5

[∇ϑφ1(ϑ0), . . . ,∇ϑφq(ϑ0)
] = 0, which by A10 entails x5 = 0. The

definition of c thus implies x2 = 0. Turning back to (A.10), we obtain

0 = x1 + x3σ 2
t−1 +β(x1∇ωσ 2

t−1 + x3∇βσ 2
t−1) = x3(1+β)σ 2

t−1 + yt−2,
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where yt−2 ∈ Ft−3. Using again A5, we deduce x3 = 0 and finally x1 = 0. We have shown
that x = 0 and the proof of the first part of (b) is now complete. We have

√
n∇θ ln(θ0) = 1√

n

n∑
t=1

(1−η2
t )∇θ logVt(θ0).

The convergence in distribution follows from the central limit theorem for square integrable
stationary and ergodic martingale differences (Billingsley, 1961).

Now we turn to (c). Note that

∇θ�t(θ)−∇θ �̃t(θ)

= r2
t

VtṼt
(Vt − Ṽt)∇θ logVt +

(
1− r2

t

Ṽt

)
(∇θ logVt −∇θ log Ṽt). (A.11)

We have, for t large enough, ∇θ τ2
t = ∇θ τ̃2

t . Moreover, σ̃ 2
t = ω +αε̃2

t−1 +βσ̃ 2
t−1, where

ε̃t = rt/τ̃t, thus

∇θ σ̃ 2
t = ∇θω+ ε̃2

t−1∇θα +α∇θ ε̃2
t−1 + σ̃ 2

t−1∇θβ +β∇θ σ̃ 2
t−1.

Therefore, for t large enough,

∇θσ 2
t −∇θ σ̃ 2

t = (σ 2
t−1 − σ̃ 2

t−1)∇θβ +β{∇θσ 2
t−1 −∇θ σ̃ 2

t−1}.
By (A.1), this entails, for t large enough,∥∥∥∇θσ 2

t −∇θ σ̃ 2
t

∥∥∥≤ Ktβt,

and, given that σ̃ 2
t and σ 2

t are uniformly bounded below, it is straightforward to deduce∥∥∥∇θ logσ 2
t −∇θ log σ̃ 2

t

∥∥∥≤ Kβt
{

t +
∥∥∥∇θ logσ 2

t

∥∥∥} .

By ∇θ logVt = ∇θ logσ 2
t +∇θ logτ2

t , we also have∥∥∥∇θ logVt −∇θ log Ṽt

∥∥∥≤ Kβt
{

t +
∥∥∥∇θ logσ 2

t

∥∥∥}, (A.12)

for large enough t. Noting that Vt − Ṽt = (σ 2
t − σ̃ 2

t )τ2
t for large t, we deduce from (A.11)

that∥∥∥∇θ�t(θ)−∇θ �̃t(θ)

∥∥∥≤K
{

1+ ε2
t (θ)

}{
t +∥∥∇θ logVt

∥∥}βt.

From the proof of (a), we have

E sup
θ∈V(θ0)

|εt(θ)|4s0 < ∞ and E sup
θ∈V(θ0)

∥∥∇θ logVt
∥∥2s0 < ∞

for sufficiently small s0 ∈ (0,1). By the triangle and Hölder inequalities, for K ∈ (0,∞) and
ρ ∈ (0,1), we then have

E

⎛⎝ ∞∑
t=1

sup
θ∈V(θ0)

∥∥∥∇θ �t(θ)−∇θ �̃t(θ)

∥∥∥
⎞⎠s

≤ K
∞∑

t=1

(ts +K)ρts < ∞,
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which entails that
∑∞

t=1 supθ∈V(θ0)

∥∥∥∇θ�t(θ)−∇θ �̃t(θ)

∥∥∥ is finite almost surely. The

convergence in the first part of (c) follows. The second convergence can be established
along the same lines.

Turning to (d), we note that, by (a) and the ergodic theorem,

n−1
n∑

t=1

∇2
θiθj

�t(θ0) → J(i,j) a.s. as n → ∞.

For all ε > 0, by the same argument, the continuity of the second derivatives and the
dominated convergence theorem, there exists a sufficiently small neighborhood V(θ0) of
θ0 such that

lim
n→∞

1

n

n∑
t=1

sup
θ∈V(θ)

∣∣∣∇2
θiθj

�t(θ)−∇2
θiθj

�t(θ0)

∣∣∣
=E sup

θ∈V(θ)

∣∣∣∇2
θiθj

�t(θ)−∇2
θiθj

�t(θ0)

∣∣∣≤ ε.

The point (d) is thus a consequence of the consistency of θ̂n.
The proof of the theorem then follows from a Taylor expansion of the criterion around

θ0 and classical arguments.

Proof of Proposition 2
Conditional on (rt), the bootstrap statistics a∗

n and W∗
n remain random because they depend

on ε∗
t ∼ Fn. The proof is standard and uses the same arguments as those of Theorem 2 and

Proposition 2 in Francq and Zakoïan (2009).

Proof of Theorem 3
Throughout the proof, we assume a fixed trajectory (rt)t∈Z, belonging to a subset of events
of probability 1 such that (A.12) holds uniformly in θ ∈ V(θ0) and Ĵc

n → J as n → ∞. This
sequence exists by the arguments used to show (c) and (d) in the proof of Theorem 2. We
thus have(̂

Jc
n

)−1 1√
n

n∑
t=1

(
η∗2

t −1
) 1

Ṽt
∇θ Ṽt (̂θ

c
n) = J−1 1√

n

n∑
t=1

xt,n +o(1)

with xt,n =
(
η∗2

t −1
)

1
Vt

∇θ Vt(θ0). Conditional on (rt), the previous quantity remains

random because it depends on ε∗
t ∼ Fn. To establish (16), by the Cramér–Wold device,

it thus suffices to show that, for any λ �= 0 ∈ R
4,

1√
n

n∑
t=1

λ′xt,n
L→ N

(
0,(κη −1)λ′Jλ

)
. (A.13)

Note that, still conditioning by (rt)t∈Z, for each n, the random variables λ′x1,n,λ
′x2,n, . . .

are independent and centered, with finite second-order moments. By the Lindeberg’s CLT
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for triangular arrays of square integrable martingale increments, it remains to show that

1

n

n∑
t=1

Var
(
λ′xt,n

)→ (κη −1)λ′Jλ > 0 as n → ∞, (A.14)

and, for all ε > 0,

1

n

n∑
t=1

E

({
λ′xt,n

}2
1{|λ′xt,n|≥√

nε}
)

→ 0 as n → ∞. (A.15)

In Lemma A.1 in Francq and Zakoïan (2022), it has been shown that, for standard GARCH,
the distribution Fn of the standardized residuals tends to the (unconditional) distribution F
of ηt. More precisely, for any almost everywhere continuous function h such that |h(x| ≤
ax4 +b, where a,b > 0, for almost all realization (rt)t∈Z, we have∫

h(x)Fn(dx) →
∫

h(x)F(dx) as n → ∞. (A.16)

It can be assumed that (rt)t∈Z is such that (A.16) holds. Since η∗
t ∼ Fn, given (rt)t∈Z, under

H0, we have

Eη∗
t = 0, Eη∗2

t = 1, and Eη∗i
t = 1

n−n0

n∑
k=n0+1

η̂0i
k → Eηi

1 for i ≤ 4,

as n → ∞. For t fixed, we then have

Var(λ′xt,n) =
{
λ′ 1

Vt
∇θ Vt(θ0)

}2
⎛⎝ 1

n−n0

n∑
k=n0+1

(
η̂0

k

)4 −1

⎞⎠
→
{
λ′ 1

Vt
∇θ Vt(θ0)

}2
(κη −1) as n → ∞,

from which (A.14) follows.
Given (rt), when λ′ 1

Vt
∇θ Vt(θ0) �= 0, we have

E
{
λ′xt,n

}2
1{|λ′xt,n|≥√

nε}

=
{
λ′ 1

Vt
∇θ Vt(θ0)

}2
E

⎧⎪⎪⎨⎪⎪⎩
∣∣∣η∗2

t −1
∣∣∣21(∣∣η∗2

t −1
∣∣≥ √

nε∣∣∣λ′ 1
Vt

∇θ Vt(θ0)

∣∣∣
)
⎫⎪⎪⎬⎪⎪⎭ . (A.17)

For any A > 0, there exists nA such that if n > nA then the expectation in the right-hand side
of (A.17) is bounded by

E

∣∣∣η∗2
t −1

∣∣∣21{∣∣η∗2
t −1

∣∣≥A
}.

By (A.16), this term tends as n → ∞ to∫∣∣x2−1
∣∣≥A

∣∣∣x2 −1
∣∣∣2F(dx),
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which is arbitrarily small when A is sufficiently large. We then obtain (A.15) by the Cesàro
Mean Theorem. The convergence (16) follows. The second convergence is obtained by
noting that 1

σ 2 N21N≥0 ∼ 1
2 δ0 + 1

2χ2
1 . Under H1 and the conditions given in the theorem,

a careful examination of the proof of Lemma A.1 in Francq and Zakoïan (2022) shows that
(A.16) holds if F denotes the marginal distribution of rt/σt(θG). It follows that

(̂
Jc

n

)−1 1√
n

n∑
t=1

(
η∗2

t −1
) 1

Ṽt
∇θ Ṽt (̂θ

c
n) = OP(1),

and thus
√

n̂a∗
n = OP(1). Since

√
n̂an → ∞ as n → ∞, we have P(

√
n̂a∗

n ≥ √
n̂an) → 0 as

n → ∞.
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