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Abstract

In this paper, we introduce the minimum dynamic discrimination information (MDDI)
approach to probability modeling. The MDDI model relative to a given distribution G is
that which has least Kullback–Leibler information discrepancy relative to G, among all
distributions satisfying some information constraints given in terms of residual moment
inequalities, residual moment growth inequalities, or hazard rate growth inequalities. Our
results lead to MDDI characterizations of many well-known lifetime models and to the
development of some new models. Dynamic information constraints that characterize
these models are tabulated. A result for characterizing distributions based on dynamic
Rényi information divergence is also given.
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1. Introduction

Laplace’s principle of insufficient reason says to distribute probability uniformly in the
absence of any constraint on the probabilities. The maximum entropy (ME) principle extends
this to the production of probability models close to uniform, which are least sensitive to
information other than that explicitly taken into account via some moment constraints (Jaynes
(1957), (1982)). The minimum discrimination information (MDI) or minimum cross-entropy
principle is a generalization of the ME principle for the development of models close to any given
distribution, instead of the uniform distribution (Kullback (1959), Shore and Johnson (1980)).
Recently, a maximum dynamic entropy (MDE) procedure for developing lifetime models has
been proposed. This may be viewed as an extension of the ME principle in the case that the
information is given in terms of hazard rate growth inequality constraints (Asadi et al. (2004)).
The ME and MDI procedures (i.e. those based on the corresponding principles) use the calculus
of variations, while the MDE procedure uses differential inequalities and hazard ordering. In this
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paper, we introduce the minimum dynamic discrimination information (MDDI), or dynamic
minimum cross-entropy, approach to probability modeling. In this procedure, models are
derived using simple residual moment inequalities, differential residual moment inequalities,
as well as differential hazard rate inequalities. This generalizes the MDE procedure.

Closeness between two distributions F and G with nonnegative supports is measured by the
Kullback–Leibler discrimination information

K(f : g) =
∫ ∞

0
f (x) log

f (x)

g(x)
dx, (1)

where f is the probability density function (PDF) of F , g is the PDF of G, and F is absolutely
continuous with respect to G. The discrimination information K(f : g) is greater than or equal
to 0, but it is not symmetric, and G is referred to as the reference distribution.

An important application of (1) is Kullback’s MDI principle for probability modeling and
statistical inference. The MDI principle of modeling considers the moment class of distributions

�Fθ = {Fθ : Ef [Tj (X) | θ ] = θj , j = 0, 1, . . . , J }, (2)

where X is a random variable with PDF f , Tj (X) are functions integrable with respect to f

with T0(X) = θ0 = 1, and θ = (θ1, . . . , θJ ) is a vector of moment parameters. The MDI
model F ∗ ∈ �Fθ with reference to G has the PDF f ∗ that minimizes K(f : g).

Recall that the MDI principle is also referred to as the minimum cross-entropy principle.
The Shannon entropy of a distribution F (Shannon (1948)) is defined by

H(f ) = −
∫ ∞

0
f (x) log f (x) dx.

The ME model is the distribution whose PDF f ∗ maximizes H(f ) subject to the set of
constraints in (2). When G is uniform, the MDI and ME procedures are equivalent.

When F is a lifetime distribution and the current age of the item must be taken into account,
the set of interest for studying information is not the entire support; rather, the set of interest is
the residual lifetime of the item, {x : x > t}. The discrimination information function of two
residual life distributions F(x; t) = PF (X ≤ x | X > t) and G(x; t) = PG(X ≤ x | X > t),
corresponding to two lifetime distributions F and G, is given by

K(f : g; t) ≡ K[f (x; t) : g(x; t)] =
∫ ∞

t

f (x; t) log
f (x; t)

g(x; t)
dx, (3)

where f (x; t) = f (x)/F̄ (t) and g(x; t) = g(x)/Ḡ(t) denote the residual PDFs for x > t , and
F̄ (t) = 1 − F(t) and Ḡ(t) = 1 − G(t) are the survival functions.

It is clear that for t0 = inf{t : F̄ (t) = 1}, we have K(f : g; t0) = K(f : g). By (3), for each
t, K(f : g; t) possesses all the properties of the discrimination information function (1). If
we consider T = {t : t > 0} as an index set, then K(f : g; t) provides dynamic discrimination
information ranging over T . The Shannon entropy of the residual lifetime distribution is defined
similarly:

H(f ; t) ≡ H [f (x; t)] = −
∫ ∞

t

f (x; t) log f (x; t) dx.

Several authors have studied information functions that take age into account (Ebrahimi
(1996), Ebrahimi and Kirmani (1996a), (1996b), Di Crescenzo and Longobardi (2002),
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Belzunce et al. (2004), Asadi et al. (2004)). Consideration of age has led to some important
insights about lifetime models, such as an information characterization of the proportional
hazards model (Ebrahimi and Kirmani (1996a)) and MDE characterizations of various lifetime
models, including some mixture distributions, for which no other maximum entropy formu-
lation is available (Asadi et al. (2004)). Some tests of distributional hypotheses based on
dynamic information measures have been developed for reliability analysis (Ebrahimi (1998),
(2001)). When the subject of study is an interval other than a lifetime (e.g. a search time or an
unemployment period) the present time point plays the role of ‘age’. More generally, dynamic
measures are applicable to any continuous distribution with positive support. Examples include
wage distribution, where the minimum wage is the source of the dynamics in the information
measures, and the distribution of the amount of a natural resource such as oil, where the
remaining amount in an oil field is of primary interest and the amount extracted introduces the
dynamics into the information measures.

It is natural to think of the dynamic extensions of the MDI and ME principles in terms of
the residual moments. The mean residual life function is defined by

µF (t) = E[X − t | X > t] =
⎧⎨
⎩

1

F̄ (t)

∫ ∞

t

F̄ (x) dx if F̄ (t) > 0,

0 if F̄ (t) = 0.

However, the mean residual life uniquely determines the lifetime distribution; that is,

F̄ (t) = µF (0)

µF (t)
exp

{
−

∫ t

0

1

µF (x)
dx

}
. (4)

Consequently, the MDI and ME procedures for developing models subject to residual moment
equations do not extend to the dynamic case. However, developing lifetime models subject to
residual moment inequalities is feasible.

In Section 2, we present results for developing MDDI and MDE models based on residual
moment inequality constraints. In Section 3, we give results for MDDI modeling based on
hazard rate growth inequality constraints, and also present a result that extends MDDI modeling
to the case in which closeness is measured by the information divergence of order α (also known
as Rényi information) between two distributions (Rényi (1961)).

2. Mean residual life constraints

Consider a set of distributions �F = {F }, where F has PDF f and is absolutely continuous
with respect to a reference distribution G that has PDF g. The MDDI model in �F relative to
G is F ∗, with PDF f ∗ such that K(f ∗ : g; t) ≤ K(f : g; t) for all t ≥ 0. That is, among all
the residual PDFs f (x; t) induced by all members of �F , the MDDI model F ∗ ∈ �F is that
whose residual PDF f ∗(x; t) retains its MDI property for all t ≥ 0.

The following theorem gives the properties of the MDDI distributions in classes of distribu-
tions with mean residual life inequality constraints.

Theorem 1. Let �F = {F : µF (t) ≤ q(t)} be a compact set of distributions, where F is
absolutely continuous with respect to a reference distribution G. Let F ∗ ∈ �F be such that
µF ∗(t) = q(t). If log(f ∗(x)/g(x)) is decreasing and concave then F ∗ is the MDDI distribution
relative to G. The same result holds, with �F = {F : µF (t) ≥ q(t)}, if log(f ∗(x)/g(x)) is
increasing and convex.
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Proof. We will prove the case in which µF (t) ≤ q(t). First, note that

K(f : g; t) =
∫ ∞

t

f (x; t) log
f (x; t)

g(x; t)
dx

=
∫ ∞

t

f (x; t) log
f ∗(x; t)

g(x; t)
dx +

∫ ∞

t

f (x; t) log
f (x; t)

f ∗(x; t)
dx (5)

≥
∫ ∞

t

f (x; t) log
f ∗(x; t)

g(x; t)
dx,

where the inequality is due to the fact that the second integral in (5) equals K(f : f ∗; t) ≥ 0.
This gives

K(f : g; t) − K(f ∗ : g; t) ≥
∫ ∞

t

f (x; t) log
f ∗(x; t)

g(x; t)
dx −

∫ ∞

t

f ∗(x; t) log
f ∗(x; t)

g(x; t)
dx

=
∫ ∞

t

f (x; t) log
f ∗(x)

g(x)
dx −

∫ ∞

t

f ∗(x; t) log
f ∗(x)

g(x)
dx

≥ 0.

Since log(f ∗(x)/g(x)) is decreasing and concave and µF (t) ≤ q(t) = µF ∗(t), the last
inequality follows from Theorem 3.A.13 of Shaked and Shantikumar (1994). The proof for
µF (t) ≥ q(t) is similar.

When G has a uniform PDF over {x : 0 < x < b}, the residual life PDF g(x; t) is also uniform
over {x : t < x < b} and the MDDI model reduces to the MDE model. The MDE model in a set
of distributions �F = {F } is the distribution with PDF f ∗(x) such that H(f ; t) ≤ H(f ∗; t)

for all t ≥ 0.

Corollary 1. Let �F = {F : µF (t) ≤ q(t)} be a compact set of absolutely continuous
distributions. Let F ∗ ∈ �F be such that µF ∗(t) = q(t). If f ∗(x) is increasing and log-
convex then F ∗ is the MDE distribution. The same results holds, with

�F = {F : µF (t) ≥ q(t)},
if f ∗(x) is decreasing and log-concave.

Applications of the above results include the identification of classes of distributions based
on mean residual life inequality constraints, where the well-known models are MDDI and/or
MDE, and the development of MDDI and MDE models for classes of distributions whose mean
residual life functions are bounded (above or below) by a given function q(t). Any continuous
function q(t) with the following properties is the mean residual life function of a distribution
function F :

• 0 ≤ q(t) < ∞; (6)

• q(0) > 0; (7)

• q ′(t) + 1 > 0; (8)

•
⎧⎨
⎩

if q(t0) = 0 for some t0 then q(t) = 0 for all t ≥ t0;
if q(t) > 0 for all t > 0 then

∫ ∞

0
(1/q(t)) dt = ∞.

(9)
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For any function satisfying (6)–(9), we can obtain a unique distribution given by (4). Then,
for any reference distribution, the conditions of Theorem 1 can easily be verified by comparing
the first and second derivatives of the two densities: f (x)/g(x) is increasing or decreasing if

d log f (x)

dx
≥ d log g(x)

dx
or

d log f (x)

dx
≤ d log g(x)

dx
, (10)

respectively, and log(f (x)/g(x)) is convex or concave if

d2 log f (x)

dx2 ≥ d2 log g(x)

dx2 or
d2 log f (x)

dx2 ≤ d2 log g(x)

dx2 , (11)

respectively. Under the conditions of Corollary 1, the right-hand sides of both (10) and (11)
equal 0.

The natural choice of reference distribution in lifetime analysis is the exponential distribution
with PDF

ge(x; λ) = λe−λx, λ > 0, x ≥ 0. (12)

For the exponential reference distribution, the right-hand side of (10) equals −λ and the right-
hand side of (11) equals 0. That is, log(f (x)/ge(x)) is concave or convex if f (x) is log-concave
or log-convex, respectively. Furthermore, K(f : ge) is well defined if F has positive support,
finite entropy, and finite mean. These conditions hold for all distributions presented in this
paper.

Example 1. This example illustrates several applications of the above results, summarized in
Table 1.

(a) Let q(t) = µ for all t . It is clear that q(t) satisfies (6)–(9). Then (4) gives the exponential
distribution with PDF f (x) = (1/µ)e−x/µ. The exponential distribution PDF is decreasing
and log-concave. By Corollary 1, this is the MDE model in the class of distributions with mean
residual life µF (t) ≤ µ.

(b) Let q(t) = β + αt for t < ∞, where α, β > 0 and q(∞) = 0. It is clear that q(t) satisfies
(6)–(9). Then (4) gives the generalized Pareto distribution with PDF shown in Table 1. This PDF
is decreasing and log-convex, so Corollary 1 is not applicable. However, for the exponential
reference distribution (12), log(f (x)/ge(x)) is increasing and convex when λ ≥ (2α+1)/β. By
Theorem 1, in the class of distributions with mean residual life µF (t) ≥ β +αt , the generalized
Pareto distribution is therefore the MDDI model relative to the exponential distribution with
λ ≥ (2α + 1)/β.

(c) Let q(t) = α/(β + t). It is clear that (6), (7), and (9) are satisfied when α, β > 0, and (8) is
satisfied when β2 ≥ α. Then (4) gives a distribution with PDF shown in Table 1. This PDF is a
combination of the PDFs of the normal and generalized normal distributions. It is log-concave
when β2 ≥ 3α. It is well known that log-concavity is equivalent to strong unimodality and
implies that the distribution has increasing failure rate.

(i) This PDF is decreasing when β2 ≥ 3α. By Corollary 1, it is the PDF of the MDE model
in the class of distributions with mean residual life µF (t) ≤ α/(β + t).

(ii) For the exponential reference distribution (12), log(f (x)/ge(x)) is decreasing and con-
cave when λ ≤ β(β2 − 3α)/[α(β2 − α)]. By Theorem 1, in the class of distributions
with mean residual life µF (t) ≤ α/(β + t), this is the PDF of the MDDI distribution
relative to the exponential distribution with λ ≤ β(β2 − 3α)/[α(β2 − α)].

https://doi.org/10.1239/jap/1127322018 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1127322018


648 M. ASADI ET AL.

Table 1: MDE and MDDI models relative to the exponential distribution, with mean residual life
inequality constraints, for the densities shown.

Mean residual inequality constraint
Parameter restrictions

MDE MDDI : ge(x; λ)

Exponential: f ∗(x) = 1

µ
e−x/µ with µ > 0

µF (t) ≤ µ None None

Generalized Pareto: f ∗(x) = α + 1

β

(
1 + α

β
x

)−1/α−2

with α, β > 0

µF (t) ≥ β + αt Not applicable λ ≥ 2α + 1

β

Generalized normal combination: f ∗(x) = eβ2/2α

β

[
(x + β)2

α
− 1

]
e−(1/2α)(x+β)2

with 0 < α < β2

µF (t) ≤ α

t + β
β2 > 3α β2 ≥ 3α, λ ≤ β(β2 − 3α)

α(β2 − α)

Extreme-value-type combination I: f ∗(x) =
(

1

α
eβx − β

)
eβxe(1/αβ)(1−eβx) with αβ < 1

µF (t) ≤ αe−βt αβ ≤ 3 − √
5

2
λ ≤ 1 − αβ

α
− β

1 − αβ

Extreme-value-type combination II: f ∗(x) = 1

γ + 1

[
1

α
(γ + eβx)2 − βeβx

]
e(1/αβ)(1−γβx−eβx)

with γ > 0, αβ < 2γ

µF (t) ≤ α

γ + eβt
αβ < γ λ ≤ min

{
3(γ − αβ)

α
,

√
3β

2

}

Half-logistic: f ∗(x) = β(α + 1)eβx

(α + eβx)2 with α, β > 0

µF (t) ≤ 1

αβ
(α + eβt ) log(1 + αe−βt ) α ≤ 1 α < 1, λ ≤

(
1 − α

1 + α

)
β

Mixture of exponentials: f ∗(x) = αβ1e−β1x + (1 − α)β2e−β2x with 0 < α < 1, β1, β2 > 0

µF (t) ≥ αβ−1
1 e−β1t + (1 − α)β−1

2 e−β2t

αe−β1t + (1 − α)e−β2t
Not applicable λ ≥ max{β1, β2}

The extension to the case q(t) = α/(β0 + β1t) is straightforward, and other models may
be developed similarly. For example, let q(t) = r(t)/s(t) > 0, where r(t) = ∑n1

i=0 αit
i

and s(t) = ∑n2
j=0 βj t

j are polynomials of degrees n1 and n2, respectively, such that n1 <

n2, α0β0 > 0, αn1βn2 > 0, and (d/dt)(r(t)/s(t)) > −1. It can be shown that q(t) satisfies
(6)–(9). Then (4) gives a distribution with PDF

f (x) = α0

β0

[(
s(x)

r(x)

)2

− d

dt

(
s(x)

r(x)

)]
exp

{
−

∫ x

0

s(v)

r(v)
dv

}
.
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For suitably chosen r(·) and s(·), this PDF satisfies the conditions of Corollary 1 and Theorem 1
for a given reference distribution G, and, thus, new MDE and MDDI models can be developed.

(d) Let q(t) = αe−βt . It is clear that (6), (7), and (9) are satisfied when α, β > 0, and (8) is
satisfied when αβ < 1. Then (4) gives a distribution with the extreme-value-type combination I
PDF shown in Table 1. It is easy to show that this PDF is log-concave.

(i) It can be shown that this PDF is decreasing when αβ ≤ (3 − √
5)/2. By Corollary 1,

it is the PDF of the MDE model in the class of distributions with mean residual life
µF (t) ≤ αe−βt .

(ii) For the exponential reference distribution (12), log(f (x)/ge(x)) is decreasing when
λ ≤ (1 − αβ)/α − β/(1 − αβ). By Theorem 1, in the class of distributions with mean
residual life µF (t) ≤ αe−βt , this is the PDF of the MDDI distribution relative to the
exponential distribution with λ ≤ (1 − αβ)/α − β/(1 − αβ).

(e) Let q(t) = α/(γ + eβt ). It is clear that (6), (7), and (9) are satisfied when α, β > 0, and
it can be shown that (8) is satisfied when αβ ≤ 2γ . Then (4) gives a distribution with the
extreme-value-type combination II PDF shown in Table 1.

(i) It can be shown that this PDF is decreasing and log-concave when αβ ≤ γ . By
Corollary 1, it is the PDF of the MDE model in the class of distributions with mean
residual life µF (t) ≤ α/(γ + eβt ).

(ii) For the exponential reference distribution (12), log(f (x)/ge(x)) is decreasing and con-
cave when λ ≤ min{3(γ − αβ)/α,

√
3β/2}. By Theorem 1, in the class of distributions

with mean residual life µF (t) ≤ α/(γ + eβt ), this is the PDF of the MDDI distribution
relative to the exponential distribution with λ ≤ min{3(γ − αβ)/α,

√
3β/2}.

(f) Let q(t) = (1/αβ)(α + eβt ) log(1 + αe−βt ). It is clear that (6)–(9) are satisfied when
αβ > 0. Then (4) gives the half-logistic distribution with PDF shown in Table 1. The PDF is
log-concave.

(i) It can be shown that this PDF is decreasing when α ≤ 1. By Corollary 1, it is the
PDF of the MDE model in the class of distributions with mean residual life µF (t) ≤
(1/αβ)(α + eβt ) log(1 + αe−βt ).

(ii) For the exponential reference distribution (12), log(f (x)/ge(x)) is decreasing when
λ ≤ β(1 − α)/(1 + α). By Theorem 1, in the class of distributions with mean residual
life µF (t) ≤ (1/αβ)(α + eβt ) log(1 + αe−βt ), the half-logistic distribution is the MDDI
distribution relative to the exponential distribution with λ ≤ β(1 − α)/(1 + α).

(g) Let

q(t) = αβ−1
1 e−β1t + (1 − α)β−1

2 e−β2t

αe−β1t + (1 − α)e−β2t
.

It can be shown that (6)–(9) are satisfied. Then (4) gives the mixture of two exponential
distributions with PDF shown in Table 1. This PDF is decreasing and log-convex, so Corollary 1
is not applicable. However, for the exponential reference distribution (12), log(f (x)/ge(x)) is
increasing and convex when λ ≥ max{β1, β2}. By Theorem 1, in the class of distributions with
mean residual life

µF (t) ≥ αβ−1
1 e−β1t + (1 − α)β−1

2 e−β2t

αe−β1t + (1 − α)e−β2t
,
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the mixture of two exponential distributions is the MDDI distribution relative to the exponential
distribution with λ ≥ max{β1, β2}.
(h) The exponential distribution is the MDDI distribution relative to all distributions shown
in Table 1. If log(f (x)/ge(x)) is decreasing and concave or increasing and convex, then
log(ge(x)/f (x)) is increasing and convex or decreasing and concave, respectively. We therefore
have the following results.

(i) In the class of distributions �F = {F : µF (t) ≥ µ}, the exponential distribution is the
MDDI distribution relative to the generalized Pareto distribution and the mixture of two
exponential distributions shown in Table 1.

(ii) In the class of distributions �F = {F : µF (t) ≤ µ}, the exponential distribution is the
MDDI distribution relative to the generalized normal combination, the extreme-value-
type combinations I and II, and the half-logistic distributions shown in Table 1.

The convexity or concavity condition on log(f ∗(x)/g(x)) in Theorem 1 may be difficult
to meet when G is a lifetime distribution such as the gamma distribution. Our next theorem
provides a solution to this problem by using the constraints on the mean residual life and its
growth.

Theorem 2. Let
�F =

{
F : µF (t) ≤ q(t),

µ′
F (t)

µF (t)
≥ q ′(t)

q(t)

}
be a compact set of distributions, where F is absolutely continuous with respect to a reference
distribution G and a prime denotes differentiation. Let F ∗ ∈ �F be such that µF ∗(t) = q(t).
If f ∗(x)/g(x) is decreasing then F ∗ is the MDDI distribution relative to G. The same result
holds, with

�F =
{
F : µF (t) ≥ q(t),

µ′
F (t)

µF (t)
≤ q ′(t)

q(t)

}
,

if f ∗(x)/g(x) is increasing.

Proof. The proof follows the same steps as did the proof of Theorem 1. Here, however, the
last inequality is obtained by noting that the conditions of Theorem 2 imply hazard ordering
(see Theorem 3).

Corollary 2. Let
�F =

{
F : µF (t) ≤ q(t),

µ′
F (t)

µF (t)
≥ q ′(t)

q(t)

}
be a compact set of absolutely continuous distributions. Let F ∗ ∈ �F be such that µF ∗(t) =
q(t). If f ∗(x) is increasing then F ∗ is the MDE distribution. The same result holds if f ∗(x) is
decreasing and

�F =
{
F : µF (t) ≥ q(t),

µ′
F (t)

µF (t)
≤ q ′(t)

q(t)

}
.

Example 2. Consider the gamma distribution with PDF

gg(x; λ, ν) = λν

�(ν)
xν−1e−λx, λ, ν > 0, x ≥ 0. (13)

Here, K(f : gg) is well defined if F has positive support, finite entropy, finite mean, and if
Ef [log X] < ∞. These conditions hold for all distributions presented in this paper.
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Table 2: MDDI models relative to the gamma gg(x; λ) and exponential (ν = 1) distributions, with mean
residual life and growth inequality constraints, for the densities shown.

Mean residual inequality and growth constraints Parameter restrictions on MDDI : gg(x; λ, ν)

Exponential: f ∗(x) = 1

µ
e−x/µ with µ > 0

µF (t) ≤ µ, µ′
F (t) ≥ 0 λ ≤ β, ν ≥ 1

or as above with the inequalities reversed or as above with the inequalities reversed

Generalized Pareto: f ∗(x) = α + 1

β

(
1 + α

β
x

)−1/α−2

with α, β > 0

µF (t) ≥ β + αt, µ′
F (t) ≤ α

(λβ − αν − α − 1)2

4αβλ
+ ν ≤ 1, ν < 1

Generalized normal combination: f ∗(x) = eβ2/2α

β

[
(x + β)2

α
− 1

]
e−(1/2α)(x+β)2

with 0 < α < β2

µF (t) ≤ α

t + β
,

µ′
F (t)

µF (t)
≥ − 1

α
µF (t) λ ≤ β(β2 − 3α)

α(β2 − α)
, β2 > 3α, ν ≥ 1

or as above with the inequalities reversed or as above with the inequalities reversed

Extreme-value-type combination I: f ∗(x) =
(

1

α
eβx − β

)
eβxe(1/αβ)(1−eβx) with α, β > 0, αβ < 1

µF (t) ≤ αe−βt ,
µ′

F (t)

µF (t)
≥ −β λ ≤ (1 − αβ)2 − αβ

α(1 − αβ)
, ν ≥ 1

Extreme-value-type combination II: f ∗(x) = 1

γ + 1

[
1

α
(γ + eβx)2 − βeβx

]
e(1/αβ)(1−γβx−eβx)

with γ > 0, αβ < 2γ

µF (t) ≤ α

γ + eβt
,

µ′
F (t)

µF (t)
≥ −β

α
eβtµF (t) λ ≤ min

{
3(γ − αβ)

α
,

√
3β

2

}
, ν ≥ 1

Half-logistic: f ∗(x) = β(α + 1)eβx

(α + eβx)2 with α, β > 0

µF (t) ≤ 1

αβ
(α + eβt ) log(1 + αe−βt ),

λ ≤
(

1 − α

1 + α

)
β, α < 1, ν > −λ+β +1

µ′
F (t)

µF (t)
≤ β

1 + αe−βt
− 1

µF (t)

or as above with the inequalities reversed λ ≥ β, ν ≤ 1

Mixture of exponentials: f ∗(x) = αβ1e−β1x + (1 − α)β2e−β2x with 0 < α < 1, β1, β2 > 0

µF (t) ≤ q(t),
µ′

F (t)

µF (t)
≤ q ′(t)

q(t)
λ ≥ β1, λ ≥ β2, ν ≥ 1

or as above with the inequalities reversed or as above with the inequalities reversed
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Table 2 shows the classes of distributions with mean residual life inequality and mean residual
life growth rate constraints, where the distributions shown in Table 1 are the MDDI distributions
relative to the gamma distribution with PDF gg(x; λ, ν). Note that, in Table 2,

q(t) = αβ−1
1 e−β1t + (1 − α)β2e−β2t

αe−β1t + (1 − α)e−β2t
.

The gg(x; λ, ν) column in Table 2 shows the parameter restrictions for f ∗(x)/gg(x) to be
decreasing or increasing. MDDI models relative to the exponential distribution with PDF
ge(x; λ) are recovered by letting ν = 1 in the parameter restrictions of gg(x; λ, ν). Simpler
restrictions on the exponential parameters, λ ≥ (2α + 1)/β and αβ < γ , can be obtained for
the generalized Pareto and for the extreme value type-II distributions, respectively. We note
that the lack of a convexity or a concavity restriction in Theorem 2 also allows us to reverse
the mean residual life inequalities for the exponential, the generalized normal combination,
the half-logistic, and the mixture of exponential distributions. Reversing the inequalities gives
new classes of distribution in which these models are the MDDI distributions relative to the
exponential distribution. The new classes are subsets of the complements of the classes of
distribution shown in Table 1.

3. Hazard growth constraints

In this section, we give a result that generalizes the MDE procedure using differential
inequality constraints for the hazard rate developed in Asadi et al. (2004). In general, for
any distribution F with PDF f and corresponding hazard function λF (t) = f (t)/(1 − F(t)),
the relative growth of the hazard function is given by

λ′
F (t)

λF (t)
= f ′(t)

f (t)
+ λF (t). (14)

For any distribution with PDF f ∗(x), we can identify a set of distributions �F = {F } such that

λ′
F (t)

λF (t)
≤ λ′

F ∗(t)

λF ∗(t)
or

λ′
F (t)

λF (t)
≥ λ′

F ∗(t)

λF ∗(t)
, (15)

where the right-hand side of each inequality is given by (14). Solution of the differential in-
equalities (15) with appropriate initial conditions gives a λF ∗(t) that dominates or, respectively,
is dominated by λF (t) for all distributions in �F . Thus, by relating the dynamic entropy and
the hazard rate of distributions in �F , H(f ∗; t) dominates H(f, t) and one can use it to identify
�F for which a given f ∗(x) is the MDE model.

Note that the hazard function is the rate of growth of the mean residual life, i.e.

λF (t) = 1 + µ′
F (t)

µF (t)
, t ≥ 0.

Thus, a set of differential inequality constraints may also be expressed in terms of a set of mean
residual life constraints. However, the constraints can be in more complicated forms, including
second-order differential equations.

Asadi et al. (2004) gave a result that relates hazard rate ordering with the dynamic entropy
ordering for distributions with monotone densities. Our next theorem provides a generalization
of Theorem 1 of Asadi et al. (2004) that facilitates the derivation of various MDDI models.
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Theorem 3. Let �F = {F : λF (t) ≤ r(t)} be a compact set of distributions, where F is
absolutely continuous with respect to a reference distribution G. Let F ∗ ∈ �F be such that
λF ∗(t) = r(t). If f ∗(x)/g(x) is decreasing then F ∗ is the MDDI distribution relative to G.
The same result holds, with �F = {F : λF (t) ≥ r(t)}, if f ∗(x)/g(x) is increasing.

Proof. The proof for λF (t) ≤ r(t) follows the same steps as did the proof of Theorem 1.
Here, the last inequality is obtained by noting that hazard rate ordering implies that the residual
lifetimes are stochastically ordered and that f ∗(x)/g(x) is decreasing in x. The proof in the
increasing case is similar and is given in Ebrahimi and Kirmani (1996b).

When the reference distribution is uniform, Theorem 3 reduces to the result of Asadi et al.
(2004) for dynamic entropy ordering of distributions with monotone densities. This result is
applicable for many suitable choices of reference distribution, including well-known lifetime
models such as the exponential, gamma, Weibull, and Pareto distributions.

Since, for ν = 1, the gamma distribution PDF (13) reduces to the exponential distribution
PDF (12), it suffices to identify the MDDI models relative to the gamma distribution in the
classes of distributions with hazard rate growth constraints. MDDI models relative to the
Weibull and Pareto distributions can be obtained via transformation of the results for exponential
distributions, as will be shown in the sequel.

Our next example derives numerous well-known lifetime distributions as MDDI models
relative to the gamma distribution. Most of them are also MDDI models relative to the
exponential distribution.

Example 3. Tables 3 and 4 show hazard rate constraints that define classes of distribution
where well-known distributions are MDDI models relative to the gamma distribution with PDF
gg(x; λ, ν). The differential inequality constraints shown in these tables are from Asadi et al.
(2004), with two exceptions. For Pareto type III, the right-hand side of the differential inequality
for the evolution of the hazard function is adopted from Hamedani (2005) and the differential
inequality for the log-normal distribution is a new result. Since the log-normal distribution is
not monotone, it was not included in Asadi et al. (2004); however, the proof for the log-normal
distribution is similar to the proof of Proposition 3.3 of Asadi et al. (2004). The types and
complexities of the differential inequality constraints were discussed in Asadi et al. (2004).
Since the hazard functions of the log-normal and half-normal distributions are not available in
closed form, the right-hand sides of the differential inequality constraints for these distributions
include their hazard functions λF ∗(t). For all other distributions listed in Tables 3 and 4, the
differential inequality constraints have closed forms. Note that, in Table 4,

Aα,β,λ = max

{
1, 2 − α(α − λ)

β

}
,

Bα,β,λ,ν = (α + λ − βν)2

4αν(1 − λ)
,

Cα,β,λ,ν = (λβ − αν − α − 1)2

4αβλ
+ ν.

Table 3 shows the restrictions on the parameters required in order to guarantee the mono-
tonicity of the likelihood ratio f ∗(x)/gg(x). In this table, setting ν = 1 in the parameter
restrictions gives the parameter restrictions for guaranteeing monotonicity of the likelihood
ratio with exponential reference distribution f ∗(x)/ge(x).
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Table 3: MDDI models relative to the gamma gg(x; λ) and exponential (ν = 1) distributions, with hazard
rate growth inequality constraints, for the densities shown.

Hazard rate growth constraints Parameter restrictions on MDDI: gg(x; λ, ν)

Exponential: f ∗(x) = βe−βx with β > 0

λF (0) = β, λ′
F (t) ≤ 0 λ ≤ β, ν ≥ 1

or as above with the inequality reversed or as above with the inequalities reversed

Mixture of exponentials: f ∗(x) = αβ1e−β1x + (1 − α)β2e−β2x with 0 < α < 1, β1, β2 > 0

λF (0) = αβ1 + (1 − α)β2,
λ ≤ β2, ν ≥ 1

β2 ≤ λF (t) ≤ β1,
λ′

F (t)

λF (t) − β2
≥ λF (t) − β1

or as above with the inequalities reversed λ ≥ β1, ν ≥ 1

Half-logistic: f ∗(x) = β(α + 1)eβx

(α + eβx)2 with α, β > 0

λF (0) = λ0,
λ′

F (t)

λF (t)
≥ β − λF (t) ≥ 0 λ ≤

(
1 − α

1 + α

)
β, α < 1, ν > λ + β + 1

or reverse the first inequality
λ ≥ β, ν ≤ 1

and drop the last constraint

Minimum of exponential and Pareto (type III): f ∗(x) = (α + β(x + 1))e−βx(x + 1)−(α+1)

with α, β > 0

λF (0) = α + β, λF (t) ≥ β,
λ ≤ β, ν ≥ 1

λ′
F (t)

λF (t) − β
≤ − 1

α
(λF (t) − β)

or as above with the last inequality reversed λ − ν ≥ α + 2β, ν < min{1, λ}

Extreme value (Gumbel): f ∗(x) = αe(β/α)x exp

{
α2

β
(1 − e(β/α)x)

}
with 0 < β < α2

λF (0) = α,
λ′

F (t)

λF (t)
≥ β

α
λ ≤ α − β

α
, ν ≥ 1

Minimum of exponential and extreme value: f ∗(x) = (β1ex + β2) exp{−β2x − β1(ex − 1)}
with β1 > 0, β2 ≥ 1

λF (0) = β1 + β2,
λ′

F (t)

λF (t)
≥ 1 − β2

λF (t)
λ ≤ β2 − 1, ν ≥ 1

Log-normal: f ∗(x) = 1√
2πx

e−(log x)2/2

λF (0) = 0,
λ′

F (t)

λF (t)
≥ λF ∗(t) − log t + 1

t
λ ≥ νeν, ν ≥ 1
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Table 4: MDDI models relative to the exponential ge(x; λ) and gamma gg(x; λ) distributions, with hazard
rate growth inequality constraints, for the densities shown.

Hazard rate growth constraints
Parameter restrictions

MDDI: ge(x; λ) MDDI: gg(x; λ, ν)

Weibull: f ∗(x) = αβxα−1e−βxα
with α ≥ 1, β > 0

λF (1) = αβ,
λ′

F (t)

λF (t)
≥ α − 1

t
Not applicable λ ≤ αβ, ν ≥ α + λ

or reverse the first inequality and replace
Not applicable λ ≥ αβ, ν ≤ (1 − β)α

the constraint in the PDF with α, β ≤ 1

Linear failure rate: f ∗(x) = (α + βx) exp{−(αx + 1
2 βx2)} with 0 < β ≤ α2

λF (0) = α, λ′
F (t) ≥ β λ ≤ α − β

α
λ ≤ α, Aλ,β,α ≤ ν ≤ 2

Pareto type II: f ∗(x) = αβα(x + β)−(α+1) with α > 1, β > 0

λF (0) = α,
λ′

F (t)

λF (t)
≤ −λF (t)

α
λ ≥ α + 1

β
Bα,β,ν,λ ≤ 1, ν ≤ 1

Generalized Pareto: f ∗(x) = α + 1

β

(
1 + α

β
x

)−1/α−2

with α, β > 0

λF (0) = α + 1

β
,

λ′
F (t)

λF (t)
≤ − α

α + 1
λF (t) λ ≥ 2α + 1

β
Cα,β,λ,ν ≤ 1

Half-normal: f ∗(x) =
√

2

π
e−x2/2

λF (0) =
√

2

π
,

λ′
F (t)

λF (t)
≥ λF ∗(t) − 1

2
t Not applicable ν ≥ 1 + 1

4 λ2

Table 4 shows more complicated cases. For the Weibull and half-normal models, the
monotonicity condition can not be satisfied by ge(x; λ). For other models, the parameter
restrictions for a gamma reference distribution are complicated and simpler restrictions, for an
exponential reference distribution, can be obtained as shown in the table.

Table 5 shows several other distributions that, by Theorem 3, can be obtained as MDDI
distributions relative to the exponential and gamma distributions. The constraints for these
distributions have very complicated forms and, thus, are not listed.

Finally, noting that if log f (x)/gg(x) is decreasing or increasing then log gg(x)/f (x) is
respectively increasing or decreasing, we can apply Theorem 3 to derive the gamma model
as the MDDI distribution relative to those listed in Tables 3–5 for which K(ge : f ) is well
defined. Consider the class of distributions with the following hazard rate growth constraints,
where λF∗(t) is the hazard rate of the gamma distribution, i.e. λF (1) = λ0,

λ′
F (t)

λF (t)

⎧⎪⎪⎨
⎪⎪⎩

≥ λF ∗(t) + (α − 1)

t
− 1 for α ≥ 1,

≤ λF ∗(t) + (α − 1)

t
− 1 for α ≤ 1.
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Table 5: MDDI models relative to the exponential ge(x; λ) and gamma gg(x; λ, ν) distributions, with
hazard rate growth inequality constraints on the PDF f .

Density
Direction of inequality

ge(x; λ) gg(x; λ, ν)

Beta prime: f (x) ∝ xα−1(1 + x)−(α+β) ≥ ≥
F : f (x) ∝ xα/2−1(β + αx)−(α+β)/2 ≥ ≥
Generalized inverse Gaussian: f (x) ∝ xξ−1e−(αx+β/x)/2 ≥ ≥

Inverse Gaussian: ξ = − 1
2 , α = β/γ 2 ≥ ≥

Levy–Smirnov: ξ = − 1
2 , α = 0, β = 1 ≥ ≥

Generalized normal: f (x) ∝ xα−1e−(x/β)2 ≤ ≤
Inverse gamma: f (x) ∝ x−α−1e−β/x ≥ ≥
Inverse generalized normal: f (x) ∝ x−α−1e−(β/x)2 ≥ ≥
Toranzos: f (x) ∝ xξ e−(1/2)(α+βx)2

, ξ > 0 Not applicable ≤

As in the log-normal and half-normal cases, the right-hand sides of the differential inequality
constraints include the gamma hazard rate. Under the parameter restrictions shown in Tables 3
and 4, the gamma distribution is the MDDI model relative to the respective distributions shown
in these tables.

It can be shown that many of the distributions in Tables 3–5 have the MDDI property relative
to the Weibull and Pareto distributions. In addition to the extreme value distribution, the
minimum of the exponential and extreme value distributions, and the log-normal distribution,
all distributions listed in Tables 4 and 5 (except the beta prime distribution, in the latter case)
are MDDI models relative to the Weibull distribution, subject to some parameter restrictions. It
can also be shown that, except for the log-normal distribution, all distributions listed in Table 3,
the linear failure rate and Pareto type-II distributions shown in Table 4, and all distributions
listed in Table 5 are MDDI models relative to the generalized Pareto distribution, subject to
some parameter restrictions.

Theorem 4. Let Y = φ(X) be a one-to-one transformation. Then

K(f ∗
φ : gφ; φ(t)) = K(f ∗ : g; t) ≤ K(f : g; t) = K(fφ : gφ; φ(t)), (16)

where

f ∗
φ (y) = f ∗(φ−1(y))

∣∣∣∣dφ−1(y)

dy

∣∣∣∣,
gφ(y) = g(φ−1(y))

∣∣∣∣dφ−1(y)

dy

∣∣∣∣.
Proof. The proof follows from the fact that K(f : g) is invariant under nonsingular

transformations (Kullback (1959)).
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This result allows us to produce new MDDI models F ∗
φ , with reference Gφ , in the new

classes of distribution obtained by the following transformations of the hazard constraints:

λFφ (t) = λF (φ−1(t))

∣∣∣∣dφ−1(t)

dt

∣∣∣∣,
λ′

Fφ
(t)

λFφ (t)
= λ′

F (φ−1(t))

λF (φ−1(t))

∣∣∣∣dφ−1(t)

dt

∣∣∣∣ +
∣∣∣∣d2φ−1(t)/dt2

dφ−1(t)/dt

∣∣∣∣. (17)

The parameter restrictions for the transformed reference and MDDI models are found from
the fact that fφ(y)/gφ(y) is decreasing or increasing in y if and only if

f ′
φ(y)

fφ(y)
≤ g′(φ−1(y))

g(φ−1(y))
+

∣∣∣∣d2φ−1(y)/dy2

dφ−1(y)/dy

∣∣∣∣ or
f ′

φ(y)

fφ(y)
≥ g′(φ−1(y))

g(φ−1(y))
+

∣∣∣∣d2φ−1(y)/dy2

dφ−1(y)/dy

∣∣∣∣,
(18)

respectively.
The following example discusses some important applications of the properties of the

transformation outlined above.

Example 4. Weibull, Pareto, and linear failure rate distributions can be obtained by one-to-one
transformations of the exponential distribution. Figure 1 illustrates transformations from an
exponential random variable X to random variables that have these distributions. Their PDFs
are

gW(y; λ, τ) = λτyτ−1e−λyτ

, y ≥ 0, λ, τ > 0,

gP(y; λ, τ) = λτλ(τ + y)−(λ+1), y ≥ 0, λ, τ > 0,

glfr(y; η, γ ) = (γ + ηy)e−(γy+(η/2)y2), y ≥ 0, γ, η > 0,

where η = 2λ/b and γ = √
aη, a, b > 0.

The MDDI models relative to these distributions can be obtained from the MDDI models,
relative to the gamma distribution, listed in Tables 3 and 4 via transformations of the exponential
random variable shown in Figure 1. An important implication of the transformation invariance
in this case is that the constant hazard property of the exponential distribution may be too
restrictive, and we may seek to develop models that are as close to a distribution with a more
flexible hazard function as a given model is to the exponential distribution. For example, we
may develop a model that is as close to the Weibull distribution (with a power hazard function)
as the extreme value distribution is to the exponential distribution. The solution is F ∗

φW
with

PDF

f ∗
φW

(y) = ατyτ−1e(β/α)yτ

exp

{
α2

β
(1 − e(β/α)yτ

)

}
,

obtained by applying φW to the extreme value PDF shown in Table 3. By the invariance property
(16), we have K(f ∗

φW
: gW; t) = K(f ∗ : ge; t) for all t ≥ 0. Furthermore, the new distribution

F ∗
φW

is the MDDI model relative to the Weibull distribution in a new class of distributions
that can be obtained using (17), an appropriate initial condition, and the parameter restrictions
imposed by (18).

Next, we develop a result that generalizes the MDDI approach to the information divergence
of order α (Rényi (1961)) between two distributions, defined by

Kα(f : g) = 1

α − 1
log

∫ ∞

0
f α(x)g1−α(x) dx,
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gamma
gg(x; λ, ν)

�

ν = 1

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

exponential
ge(x; λ)

Weibull
gW(x; λ, τ)

�
φW(x) = x1/τ

Pareto type II
gP(x; λ, τ)

�
φP(x) = τ (ex − 1)

linear
failure rate
glfr(x; γ, η)

�

φlfr(x) = √
a + bx − √

a

Figure 1: Derivation of reference distributions via transformations of the exponential distribution.

where α 
= 1. It is well known that limα→1 Kα(f : g) =: K1(f : g) = K(f : g). Also,
K1/2(f : g) is symmetric in f and g.

The Rényi divergence between two residual distributions with densities f (x; t) and g(x; t)

is given by

Kα(f : g; t) = 1

α − 1
log

∫ ∞

t

f α(x; t)g1−α(x; t) dx.

It is clear that Kα(f : g; 0) = Kα(f : g) and K1(f : g; t) = K(f : g; t).

Theorem 5. Let �F = {F : λF (t) ≤ r(t)} be a compact set of distributions, where F is
absolutely continuous with respect to a reference distribution G. Let F ∗ ∈ �F be such that
λF ∗(t) = r(t). If λ′

F (x)/λF (x) ≥ g′(x)/g(x), where g is a PDF, then, for α > 1, F ∗ is the
MDDIα model in �F relative to a distribution G with PDF g. The same result holds, with
�F = {F : λF (t) ≥ r(t)}, if λ′

F (x)/λF (x) ≤ g′(x)/g(x).

Proof. We give the proof for the case of λF (t) ≥ r(t). A similar argument can be used in the
case of λF (t) ≤ r(t). Since λF (t) ≥ r(t) for all t ≥ 0 and λF ∗(t) = r(t), by Theorem 1.B.2
of Shaked and Shantikumar (1994), we have[

F̄ (x)

F̄ (t)

]α

≤
[
F̄ ∗(x)

F̄ ∗(t)

]α

.

The condition λ′
F (x)/λF (x) ≤ g′(x)/g(x) implies that

E

[
λα−1

F (X∗)
gα−1(X∗)

∣∣∣∣ X∗ ≥ t

]
≥ E

[
λα−1

F (Y ∗)
gα−1(Y ∗)

∣∣∣∣ Y ∗ ≥ t

]

≥ E

[
λα−1

F ∗ (Y ∗)
gα−1(Y ∗)

∣∣∣∣ Y ∗ ≥ t

]
,
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where X∗ and Y ∗ have survival functions F̄ α and F̄ ∗α
, respectively. From the last inequality,

we obtain ∫ ∞
t

f ∗α(x)g1−α(x) dx

F̄ ∗α
(t)Ḡα−1(t)

≤
∫ ∞
t

f α(x)g1−α(x) dx

F̄ α(t)Ḡα−1(t)
.

That is,
Kα(f ∗ : g; t) ≤ Kα(f : g; t).

Remark 1. For 0 < α < 1, we can use the same argument to show similar results for �F =
{F : λF (t) ≤ r(t)}, where λ′

F (x)/λF (x) ≤ g′(x)/g(x), and �F = {F : λF (t) ≥ r(t)}, where
λ′

F (x)/λF (x) ≥ g′(x)/g(x).

Example 5. Let G be the exponential distribution with PDF (12). Then the condition of
Theorem 5 is λ′

F (x)/λF (x) ≥ −λ. Some examples of MDDIα models listed in Tables 3 and 4
are as follows. Note that θ is used here in place of the distributional parameter α.

(a) The Weibull distribution is the MDDIα model in

�F =
{

{F : λF (t) ≤ θtθ−1}, θ > 1,

{F : λF (t) ≥ θtθ−1}, 0 < θ < 1.

(b) The linear failure rate distribution is the MDDIα model in

�F =
{

{F : λF (t) ≤ θ + βt}, θ > 1,

{F : λF (t) ≥ θ + βt}, 0 < θ < 1.

(c) The extreme value distribution is the MDDIα model in

�F =
{

{F : λF (t) ≤ θe(β/θ)t }, θ > 1,

{F : λF (t) ≥ θe(β/θ)t }, 0 < θ < 1.

(d) The half-logistic distribution is the MDDIα model in

�F =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
F : λF (t) ≤ βeβt

θ + eβt

}
, θ > 1,

{
F : λF (t) ≥ βeβt

θ + eβt

}
, 0 < θ < 1.
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