
Compositio Math. 141 (2005) 192–226
DOI: 10.1112/S0010437X04000922

On a question of Igusa, II:

Uniform asymptotic bounds for Fourier

transforms in several variables

Ben Lichtin

Abstract

This paper shows that a nontrivial uniform decay estimate for complete exponential sums
modulo pr, determined by a polynomial map P = (P1, P2), follows from the existence of
a ‘good P decomposition’ of Zn

p , a property that can be proved with geometric methods,
and which was introduced in an earlier article by the present author.

Introduction

The origin of this paper is a question of Igusa [Igu78, p. 32]. This asked for an extension to several
variables of his and Weil’s work [Wei65] that connected the singularities of the local singular series,
determined by a polynomial P ∈ Zp[x1, . . . , xn], to the decay behavior of its Fourier transform,
which equals the normalized Gaussian sum (when evaluated at a/pr):

G(a/pr) =
def
p−rn

∑
x∈(Z/pr)n

e2πiaP (x)/pr
, (a, p) = 1. (0.1)

Igusa used geometric methods to show the existence of a decay exponent α < 0 such that for any
ε > 0, G(a/pr) = Oε(pr(α+ε)) as r → +∞. A geometric characterization of α was given in terms of
a finite amount of numerical data, determined by an embedded resolution of singularities applied to
each of the (finitely many) singular fibers of P |Zn

p
. Given this data, one can then decide, in particular,

whether the function a/pr → G(a/pr) belongs to L1(Qp). When P has integral coefficients, α can
be chosen independently of p.

A nontrivial application of the condition α < −2, combined with a simple geometric property of
the hypersurface {P = 0}, is a ‘generalized Poisson summation formula’. This is the basis of Igusa’s
theory of ‘admissible representations’, whose goal was to extend the Siegel–Weil theory to a larger
class of representations of semi-simple groups. In addition, such a formula can be used [Igu76] to infer
the existence of (nontrivial) integral points on the hypersurface defined by an invariant polynomial
of the underlying group action. An important tool that can often be used to prove α < −2 by purely
geometric methods was a property that Igusa called ‘condition P ’ [Igu78, p. 155].

An extension of this theory to k (2 � k � n) variables should lead to nontrivial decay estimates
as r → ∞ for multivariate normalized Gaussian sums of the form

G(a/pr) = p−rn
∑

x∈(Z/pr)n

e2πi(a1P1(x)+···+akPk(x))/pr
, (p, a1, . . . , ak) = 1, (0.2)

that are uniform in a = (a1, . . . , ak).
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On a question of Igusa, II

Assuming that favorable geometric conditions are satisfied by the polynomial map P =
(P1, . . . , Pk), it should also be possible to show that a decay exponent α for G(a/pr) satisfies
the inequality α < −k − 1. A reasonably simple geometric analogue of condition P should help to
establish this estimate for α. When this occurs, a multivariate generalized Poisson formula (over the
adèles) would follow by a natural variant of Igusa’s (and Weil’s) local–global method. Applied, in
particular, to the admissible representations classified in [Igu73] whose ring of invariants defines a
variety of codimension at least 2, this would then imply, among other properties, that nontrivial
integral points lie on the variety. A recent work of Braverman and Kazhdan [BK00] has also
described a second application of a multivariate Poisson formula.

On the other hand, the applicability of Igusa’s work to deduce the presence of nontrivial rational
points even on a smooth projective hypersurface of degree d in n = O(dc) (for some c) variables,
has not yet been realized and still appears to be quite difficult.

Igusa’s work is based on the embedded resolution of singularities applied to the divisor defined
by P . The main use of this theorem is the existence of a finite decomposition Zn

p =
⋃
Wj into

‘wedges’, in each of which P equals a monomial. An extension of his method to k � 2 polynomials
is straightforward if an analogous finite decomposition of Zn

p could be established, in each wedge
W of which the mapping P was a monomial map of the form x ∈ W → (xM1 , . . . ,xMk) such that
the rank of the matrix whose rows are the Mi equals k. This, however, is too much to expect in
general, as simple examples clearly indicate.

A more useful point of view allows base change maps of a restricted form as well as (local)
blowing-up maps in the domain. In a preceding work [Lic00] (see also § 1), the notion of a good
P decomposition of Zn

p was introduced and was used to give a reasonable generalization of Igusa’s
work in the first nontrivial case when k = 2. Roughly speaking, a good P decomposition of Zn

p for
a map P = (P1, P2) decomposes Zn

p as a finite union Zn
p =

⋃
j Wj of ‘good P wedges’ such that the

Haar measure of any overlap Wi ∩Wj, i �= j, equals zero. In turn, this decomposes the fiber integral
(i.e. local singular series),

t = regular value of P → F (t) =
∫
{P=t}∩Zn

p

|dx/dP1 ∧ dP2|

into the sum of contributions F (t) =
∑

j FWj(t) from each wedge. A basic point is that the goodness
of Wj leads to an explicit description of the singularities (if any) of FWj (t) along the critical values
in P(Wj), at least after a suitable base change.

The main result of this paper applies this idea to bound uniformly and nontrivially the Fourier
transform of F (t); that is the Gaussian sums G(a/pr), as r → ∞, as follows.

Theorem A. Let P : Qn
p → Q2

p be a polynomial mapping for which a good P decomposition Zn
p

exists. Then there exists α = α(P) < 0, such that

G(a/pr) = Oε(pr(α+ε)) r → ∞
uniformly over all a = (a1, a2) such that (p, a1, a2) = 1.

A good P decomposition Zn
p =

⋃
j Wj reduces the global problem of estimating the decay

of G(a/pr) to the local one of estimating the decay of the Fourier transform F ∗
Wj

of each FWj .
Since the singularities of each FWj are well understood, the difficulty is to prove the existence of a
local decay exponent α(Wj) < 0 for F ∗

Wj
(a/pr) as r → ∞. It then suffices to set α = maxjα(Wj)

to prove Theorem A. An important point is that each α(Wj) is given explicitly in terms of a
local polygon that encodes the geometric features of Wj. In this sense, it is fair to say that α is
effectively computable using the geometry of P. This is a reasonable analogue of Igusa’s geometric
characterization of the decay exponent α when k = 1. It also suffices to work over Qp since the
calculations and proofs extend straightforwardly to any finite extension of Qp.
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The proof of the local estimate for F ∗
Wj

(a/pr) is given in § 3. Sections 1 and 2 contain required
preliminaries and helpful reductions for the proof. Section 4 discusses the appropriate extension of
condition P , which is called condition P (2). Two short appendices conclude the paper.

At present there are classes of polynomial maps P for which a good P decomposition of Zn
p is

known to exist. Some of these are as follows (recall that the critical locus of P is the set of common
zeros of all 2 × 2 minors of the Jacobian matrix of P):

C1 = {P : Qn
p → Q2

p : n = 2, 3 and P is dominant};
C2 = {P : Qn

p → Q2
p : n � 3, the critical locus of P is a nonsingular curve outside the origin and

each Pi is homogeneous and nonsingular outside the origin};

C3 =
{
P : Q2n

p → Q2
p : P1(β, x) =

n∑
1

βixi and P2 = P2(x) is homogeneous and nonsingular

outside the origin
}
.

The proofs for C3 and C1 when n = 2 are given in [Lic00]. The proof for C1 when n = 3 is
nontrivial and given in [Cut02]. The proof for C2 given in [Lic00, § 3] was incomplete. A correct
proof is given in [Lic03]. A very interesting problem is to extend the method of that paper to treat
pairs of homogeneous P as in C2 for which the critical locus has larger dimension but remains
nonsingular outside the origin. A second interesting problem is to extend the method to pairs for
which the critical locus is also singular (in some controlled way) outside the origin. This ought to
be possible, at the least, if P belongs to a given Thom–Boardman class.

In contrast to the case k = 2, the situation for P : Qn
p → Qk

p, k � 3, is more complicated.
More precisely, the correct class of permissible base change maps, by means of which one can
expect to improve P in some open neighborhood of any critical point (see (1.2a)–(1.2c)) will be
larger. As a result, no good P decomposition of Zn

p has yet been proved to exist for any reasonably
interesting class of P. Although there does not appear to be any fundamental obstruction to such
a proof, the situation is more intricate because several additional types of base change maps are
a priori possible once k > 2 (see Remark 1.4(iv)). After this is worked out, the methods of this
paper should extend straightforwardly and establish Theorem A for such P.

Explicit values for α can be given for pairs in C2 ∪ C3 as follows:

(i) if P ∈ C2 and di = degPi, then one can choose α = max{−n/d1,−n/d2,−(n − 2)/2};
(ii) if P ∈ C3 and d = degP2, then α = −n/d.
This follows from an explicit parametrization of each wedge in a good P decomposition, the proof
of Theorem A and the application of condition P (2) defined in § 4 as an analog of condition P .
The formula for α in (i) will be used in forthcoming work to prove a generalized Poisson formula
for pairs of forms in C2 when n > 3 ·max{d1, d2} if d1 or d2 > 2, or n > 8 if d1 = d2 = 2. In [Lic04],
the analog of Theorem A over R is proved.

Using a very different approach, based on model theory, Cluckers [Clu04] has recently proved a
very general result. He showed the existence of a uniform and nontrivial decay rate for the Gaussian
sums determined by any restricted power series mapping P : Zn

p → Zk
p (k � 2) whose image has

nonempty interior. This is as general a result as one could probably hope to prove. His argument
relies on an earlier result of Denef [Den00] that used model theory to deduce the general behavior
and form of the singularities of the fiber integral along the set of critical values of P. On the
other hand, the method of Cluckers–Denef is not yet constructive. Nor does it establish a property
analogous to condition P (2). This is crucial for deducing the existence of a decay rate better than
α = −1, which is important for applications to global problems.
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Taken together, these results (and the many outstanding questions) will hopefully encourage
further work on this subject, the goal of which should be to find additional classes of maps P for
which good (and reasonably explicit) bounds for the decay rate of the sums (0.2) can be given.
For this, it seems safe to say, geometric methods appear to be essential.

Notation. Throughout the paper, ε denotes any positive number that is ‘sufficiently small’
(also indicated by ε � 1). That is, ε is smaller than some suitable constant whose precise value
may vary in different estimates. The notation Oε has the standard meaning that for any sufficiently
small ε, the constant in the upper bound depends only on ε. The complex and p-adic norms are
both denoted by | · |, and context will indicate which is intended. (The Fourier transforms defined in
§ 1 are, of course, estimated as complex numbers.) The order of a p-adic number x is written ordx.
Further, log|x| denotes log to base p. So, one can identify it with −ordx. The group of units is
written Up. The coset of an element a ∈ Qn

p modulo pM is denoted by [a]M (and equals a+(pM )(n)).
The critical locus of P is denoted by ΣP. If x1, . . . , xr are coordinates and N = (N1, . . . , Nr) is an
integral vector, then xN =def

∏r
i=1 x

Ni
i . Roman fonts are used to denote subsets of Qn

p , while script
fonts denote the set of p-adic orders of the elements of the set.

1. Required preliminaries

This section summarizes ideas from [Lic00] that are needed to prove Theorem A.

1.1 Good P decomposition
Let x ∈ Qn

p and let (f, g) : (U(x),x) → (Q2
p,0) be an analytic map defined in the (compact and

open) neighborhood of x.

Definition 1.1. The point x is good for (f, g) if there exist local (p-adic analytic) coordinates
z = (z1, . . . , zn) defined on a neighborhood U ′(x) ⊂ U(x) such that

f(z) =
R∏

i=1

zNi
i u1, g(z) =

R∏
i=1

zMi
i u2, u1, u2 units on U ′(x)

and A(x) =
(
N1 N2 · · · NR

M1 M2 · · · MR

)
has rank = 2. (1.1)

(Only nonzero columns of A(x) are indicated. By definition, the coordinates map x to 0.). If (1.1)
is not satisfied, then x is a bad point.

Remarks 1.2.
(i) If x is a noncritical point of (f, g), then the implicit function theorem ensures that it is a good

point with A(x) the 2 × 2 identity matrix.

(ii) If (1.1) is satisfied, then one may assume that U(x) and the coordinates z are chosen so that
f(z) and g(z) are pure monomials (no unit factor appears) defined on U(x). It is as a local
monomial map that a mapping will be written in some neighborhood of a good point.

(iii) The point x is bad, in particular, if f and g can both be written locally as the product of
a monomial and local unit, but the rank of the matrix A(x) equals 1. It is, however, also
convenient to say that x is bad if at least one of the components of (f, g) is not the product
of a monomial and local unit.

Definition 1.3. A permissible modification of (f, g) : (U(x),x) → (Q2
p, (0, 0)) in U(x) is a

transformation ζ : (F,G) → (f, g), defined as follows. Either (F,G) = (f, g) and the map is the
identity, or there exist a positive integer γ, a nonzero constant c0 and a nonconstant p-adic analytic
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function ψ = ψ(w), all depending on x, such that on U(x) either

g = c0F
γ , f = G+ ψ(F ), (1.2a)

or
f = c0F

γ , g = G+ ψ(F ). (1.2b)

A permissible modification (F,G) → (f, g), defined on a neighborhood U(x), is an amelioration
at x if x is a bad point for (f, g) and a good point for (F,G).

Given t = (t1, t2) (respectively τ = (τ1, τ2)) as coordinates on Im (f, g)|U(x) (respectively
Im (F,G)|U(x)), there are induced ‘base change’ maps:

ζ : τ → t =




(τ2 + ψ(τ1), c0τ
γ
1 ) if (1.2a)

(c0τ
γ
1 , τ2 + ψ(τ1)) if (1.2b).

(1.2c)

Remarks 1.4.
(i) For this paper, it is important to deduce the decay of the exponential sum G(λ) (when λ =

a/pr, (p,a) = 1) in terms of the parameter |λ| = max{|λ1|, |λ2|}. By insisting on (1.2a) as
the form for each permissible modification, a uniform and nontrivial decay estimate in |λ| is
proved in the cone |λ2| � |λ1|. If, however, (1.2b) is the form, then the same argument shows
uniform and nontrivial decay in |λ| within the cone |λ1| � |λ2|.
It is therefore useful to distinguish the particular parametrizations in (1.2a)–(1.2c). For k = 1, 2,
a permissible modification ζ : (F,G) → (f, g) is said to be of type 1 (respectively type 2) if
ζ is defined by (1.2a) (respectively (1.2b)). One then also writes ζk : (Fk, Gk) → (f, g) or
(Fk, Gk) → (f, g).

(ii) Assume that x is a bad point for (f, g) as in the first part of Remark 1.2(iii), and {i, k} = {1, 2}.
If an amelioration ζk : (Fk, Gk) → (f, g) is defined on U(x), then there also exists an amelio-
ration ζi : (Fi, Gi) → (f, g) at x that is defined on a possibly smaller U(x). The elementary
proof of this assertion is given in Appendix B.

(iii) Due to an unfortunate oversight, an additional condition was added incorrectly in [Lic03]
to the defining property for a permissible modification. That third property (which required
that F divides G) is only pertinent when it is the case that both f and g are locally the
product of a monomial and unit at the bad point x and the two monomials are dependent.
Indeed, the discussion in [Lic03] exhibited several cases in which the divisibility of G by F
was not possible, but a map (F,G) → (f, g) was nonetheless identified as being a permissible
modification (see, e.g., [Lic03, 2.3.2]), in the sense that the basic form of (1.2a) or (1.2b) was
satisfied. In these cases, this extra property was not needed for the subsequent discussion to
apply, as a careful reading clearly indicates. The author regrets any confusion that may have
ensued.

(iv) To illustrate the additional complexity that occurs when k > 2, assume that x is bad (for
(f, g, h)) as in (ii). Then rankA(x) = 1 or 2. The form of any permissible modification
ζ : (F,G,H) → (f, g, h) will depend on the value of this rank. If the rank = 1, then a
reasonable definition for ζ should be given by

ζ : (F,G,H) → (c0F δ, ψ1(F ) +G,ψ2(F ) +H) = (f, g, h), ψ1(w), ψ2(w) analytic at 0.

If the rank = 2, then ζ should be given by

ζ : (F,G,H) → (c0F δ1 , c1G
δ2 , ψ(F,G) +H) = (f, g, h), ψ(w) analytic at 0.

Of course, both possibilities would hold modulo permutations of the components f, g, h as in
(1.2a)–(1.2c).
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Definition 1.5. Given the map P, point x ∈ Zn
p and neighborhood U(x), a good P wedge is a

subset W of U(x) of the form W = θU(x), where θ : (U(x),x) → (U(x),x) is either an analytic
isomorphism, or a permissible transformation (i.e. composition of finitely many local blowing-ups
with nonsingular analytic center), such that one of the following holds:

(i) the point x is good for (f, g)=def P ◦ θ − P(x); or

(ii) the point x is bad for (f, g), and there exist type k ameliorations ζk : (Fk, Gk) → (f, g) on
U(x) for each k = 1, 2.

The key idea is the existence of a good P decomposition for Zn
p (any compact set will suffice,

but for this paper, only Zn
p is of interest).

Definition 1.6. A good P decomposition of Zn
p consists of finitely many good P wedges {Wi}i

such that:

(i)
⋃

iWi = Zn
p ;

(ii) for any i �= j, Wi ∩Wj ⊂ ΣP.

Let W = θU(x) be a good P wedge and assume x ∈ ΣP. Since θ is permissible, the divisor,
defined in U(x) by its Jacobian determinant and denoted below by dθ, will be a normal crossing
divisor contained in the exceptional divisor of {fg = 0} if Definition 1.5(i) holds (respectively
{FkGk = 0} if Definition 1.5(ii) holds). Thus, if the former (respectively latter) condition occurs,
then dθ will equal the product of a monomial and local unit in the local coordinates z in which
(f, g) (respectively (Fk, Gk)) is a monomial map. In this case the following definition will be needed.

Definition 1.7. If Definition 1.5(i) holds and A(x) is the matrix (1.1) of multiplicities for (f, g),
define

A(x) =


N1 N2 · · · NR

M1 M2 · · · MR

µ1 µ2 · · · µR


 if dθ(z) =

R∏
i=1

zµi−1
i · (local unit).

If Definition 1.5(ii) holds, define the matrix Ak(x) by setting its first two rows to be the multiplicities
of (Fk, Gk) and the third row to be (µ1, . . . , µR).

Given a 3×R matrix A = A(x) or Ak(x) as above, one can then define a local polygon Γ = Γ(x)
in the third quadrant by setting

Γ = ∂

( R⋂
i=1

{(σ1, σ2) ∈ (−∞, 0]2 : Niσ1 +Miσ2 � −µi}
)
. (1.3a)

There are at most two faces of Γ that intersect the σ1, σ2 coordinate axes in exactly one point that
does not equal the origin. Call these points the axis intercepts of Γ. Set

σ(Γ) = maxi{σi-axis intercept of Γ}. (1.3b)

When emphasis of the dependance on W and/or k is warranted, the polygon is written Γ(W )
or Γk(W ).

1.2 The singularities of the fiber integral and asymptotic monomials
The definition of the fiber integral of P in the introduction uses the measure |dx/dP1∧dP2| induced
on {P = t}, t a regular value of P, by the Leray differential form. This gives an integral repre-
sentation for the local singular series of P, the map t → p−r(n−2) · #{xmod pr : P(x) ≡ tmod pr}
(see [Yam83]). If W is a good P wedge, define the ‘local contribution to the fiber integral’ (from W )
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as

FW (t) =
∫
{P=t}∩W

|dx/dP1 ∧ dP2|, t a regular value of P.

It can of course equal zero. Given a good P decomposition Zn
p =

⋃
iWi, the fact that the intersection

of the wedges is confined to the singular locus, which is of Haar measure zero, implies

F (t) =
∑

i

FWi(t). (1.4)

Let W be a good P wedge with presentation W = θU(x), where θ(x) = x. Setting (f, g) =
P ◦ θ − P(x), it follows that

FW (t) =
∫
{P◦θ−P(x)=t−P(x)}∩U(x)

|θ∗ dx/d(P1 ◦ θ) ∧ d(P2 ◦ θ)|

=
∫
{(f,g)=t}∩U(x)

|θ∗ dx/df ∧ dg| =
def

FW (t), where t =
def
t− P(x). (1.5)

If x is a good point for (f, g), then an explicit description for FW (t) can be given, if |t| � 1,
as a finite sum of ‘asymptotic monomials’ in t (see [Lic00, Theorem 6.11]). If x is bad for (f, g) and
(Fk, Gk) → (f, g) is a type k amelioration, then a similar description can be given if |τ | � 1 is a
regular value of (Fk, Gk), for the integral

FW,k(τ ) =
def

∫
{(Fk ,Gk)=τ}

|θ∗ dx/dFk ∧ dGk|.

In this case, the asymptotic monomials are functions of τ . It will be convenient to summarize the
construction here.

Given the good point x for (f, g) with matrix A(x) as in (1.3a) and (1.3b), define

Li = {(σ1, σ2) ∈ R2 : Niσ1 +Miσ2 = −µi} for each i,

I0 =
{
{i < j} ⊂ {1, . . . , R} : rank

(
Ni Nj

Mi Mj

)
= 2

}
. (1.6)

Corresponding to each ι = {i, j} ∈ I0, define the point, polygon and lattice (see Figure 1):

vι = Li ∩ Lj = (v1, v2),

Γι = ∂

(⋂
u∈ι

{(σ1, σ2) ∈ (−∞, 0]2 : Nuσ1 +Muσ2 � −µu}
)
,

Cι = 〈(Ni,Mi), (Nj ,Mj)〉Z+ .

Write C∗
ι to denote either Cι or one of the two sublattices spanned by (Ni,Mi) or (Nj ,Mj).

Entirely similar constructions are made for each (Fk, Gk) when x is bad for (f, g). The data are
then defined in terms of the matrix Ak(x).

Example. Suppose that d � 4, n � 3 and

A(x) =


d 1 2 1
d 3 6 0
n 2(n− 2) 3(n − 2) + 1 1


 .

Then I0 = {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}}. Given ι = {1, 2}, then Cι = 〈(d, d), (1, 3)〉, and vι =
(n− 2− 3n/2d,−(n− 2) + n/2d). It follows that vι is only in the third quadrant if n = 3, and then
shifts to the fourth quadrant once n � 4. Thus, Γι has two sides if and only if n = 3. Otherwise Γι

has one side that lies on the line ds1 + ds2 = −n.
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.

(N2,M2)

Cι

(N1,M1)

Γι

vι = (v1, v2)

L2

L1

Figure 1.

Set χ = (χ1, χ2) : U2
p → S1 × S1 to denote a pair of characters of Up.

Definition 1.8. Assume that W = θU(x) is a good P wedge, and that x is a good point for
(f, g) = P◦ θ−P◦ θ(x). An asymptotic monomial for FW (t) is a function defined as follows. Given
ι ∈ I0, M,b = (b1, b2) ∈ Z2

+ and pair χ, set ω = (ι,M,b,χ) and define (outside {t1t2 = 0})

Mω(t) =

{
χ1(ac t1)χ2(ac t2)|t1|−v1−1|t2|−v2−1 log b1 |t1| log b2 |t2||Im (f,g)|W if ord t ∈ M + C∗

ι

0 otherwise.

If x is bad for (f, g) and (Fk, Gk) → (f, g) is a type k amelioration at x, an asymptotic monomial
for FW,k(τ ) is a monomial Mω(τ ) whose form (in τ1, τ2) is as above, and v, ι, C∗

ι are defined as above
by using the entries of Ak(x). Of course, in this case, τ is restricted to Im (Fk, Gk)|W −{τ1τ2 = 0},
and the monomial is not identically zero if and only if ord τ ∈ M + C∗

ι .

Remark 1.9. To say, for example, that FW (t) is a sum of finitely many asymptotic monomials if t
is a regular value of (f, g) and |t| � 1 (see also [Lic00, pp. 72–73]), simply means the existence of
a finite set YW = {ωi}N

i=1, such that if |t| � 1 and t (= a regular value) ∈ Im (f, g)|W , then

FW (t) =
N∑

i=1

cωiMωi(t), cωi �= 0 ∈ Qp.

If x is bad for (f, g) and ζk : (Fk, Gk) → (f, g) is an amelioration, then the induced base change
map ζk(τ ) = t implies [Lic00, Lemma 5.10] the equation (between measures outside the set of
critical values)

FW (ζk(τ ))
∣∣∣∣ ∂(t1, t2)
∂(τ1, τ2)

∣∣∣∣ |dτ | = FW,k(τ )|dτ |,
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and FW,k(τ ) is a finite sum of asymptotic monomials in τ , τ (= a regular value) ∈ Im (Fk, Gk)|W .
The finite set of ω that parametrize the asymptotic monomials for either FW,k(τ ) will also be
denoted by YW .

A property that is needed in §§ 2 and 3 is the absolute integrability of any asymptotic monomial.
The notation is as above and we introduce t to denote either t or τ .

Lemma 1.10. For any good P wedge W and ω = (ι,M,b,χ) ∈ YW , one has
∫
C∗

ι
|Mω||dt| <∞.

Proof. By reindexing, one may assume ι = {1, 2}. Via the cone Cι = 〈(N1,M1), (N2,M2)〉, introduce
the monomial transformation

Θ : T =
def

(T1, T2) → t = (TN1
1 TM1

2 , TN2
1 TM2

2 ).

If B > 0, then M + {ord Θ(T) : 0 � ordTi � B, i = 1, 2} is a finite subset of M + Cι. Next,
rewrite the integrand in terms of T, and restrict ordT to [0, B]2. It now suffices to bound each
log bi |TNi

1 TMi
2 | factor by cε|TNi

1 TMi
2 |−ε and show that if ε� 1, then

lim
B→∞

∫
{T:ordT∈[0,B]2}

|T1|−(N1v1+M1v2+1)−ε|T2|−(N2v1+M2v2+1)−ε|dT| <∞.

Since v ∈ L1 ∩ L2, it follows that Niv1 +Miv2 = −µi < 0 for each i. Thus, the exponent of each
|Ti| is strictly larger than −1, provided that ε is sufficiently small. So, the limit as B → +∞ exists
and is finite. This completes the proof of the lemma.

1.3 The Fourier transform of the fiber integral
Fix an additive character Ψ of Qp that equals one on Zp and is nontrivial on (p)−1Zp. The Fourier
transform at λ = (λ1, λ2) of the fiber integral F (t) equals

F ∗(λ) =
∫
F (t)Ψ(λ · t)|dt|. (1.7)

A simple calculation shows that F ∗(a/pr) = G(a/pr).
Given a good P wedge W = θU(x), so that θ(x) = x, the Fourier transform of the local

contribution FW (t) is

F ∗
W (λ) =

def

∫
FW (t)Ψ(λ · t)|dt|

= Ψ(λ · P(x))
∫

FW (t)Ψ(λ · t)|dt| =
def
GW (λ).

Remark. By (1.4) it follows that G(λ) =
∑

iGWi(λ). To prove Theorem A, it therefore suffices to
show that for any good P wedge W , there exists α = α(W ) < 0 such that GW (λ) = Oε(|λ|α+ε),
where |λ| = max{|λ1|, |λ2|}.

If x is a good point for (f, g), then Remark 1.9 implies that

F∗
W (λ) =

∑
ω∈YW

cω · M∗
ω(λ), (ω = (ι,M,b,χ))

where

M∗
ω(λ) =

def

∫
Im (f,g)|W

Mω(t)Ψ(λ · t)|dt|

=
∫
Im (f,g)|W

χ1(ac t1)χ2(ac t2)|t1|−v1−1|t2|−v2−1 log b1 |t1| log b2 |t2|Ψ(λ · t)|dt|.
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In this case, the decay for GW (λ) follows from the existence, for each ω ∈ YW , of α(ω) < 0 such
that

M∗
ω(λ) = Oε(|λ|α(ω)+ε). (1.8)

It would evidently suffice to set α(W ) = maxω∈YW
α(ω).

If x is a bad point for (f, g), ζk : (Fk, Gk) → (f, g) is a type k amelioration and Mω, ω ∈ YW ,
is an asymptotic monomial for the fiber integral FW,k(τ ), then Remark 1.9 again implies∫

FW (ζk(τ ))Ψ(λ · ζk(τ ))
∣∣∣∣ ∂(t1, t2)
∂(τ1, τ2)

∣∣∣∣ |dτ | =
∫

FW,k(τ )Ψ(λ · ζk(τ ))|dτ |

=
∑
ω

cω ·
∫
Im (Fk,Gk)|W

Mω(τ )Ψ(λ · ζk(τ ))|dτ |.

Thus, the decay for GW (λ) would follow in the same way by proving, for each k, the existence of
αk(ω) < 0 such that∫

Mω(τ )Ψ(λ · ζk(τ ))|dτ | = Oε(|λk|αk(ω)+ε) in the cone |λ| = |λk|. (1.9)

Note that the left-hand side is not the Fourier transform of Mω(τ ). Section 3 proves these local
decay estimates and characterizes the exponent α(ω) (respectively αk(ω)) in terms of the axis
intercepts of the polygon Γι (respectively Γι,k).

2. The inner integral

For fixed good P wedge W and ω = (ι,M,b,χ) ∈ YW , the first step in bounding the double
integrals in (1.8), (1.9) is to deduce a bound for an inner integral. Since Lemma 1.10 ensures that
these integrals are independent of the order of iteration, one chooses, without loss of generality, to
slice the domain of integration vertically. Writing t = (x, y) to denote t in (1.8) and τ in (1.9), for
fixed x, the inner integral becomes an oscillatory integral over the vertical slice at x. By definition,
this is equal to the set of y such that ord t = (ordx, ord y) ∈ M+C∗

ι . It is then important to describe
the structure of the vertical slices, as well as any variation in this structure, as ordx varies.

An important feature of the p-adic integration is that there is an ‘effective’ subset of each vertical
slice (see Definition 2.2), characterized by the property that over its complement the oscillating factor
forces the integral to vanish. Moreover, this property only depends on a simple inequality satisfied
by ord y and ordλ=def min {ordλ1, ordλ2}. The problem then is to parametrize this ‘effective slice’
of ord y for fixed ordx. Lemma 2.3 shows that this set must be a segment (finite or infinite) of an
arithmetic progression. Since the endpoints of the segment vary as ordx varies, this variation must
also be controlled.

One next shows in Lemma 2.5 that the set of ordx can be partitioned into finitely many
arithmetic progressions S1, . . . ,SK so that if ordx belongs to any one Si, then the endpoints of the
effective slice can be simply expressed in terms of ord x, ordλ, and i. This suffices for bounding
the inner integral over the slice at x. Although the elements of any progression will depend on
ordλ, the number K of distinct progressions is bounded uniformly of ordλ. The fact that the effec-
tive part of M + C∗

ι (the union of its effective vertical slices) is a finite union of ‘fibered arithmetic
progressions’, the number of which is bounded uniformly in ordλ, is the main observation of this
section, and is essential for the proof of Theorem 1 in § 3.

One chooses C∗
ι = Cι throughout since this is the more difficult of the two possibilities. One writes

M = (m1,m2), ord t =def ( ordx, ord y) = (r1, r2). The indices ι,ω are dropped from the nota-
tion since they are fixed throughout. By permuting coordinates one may assume ι = {1, 2} and
D=def N1M2 −N2M1 > 0.
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2.1 Parametrization of the lattice points ord t

Given a parametrization W = θU(x) of the good P wedge, for which the matrix of multiplicities
A(x) is given in Definition 1.7, one may assume that t belongs to the image of the monomial map

m : z ∈ U(x) =
∏

i

{zi : ord zi � e} → (zN, zM),

where e is some nonnegative integer, and N = (N1, . . . , NR), M = (M1, . . . ,MR). The set ord t then
equals{

(r1, r2) : there exists e ∈ [e,∞)R ∩ ZR and k ∈ Z2
+ such that

(
r1
r2

)
=

(
N1 N2 · · · NR

M1 M2 · · · MR

)
e = M +

(
N1 N2

M1 M2

)
k
}
. (2.1)

Set K to denote the set of k ∈ Z2
+ for which (2.1) admits a solution (i.e. there exists an integral

e ∈ [e,∞)r so that (2.1) holds). The structure of K is as follows.

Lemma 2.1. Assume K �= ∅. Then K =
⋃U

u=1 Ku, with U � DR, such that each Ku is a subset of
Z2

+ of the form Hu ∩Z2
+, where Hu is an unbounded subset of [0,∞)2. The boundary ∂Hu consists

of exactly one vertical ray, one horizontal ray, and finitely many horizontal (respectively vertical)
segments h1, . . . , hi0 (respectively v1, . . . , vi0), such that the path h1 ∗v1 ∗h2 ∗v2 ∗ · · · ∗hi0 ∗vi0 forms
a staircase descending from left to right (see Figure 2).

Proof. Given e ∈ [e,∞)R ∩ ZR, set e′ = e − (e, . . . , e) and

M̂ = M−A(x)



e
...
e




(recall that A(x) denotes the first two rows of A(x)). Multiplying the matrix equation in (2.1) on
the left by

(
M2 −N2
−M1 N1

)
, it follows that (2.1) holds if and only if

D

(
e′1
e′2

)
+ Ae′′ = M′ +Dk,

where e′′ = (e′3, . . . , e′R), M′ ∈ Z2, and

A =
(
a3 · · · aR

b3 · · · bR

)
=

(
M2 −N2

−M1 N1

)(
N3 · · · NR

M3 · · · MR

)
.

This implies that (2.1) has a solution e′,k only if the congruence

Ae′′ ≡ M′ (mod D) (2.2)

is satisfied. Set Y = {ε′′ ∈ [0,D)R−2 ∩ZR−2 : ε′′ is a solution of (2.2)}. It is clear that #Y � DR−2.

Assuming that Y �= ∅, set Y = {ε′′j }J
j=1, and choose any ε′′j . Viewing ε′′j as an element of

(Z/D)R−2, lift it to ZR−2 by introducing an integral vector L = (�3, . . . , �R) and setting e′′ =
ε′′j +DL. Then (2.1) has a solution e such that e′′ ≡ ε′′j (mod D) if and only if there exist integers
e′1, e

′
2 � 0 and e′′ � (0, . . . , 0) such that(

e′1
e′2

)
+ AL = M′′

j +
(
k1

k2

)
, where M′′

j =
1
D
{M′ −Aε′′j} =

def
(µ1j , µ2j) ∈ Z2.
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k2

ν(K0)

ν(K1)

ν(K2)

ν(Ki0)

K0 K1 − 1 K1 K2 − 1 K2 Ki0 k1

h1

v1

h2

v2

Hu

Figure 2.

Now, for each j and k ∈ Z2
+, set

Xj(k) =
{
L ∈ ZR−2

+ :
R∑

i=3

ai�i � k1 + µ1j and
R∑

i=3

bi�i � k2 + µ2j

}
,

and Kj = {k : Xj(k) �= ∅}. It is then clear that K =
⋃J

j=1 Kj .

To verify the asserted property of Kj, set, for each k1 � 0,

νj(k1) = inf {k2 � 0 : Xj(k1, k2) �= ∅}.

Observe that νj(k1 + 1) � νj(k1) since Xj(k1, k2) �= ∅ implies Xj(k1 + 1, k2) �= ∅. Moreover, it is
clear that for each (k1, νj(k1)) and any k2 � νj(k1), there exist e′1, e′2 � 0 and L ∈ ZR−2

+ such that

(
e′1
e′2

)
+ AL = M′′

j +
(
k1

k2

)
.
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K(3) K(1)

K(2)

(K0, ν(K0))

( , ν(K0) − 1)

(Ki0 , ν(Ki0))

K0 Ki0 − 1 Ki0

Ki0

Figure 3.

Define the following indices:

K0 = inf {k1 : Xj(k1, k2) �= ∅ for some k2 � 0}
K1 = inf {k1 > K0 : νj(k1) < νj(K0)}
Ki = inf {k1 > Ki−1 : νj(k1) < νj(Ki−1)} for each i � 2.

Since νj(K0) > νj(K1) > νj(K2) > · · · � 0, there exists a smallest index i0 � 0 such that k1 > Ki0

implies νj(k1) = νj(Ki0).
One can then connect the ascending vertical ray starting at (K0, νj(K0)) to the horizontal ray

to the right of (Ki0 , νj(Ki0)) by means of a finite number of horizontal followed by vertical segments
that contain the points (Ki, νj(Ki)), 0 � i � i0 (see Figure 2). The region Hj whose boundary is
such a path satisfies all the properties of the lemma.

Note. In the following discussion, a given j ∈ [1, J ] will be chosen and fixed throughout. For
simplicity, it will then be dropped as a subscript for K.
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It follows that if i0 > 0, then there exists at most a finite subset K′ such that K∗ =def K−K′ =⋃3
i=1 K(i), where (see Figure 3):

(a) k ∈ K(1) if and only if there exist e1, f1 ∈ Z+ such that k1 � e1 and k2 � f1;

(b) k ∈ K(2) if and only if there exist e2, f2, g2 ∈ Z+ such that k1 � e2 and f2 � k2 � g2;

(c) k ∈ K(3) if and only if there exist e3, f3, g3 ∈ Z+ such that e3 � k1 � f3 and k2 � g3.

In particular, using the notation in Figure 2, one can choose

(e1, f1) = (Ki0 , ν(K0)); (e2, f2, g2) = (Ki0 , ν(Ki0), ν(K0)−1); (e3, f3, g3) = (K0,Ki0 −1, ν(K0)).

When i0 = 0, one writes K∗ = K(1) to be consistent with (2.1). Additional precision will not be
needed since such bounds are independent of the parameters λ1, λ2.

Define the corresponding sets for each i:

C(i) = {k1(N1,M1) + k2(N2,M2) + M : k ∈ K(i)}, C(i) = {t : ord t ∈ C(i)}.
Since C∗ = C−⋃3

i=1 C(i) is a finite set, the contribution to the integrals (1.8), (1.9) over those t with
ord t ∈ C∗ is zero for |λ| � 1. This justifies the subsequent attention paid solely to C(1) ∪ C(2) ∪ C(3).
Intuitively, C(2) (respectively C(3)) can be viewed as containing the points in C that cluster asymp-
totically at infinity along its lower (respectively upper) boundary ray.

Definition 2.2. As noted in the introduction to § 2, the choice made in this article is to integrate
first with respect to y, which means that each C(i) is to be thought of as the union of its ‘vertical’
slices, defined for a fixed r1, and x ( ordx = r1) as follows. Recalling the monomial map m defined
at the beginning of § 2.1, set

V(i)(r1) = {r2 : (r1, r2) ∈ C(i)},
V (i)(x) = {y : (x, y) ∈ Im (m) and ord y ∈ V(i)(r1)}.

Application to the proof of (1.9) when k = 1 means that one sets y = τ2, the coordinate in the
range of G1, and bounds ∫

V (i)(x)
|y|−v2−1 log b2 |y|χ2(ac y)Ψ(λ1y)|dy|. (2.3)

Application to the proof of (1.8) (respectively (1.9)) with k = 2 means that one sets y = t2, the
coordinate in the range of g (respectively y = τ2, the coordinate in the range of G2), and bounds∫

V (i)(x)
|y|−v2−1 log b2 |y|χ2(ac y)Ψ(λ2y)|dy|. (2.4)

Choosing λ = λ1 for (2.3) (respectively λ2 for (2.4)), a feature specific to the p-adic context is
that there is an ‘effective’ subset E(i)(x, λ) of each V (i)(x), characterized by the property that for
each χ2

0 =
∫

V (i)(x)−E(i)(x,λ)
|y|−v2−1 log b2 |y|χ2(ac y)Ψ(λy)|dy|. (2.5)

To see this it is first necessary to describe more precisely the set of pairs (ac x, ac y) when
(x, y) ∈ Im (m). Given the 2 × 2 determinant D from above, set δ(= δι) = ordD.

Claim 1. There exist b1, . . . ,bT ∈ U2
p mod p2δ+1 such that

{(ac x, ac y) : (x, y) ∈ Im (m)} =
T⊔

j=1

[bj ]2δ+1 (a disjoint union).
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Proof. Express Un
p as a disjoint union of cosets mod pδ+1, Un

p =
⋃J

j=1[uj]δ+1. Define the vectors
b1, . . . ,bT ∈ U2

p to be the distinct elements of the set {m(uj)}J
1 . If b = m(u) for some u ∈ {uj}J

1 ,
it then suffices to show

[b]2δ+1 = m([u]δ+1). (2.6)

A standard lifting argument shows (2.6). The first step of the induction argument is as follows.
Write u ≡ ξ0 (mod pδ+1) and b ≡ β0 (mod p2δ+1). Given any β1 ∈ {0, 1, . . . , p − 1}2 one shows
the existence of ξ1 ∈ {0, 1, . . . , p− 1}n such that

m(ξ0 + pδ+1ξ1) ≡ β0 + p2δ+1β1 (mod p2δ+2). (2.7)

Via Taylor’s formula,

m(ξ0 + pδ+1ξ1) = m(ξ0) + pδ+1 dm(ξ0)(ξ1) (mod p2δ+2)

= β0 + p2δ+1γ(ξ0) + pδ+1 dm(ξ0)(ξ1) (mod p2δ+2),

where γ(ξ0) is some element of Z2
p. Thus, setting p2δ+1(β1 − γ(ξ0)) = p2δ+1ζ0 + p2δ+2ζ1 + · · · ,

it follows that the congruence pδ+1 dm(ξ0)(ξ1) ≡ p2δ+1ζ0 (mod p2δ+2) is solvable if and only if
dm(ξ0)(ξ1) ≡ pδζ0 (mod pδ+1) is solvable. Since ξ0 �= 0 ∈ Un

p , the definition of D, δ implies that
the determinant of the left-most 2 × 2 submatrix

(
A1 B1
A2 B2

)
of dm(ξ0) equals pδ · µ for some µ ∈ Up.

A solution of the latter congruence is then given as ξ1 = (ξ11, ξ21, 0, . . . , 0) where ζ0 = (ζ10, ζ20) and

(ξ11, ξ21) ≡ 1
pδ · µ ·

( ∣∣∣∣pδζ10 B1

pδζ20 B2

∣∣∣∣ ,
∣∣∣∣A1 pδζ10
A2 pδζ20

∣∣∣∣
)

(mod p).

It follows that m(ξ0 + pδ+1ξ1) solves (2.7), completing the first step of the lifting. The remainder
of the argument is a straightforward extension of this procedure and is left to the reader.

Note that this union of cosets need not equal U2
p .

Setting, for each j = 1, . . . , T , V (i)(x,bj)=def{y : (ac x, ac y) ∈ [bj]2δ+1}, Claim 1 evidently
implies∫

V (i)(x)
|y|−v2−1 log b2|y|χ2(ac y)Ψ(λy)|dy| =

∑
j

∫
V (i)(x,bj)

|y|−v2−1 log b2 |y|χ2(ac y)Ψ(λy)|dy|. (2.8)

Set eχ2 as the conductor of χ2, and Eχ2 = max{eχ2 , 2δ + 1}. An elementary calculation
(see Lemma A.3) then shows the following.

Claim 2. If e+ ordλ+ Eχ2 � −1, then for any b ∈ Up∫
{y:ord y=e

ac y∈[b]Eχ2
}
|y|−v2−1 log b2 |y|χ2(ac y)Ψ(λy)|dy| = 0.

If e+ ordλ+ Eχ2 � 0, then∫
{y:ord y=e

ac y∈[b]Eχ2
}
|y|−v2−1 log b2 |y|χ2(ac y)Ψ(λy)|dy| = pev2−Eχ2 (−e)b2χ2(b)Ψ(bpeλ).

It is clear that the only b that are of interest in the following are congruent mod p2δ+1 to the
second component bj,2 of some bj appearing in Claim 1.

Since YW is a finite set, the set of possible χ2 that can be the second component of a character
pair χ for some ω ∈ YW is also finite. As a result, one can define the following integer

ϑW = maxEχ2.
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For each i, r1, λ, set
E(i)(r1, λ) = V(i)(r1) ∩ [−ordλ− ϑW ,∞),

and for any x with ordx = r1, define

E(i)(x, λ) = {y ∈ V (i)(x) : ord y ∈ E(i)(r1, λ)}.
It is clear that (2.5) is satisfied (for each χ2) with this choice for the effective slice.

The first problem is the parametrization of the integral points in each E(i)(r1, λ). As the proof of
Lemma 2.3 will indicate, it is simpler to parametrize E(i)(r1, λ) if −ordλ is allowed to be arbitrarily
large since this assumption leads to fewer cases that must be considered and, thus, to an easier
estimation of the double integrals.

With the choices specified above for λ, the assumption ‘−ordλ is unbounded’ is satisfied when
(2.4) is the inner integral for (1.8) and λ is confined to the cone Ω2 = {λ : |λ| = |λ2|}.
However, this evidently fails when λ = (λ1, λ2) is confined to the cone Ω1 = {λ : |λ| = |λ1|}
where −ordλ1 is unbounded but −ordλ2 need not be. To deal with this case, however, is trivial.
Evidently, one inverts the order of integration and takes the inner integral over the ‘horizontal’ slices
of each C(i).

To have a uniform discussion across all possible cases encountered in the proofs of (1.8) and
(1.9), it is useful to maintain the vertical orientation of the slices. To this end, it suffices to define
a new map by inverting the order of f and g. For the same pair of indices ι as above, it is clear
that (M1, N1), (M2, N2) are the generators of the cone Ĉι, associated with (g, f), and the horizontal
slices of Cι are now the vertical slices of Ĉι. So, one sets λ = λ1, x = g, r1 = ord g, replaces χ2

by χ1 (in order to define the appropriate variant of ϑW ), and then applies the following discus-
sion to parametrize the effective part of each vertical slice of Ĉι in the cone Ω1. Section 2.2 then
applies this to bound the inner integral of M∗

ω(λ)|Ω1 by integrating first with respect to y where
y = t1(= f).

Notation. One sets ε = −ordλ − ϑW . The parameter ε is always assumed to be unbounded.
The validity of an assertion that is contingent on the property ε � 1 means that the assertion
is satisfied when ε > c, where c is a constant, independent of r1, r2, λ1, λ2 (but depending on finitely
many other constants).

The first point is as follows.

Lemma 2.3. Set γ = gcd (N1, N2). If γ � r1 −m1, then E(i)(r1, λ) = ∅. If γ|r1 −m1, then for each
i = 1, 2, 3, there exist Ai = Ai(r1) and Bi = Bi(r1, ε) such that if E(i)(r1, λ) �= ∅ then

E(i)(r1, λ) = {m2 + r′1η − qD′ : Ai � q � Bi},
where r′1 = (r1 −m1)/γ, D′ = D/γ, η is an appropriately defined constant, and either Ai > −∞
(if N2 > 0) or Ai � −∞ (if N2 = 0).

Proof. The Ai, Bi will be determined by explicitly given piecewise linear functions of r1, at most
one of which also depends on ε.

It is convenient to denote the slopes of the boundary of C as follows:

α =
M1

N1
, β =



M2

N2
if N2 > 0

+∞ if N2 = 0.

For any i, (r1, r2) ∈ C(i) implies

(r1, r2) = k1(N1,M1) + k2(N2,M2) + (m1,m2), for some k1, k2 � 0.
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Setting N ′
j = Nj/γ, j = 1, 2, it is clear that E(i)(r1, λ) = ∅, for each i, if γ � r1 −m1. Assuming then

that γ|r1 −m1, it follows that there exists q ∈ Z such that

(k1, k2) = r′1(η2, η1) + q(N ′
2,−N ′

1)

where η1, η2 are the unique numbers with smallest absolute value and opposite sign such that
η2N

′
1 + η1N

′
2 = 1, if N2 > 0. The fact that r2 ∈ E(i)(r1, λ) also requires that k1M1 + k2M2 +m2 � ε.

Thus,

r2 = r′1η − qD′ +m2, where η = η2M1 + η1M2.

So, an upper bound for q will always be

q � r′1η +m2 − ε

D′ =
def
Q(r1, ε).

Note that if N2 = 0, then N1 | r1 −m1 must hold for there to be any (r1, r2) ∈ M +
〈
(N1,M1),

(0,M2)
〉
N
. In this case, it follows that η = M1, D′ = M2, and the inequality that defines E(i)(r1, λ)

becomes r2 = r′1M1 − qM2 +m2 � ε.

Other possible bounds for q come from the intervals that determine membership in the different
K(i). Working them out is an elementary exercise. One finds the following, using straightforward
calculations that are best left to the reader.

(i = 1) A1 � q � B1 where

A1 =
def



e1 − r′1η2

N ′
2

if N2 > 0

−∞ if N2 = 0;

B1 =
def

min
{
r′1η1 − f1

N ′
1

, Q(r1, ε)
}

for any N2.

Thus, there exist constants ρ1, ζ1 such that if [A1, B1] �= ∅ and ε� 1, then

[A1, B1] =




[
e1 − r′1η2

N ′
2

, Q(r1, ε)
]

if and only if N2 > 0 and



r1 ∈

[
ε

β
+ ρ1,∞

)
if α = 0

r1 ∈
[
ε

β
+ ρ1,

ε

α
+ ζ1

]
if α > 0[

e1 − r′1η2

N ′
2

,
r′1η1 − f1

N ′
1

]

if and only if N2 > 0 and r1 ∈
(
ε

α
+ ζ1,∞

)
if α > 0

(−∞, Q(r1, ε)]

if and only if N2 = 0 and



r1 ∈

[
δe1
η2

+m1,∞
)

if α = 0

r1 ∈
[
δe1
η2

+m1,
ε

α
+ ζ1

]
if α > 0(

−∞,
r′1η1 − f1

N ′
1

]

if and only if N2 = 0 and r1 ∈
(
ε

α
+ ζ1,∞

)
if α > 0.
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Note. An example of the simplification, afforded by the assumption ε � 1 (see Definition 2.2), is
the exclusion of the possibility that

[A1, B1] =
[
e1 − r′1η2

N ′
2

,
r′1η1 − f1

N ′
1

]

when α = 0, since a simple check shows that this can only occur if ε � m2 +M2f1.

(i = 2) A2 � q � B2 where

A2 =
def




max
{
e2 − r′1η2

N ′
2

,
r′1η1 − g2

N ′
1

}
if N2 > 0

r′1η1 − g2
N ′

1

if N2 = 0;

B2 =
def

min
{
r′1η1 − f2

N ′
1

, Q(r1, ε)
}

for any N2.

Thus, there exist constants ρ2, ζ2 such that if [A2, B2] �= ∅ and ε� 1, then α > 0 and

[A2, B2] =




[
r′1η1 − g2

N ′
1

, Q(r1, ε)
]

for N2 � 0 and r1 ∈
[
ε

α
+ ρ2,

ε

α
+ ζ2

]
[
r′1η1 − g2

N ′
1

,
r′1η1 − f2

N ′
1

]
for N2 � 0 and r1 ∈

(
ε

α
+ ζ2,∞

)
.

(i = 3) A3 � q � B3 where

A3 =
def



e3 − r′1η2

N ′
2

if N2 > 0

−∞ if N2 = 0;

B3 =
def




min
{
r′1η1 − g3

N ′
1

,
f3 − r′1η2

N ′
2

, Q(r1, ε)
}

if N2 > 0

min
{
r′1η1 − g3

N ′
1

, Q(r1, ε)
}

if N2 = 0.

Thus, there exist constants ρ3, ζ3 such that if [A3, B3] �= ∅ and ε� 1, then

[A3, B3] =




[
e3 − r′1η2

N ′
2

, Q(r1, ε)
]

if and only if N2 > 0 and r1 ∈
[
ε

β
+ ρ3,

ε

β
+ ζ3

]
[
e3 − r′1η2

N ′
2

,
f3 − r′1η2

N ′
2

]
if and only if N2 > 0 and r1 ∈

(
ε

β
+ ζ3,∞

)
(
−∞, Q(r1, ε)

]
if and only if N2 = 0 and r1 ∈

[
e3
η2

+m1,
f3

η2
+m1

]
.

In addition, N2 = 0 implies α > 0.
This completes the proof of the lemma.

Remarks.

(1) It is important to observe that the upper bound for q is always Q(r1, ε) whenever the lower
bound for r1 is a constant; that is, not a positive multiple of ε. This is the source of nontrivial
decay when no decay can be obtained from the integration in x (see § 3).
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(2) Since q is restricted to integral values, the end points of the intervals [Ai, Bi] must be
effectively replaced by �Ai� = the smallest integer at least as large as Ai, and Bi must
be replaced by [Bi] = the largest integer that is at most Bi. However, when one bounds
the inner integral, it is also convenient, computationally, to replace the limits for q by Ai, Bi.
This introduces errors that depend on �Ai� − Ai and Bi − [Bi]. Each of these are, of course,
O(1) in r1, ε. However, since the outer integral in r1 must also be bounded, it could occur that
the O(1) errors accumulate and produce a poorer bound for the two-dimensional integral than
would be acceptable. To eliminate this possibility, one needs to control the behavior uniformly
in r1.

To this end, it is natural to take each Ai, Bi in (2.3) and specify the congruence class of its
numerator modulo the corresponding denominator. This leads to a finite set of congruence classes
for each i = 1, 2, 3. For each possible congruence class, the errors �Ai� − Ai and Bi − [Bi] will
then be constant. This constant appears explicitly in the estimates for the inner integral (see (2.9)–
(2.11)). It will also now be convenient to distinguish between the cases β <∞ and β = ∞ since the
expressions for Ai, Bi depend on the finiteness of β.

As a result, the subsequent analysis splits into five cases, where each case determines a finite
set of congruence classes, whose union equals the set of possible r1 values. The problem of bound-
ing the outer integral in (1.8), (1.9) over the set of x such that r1 = ordx belongs to exactly
one congruence class (for a given i) then reduces to a routine calculation, given Lemma 2.6 and
Remark 2.7, and the bounds from Lemma 2.8 for the corresponding inner integral over the vertical
slice at x.

To digest the next two definitions, the reader may find it useful to consult Figure 4. It is implicitly
assumed throughout (see Lemma 2.3) that γ | r1 −m1.

Definition 2.4.

Case 1 (i = 1, N2 > 0). For each 
 = (�0, �1, �2) ∈ ([0,D′) × [0, N ′
1) × [0, N ′

2)) ∩ Z3
+ =def I1 set

S1(ε, 
) = {r1 : r′1η +m2 − ε ≡ �0 (modD′); r′1η1 − f1 ≡ �1 (modN ′
1); e1 − r′1η2 ≡ �2 (modN ′

2)}.

Case 2 (i = 1, N2 = 0). For each 
 = (�0, �1) ∈ ([0,D′) × [0, N ′
1)) ∩ Z2

+ =def I2 set

S2(ε, 
) = {r1 : r′1η +m2 − ε ≡ �0 (modD′); r′1η1 − f1 ≡ �1 (modN ′
1)}.

Case 3 (i = 2, N2 � 0). For each 
 = (�0, �1, �2) ∈ ([0,D′) × [0, N ′
1)

2) ∩ Z3
+ =def I3 set

S3(ε, 
) = {r1 : r′1η +m2 − ε ≡ �0 (modD′); r′1η1 − f2 ≡ �1 (modN ′
1); r

′
1η1 − g2 ≡ �2 (modN ′

1)}.

Case 4 (i = 3, N2 > 0). For each 
 = (�0, �1, �2) ∈ ([0,D′) × [0, N ′
2)

2) ∩ Z3
+ =def I4 set

S4(ε, 
) = {r1 : r′1η +m2 − ε ≡ �0 (modD′); e3 − r′1η2 ≡ �1 (modN ′
2); f3 − r′1η2 ≡ �2 (modN ′

2)}.

Case 5 (i = 3, N2 = 0). For each 
 = (�0, �1) ∈ ([0,D′) × [0, N ′
1)) ∩ Z2

+ =def I5 set

S5(ε, 
) = {r1 : r′1η +m2 − ε ≡ �0 (modD′); r′1η1 − g3 ≡ �1 (modN ′
1)}.
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In addition, for each j = 1, . . . , 5, denote the characteristic function of Sj(ε, 
) by Ξj(ε, 
) and set

ij =




1 if j = 1, 2

2 if j = 3

3 if j = 4, 5.

Then define

r
(j)
� (r1, λ) = min E(ij)(r1, λ) · Ξj(ε, 
)(r1)

R
(j)
� (r1, λ) =




max E(ij)(r1, λ) · Ξj(ε, 
)(r1) if N2 > 0

+∞ if N2 = 0.

It is clear that, for r1 ∈ Sj(ε, 
),

r
(j)
� (r1, λ) = r′1η − [Bij ]D

′ +m2, R
(j)
� (r1, λ) = r′1η − �Aij�D′ +m2 (if Aij > −∞).

It is now easy to check that the following holds for each j and 
 ∈ Ij. Verifications are left to
the reader. Figure 4 illustrates the conclusions of Lemma 2.5 when 0 < α < β <∞.

Lemma 2.5. We have

(i) For each 
 ∈ I1, there exist κ1(
), κ′1(
) � 0 such that

r
(1)
� (r1, λ) =




ε+ �0 if and only if



r1 ∈

[
ε

β
+ ρ1,∞

)
∩ S1(ε, 
) if α = 0

r1 ∈
[
ε

β
+ ρ1,

ε

α
+ ζ1

]
∩ S1(ε, 
) if α > 0

αr1 + κ1(
) if and only if r1 ∈
(
ε

α
+ ζ1,∞

)
∩ S1(ε, 
) if α > 0;

R
(1)
� (r1, λ) = βr1 − κ′1(
) if and only if r1 ∈

[
ε

β
+ ρ1,∞

)
∩ S1(ε, 
).

(ii) For each 
 ∈ I2, there exists κ2(
) � 0 such that

r
(2)
� (r1, λ) =




ε+ �0 if and only if



r1 ∈

[
δe1
η2
,∞

)
∩ S2(ε, 
) if α = 0

r1 ∈
[
δe1
η2
,
ε

α
+ ζ1

]
∩ S2(ε, 
) if α > 0

αr1 + κ2(
) if and only if r1 ∈
(
ε

α
+ ζ1,∞

)
∩ S2(ε, 
) if α > 0;

R
(2)
� (r1, λ) = +∞.
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(iii) For each 
 ∈ I3, there exist κ3(
), κ′3(
) � 0 such that

r
(3)
� (r1, λ) =



ε+ �0 if and only if r1 ∈

[
ε

α
+ ρ2,

ε

α
+ ζ2

]
∩ S3(ε, 
)

αr1 + κ3(
) if and only if r1 ∈
(
ε

α
+ ζ2,∞

)
∩ S3(ε, 
);

R
(3)
� (r1, λ) = αr1 + κ′3(
) if and only if r1 ∈

[
ε

α
+ ρ2,∞

)
∩ S3(ε, 
).

(iv) For each 
 ∈ I4, there exist κ4(
), κ′4(
) � 0 such that

r
(4)
� (r1, λ) =



ε+ �0 if and only if r1 ∈

[
ε

β
+ ρ3,

ε

β
+ ζ3

]
∩ S4(ε, 
)

βr1 − κ4(
) if and only if r1 ∈
(
ε

β
+ ζ3,∞

)
∩ S4(ε, 
);

R
(4)
� (r1, λ) = βr1 − κ′4(
) if and only if r1 ∈

[
ε

β
+ ρ3,∞

)
∩ S4(ε, 
).

(v) By the definitions given in Definition 2.2, B3 can only equal Q(r1, ε) when ε � 1. Thus, for
any 
 ∈ I5

r
(5)
� (r1, λ) = ε+ �0 if and only if r1 ∈

[
e3
η2

+m1,
f3

η2
+m1

]
∩ S5(ε, 
)

R
(5)
� (r1, λ) = +∞.

Figure 4 illustrates the simple geometry of these assertions when i = 1. The r2 interval depends
on the two possible intervals containing the value of r1, denoted by r, r′ (both r, r′ are understood
to belong to S1(ε, 
)). Figure 4 indicates that if ε/β � r � ε/α, then αr + κ1(
) < ε implies
r2 ∈ E(1)(r, λ) = [ε + �0, βr − κ′1(
)] ∩ N. However, if r′ > ε/α, then r2 ∈ E(1)(r′, λ) = [αr′ +
κ1(
), βr′ − κ′1(
)] ∩ N. In particular, the endpoints of the r2 interval depend explicitly (but in
a simple manner) on 
, which serves as an index vector for the arithmetic progression S1(ε, 
)
containing r1.

The final point concerns the structure of the sets Sj(ε, 
). This, however, is clear by elementary
reasoning and is left to the reader.

Lemma 2.6. If Sj(ε, 
) �= ∅, then there exists L > 0, depending only on N ′
1, N

′
2,D

′, and c ∈ [0, L),
depending on ε and 
, such that Sj(ε, 
) = {c+ uL : u � 0}.

Remark 2.7. For the applications below, it will not be necessary to be more precise about the
modulus L of the arithmetic progression. On the other hand, it will be useful to define the unique
integers uj, Uj by combining Lemmas 2.5 and 2.6. For each j � 4 and 
 ∈ Ij, there is a partition of
Sj(ε, 
) according to the expression for each r

(j)
� (r1, λ) as follows. Set

S ′
j(ε, 
) = {r1 : r(j)� (r1, λ) = ε+ �0}

S ′′
j (ε, 
) = {r1 : r(j)� (r1, λ) = θ′r1 + κ′(
)},

where, in the notation of Lemma 2.5, j � 3 implies θ′ = α and κ′(
) = κj(
). If j = 4 then θ′ = β
and κ′(
) = −κ4(
). In addition, each S ′

j is finite whenever α > 0. If α = 0 (and j = 1, 2), or j = 5,
then it is understood that S ′′

j (ε, 
) = ∅ for each ε, 
.
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r2

βr′ −κ′1(
)

βr− κ′1(
)

αr′ + κ1(
)

0

αr+κ1(
)

E(1)(r′, λ)

E(1)(r, λ)

r2 = αr1

ε/β r ε/α r′
r1

r2 = βr1

ε+ �

ε

Figure 4.

Using the description of Sj(ε, 
) in Lemma 2.6, define the integers uj = uj(ε, 
), Uj = Uj(ε, 
)
(when convenient these will be denoted solely by uj and Uj) by setting for any ε, each j and 
 ∈ Ij,

c+ uL ∈ S ′
j(ε, 
) if and only if uj � u � Uj

c+ uL ∈ S ′′
j (ε, 
) if and only if Uj + 1 � u.

When S ′
j is unbounded, only uj is defined. In this case, Uj = ∞. This only occurs if j = 1, 2 and

α = 0, or if j = 5.

The following is then clear whenever Uj <∞.

(j = 1) There exist ∆1,∆′
1 ∈ [0, L) such that

c+ u1L =
ε

β
+ ρ1 + ∆1, c+ U1L =

ε

α
+ ζ1 − ∆′

1.

(j = 2) There exist ∆2,∆′
2 ∈ [0, L) such that

c+ u2L =
δe1
η2

+ ∆2, c+ U2L =
ε

α
+ ζ1 − ∆′

2.
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(j = 3) There exist ∆3,∆′
3 ∈ [0, L) such that

c+ u3L =
ε

α
+ ρ2 + ∆3, c+ U3L =

ε

α
+ ζ2 − ∆′

3.

(j = 4) There exist ∆4,∆′
4 ∈ [0, L) such that

c+ u4L =
ε

β
+ ρ3 + ∆4, c+ U4L =

ε

β
+ ζ3 − ∆′

4.

If Uj = ∞, then the preceding equations hold for each c+ ujL.

2.2 Bounds for the inner integral
In this section ε = −ordλ−ϑW is assumed to be unbounded, and the integral over each E(i)(x, λ), i =
1, 2, 3, is estimated for ε� 1. To do so, one first expresses the integral as a sum of integrals over the
‘walls’ of each E(i)(x, λ); that is, the union of all cosets [y]ord y+1, where ord y ∈ E(i)(ordx, λ).
This defines a series, indexed by E(i)(ordx, λ), whose summands are determined by Claim 2.
Moreover, Lemma 2.3 has shown that the indexing set for the summation is a segment of an
arithmetic progression, and Lemma 2.5 has precisely determined the endpoints of each segment,
provided ordx is confined to exactly one arithmetic progression Sj(ε, 
). A standard one variable
calculation then shows that the integral over each E(i)(x, λ) is bounded by an expression that
depends only on the smallest and largest (if finite) elements of this segment. The result is as
follows, using Remark 2.7 (also see (3.3)).

Lemma 2.8. For each j = 1, . . . , 5, the following hold.

(i) Assume that r1 ∈ S ′
j(ε, 
) is such that

r
(j)
� (r1, λ) = ε+ �0 and R

(j)
� (r1, λ) = θr1 + κ(
)

where θ ∈ {α, β} and κ(
) is some constant (i.e., independent of r1, λ). Then there exist
constants ae(
), de(
), e = 0, . . . , b, such that for any χ2 and x with ordx = r1∣∣∣∣
∫

E(ij)(x,λ)
|y|−v2−1 log b|y|χ2(ac y)Ψ(λy)|dy|

∣∣∣∣ � |x|−θv2
∑

e

ae(
) log e|x|+|λ|v2
∑

e

de(
) log e|λ|,

where � means (here and in (ii)) that the implicit constant is independent of x, λ. If, however,

R
(j)
� = +∞, then the left-most summand equals zero, and the integral is bounded by the

right-most summand (depending on |λ|).
(ii) Assume that r1 ∈ S ′′

j (ε, 
) is such that

r
(j)
� (r1, λ) = θ′r1 + κ′(
) and R

(j)
� (r1, λ) = θ′′r1 + κ′′(
),

where θ′ � θ′′ < ∞, θ′, θ′′ ∈ {α, β}, and κ′(
), κ′′(
) are constants. Then there exist constants
a′′e(
), d′e(
), e = 0, . . . , b such that for any χ2 and x with ordx = r1,∣∣∣∣

∫
E(ij)(x,λ)

|y|−v2−1 log b|y|χ2(ac y)Ψ(λy)|dy|
∣∣∣∣

� |x|−θ′′v2
∑

e

a′′e(
) log e|x| + |x|−θ′v2
∑

e

d′e(
) log e|x|.

If, however, R
(j)
� = +∞, then the left-most summand equals zero, and the integral is bounded

by the right-most summand.

(iii) If θ = θ′′ and κ(
) = κ′′(
), then ae(
) = a′′e(
) for each e.

Proof. (i) In the notation of Definition 2.4, the hypothesis means that Bij = Q(r1, ε) determines
the smallest element of E(ij)(r1, λ). Assume first that R(j)

� (r1, λ) <∞ (equivalently, Aij > −∞).
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Thus, the interval for q in Lemma 2.3 equals
[�Aij�, [Bij ]

]
. Since j and ij are fixed below, these

indices are dropped from the notation for simplicity.

One now observes that Claims 1 and 2 trivially imply∣∣∣∣
∫

y∈E(x,λ)
ord y=r2

|y|−v2−1 log b|y|χ2(ac y)Ψ(λy)|dy|
∣∣∣∣ � (T̂W · p−ϑW ) · pr2v2rb

2,

where T̂W is the number of distinct units mod pϑW that are congruent mod p2δ+1 to the second
component of some bj that appears in the disjoint union of Claim 1.

Set C = T̂W · p−ϑW . Since y ∈ E(x, λ) if and only if ord y ∈ E(ord x, λ), it then follows that∣∣∣∣
∫

E(x,λ)
|y|−v2−1 log b|y|χ2(ac y)Ψ(λy)|dy|

∣∣∣∣ � C ·
∑

�A	�q�[B]

p(r′1η+m2−qD′)v2(r′1η +m2 − qD′)b.

A standard use of partial summation implies that there exist constants ae, de depending only on
v2, b, such that for all χ2 and x,∣∣∣∣

∫
E(x,λ)

|y|−v2−1 log b|y|χ2(ac y)Ψ(λy)|dy|
∣∣∣∣

� C ·
∑

�A	�q�[B]

p(r′1η+m2−qD′)v2(r′1η +m2 − qD′)b

= C ·
{
p(r′1η+m2−([B]+1)D′)v2 ·

b∑
e=0

ae(r′1η +m2 − ([B] + 1)D′)e

− p(r′1η+m2−�A	D′)v2 ·
b∑

e=0

de(r′1η +m2 − �A�D′)e
}
. (2.9)

By Lemma 2.5, it follows that

r′1η +m2 − ([B] + 1)D′ = (ε+ �0) −D′, r′1η +m2 − �A�D′ = θr1 + κ(
). (2.10)

Substituting these expressions into the third and fourth lines in (2.9), one sees that the coefficient
of p−ordλv2 = |λ|v2 (respectively pθv2r1 = |x|−θv2) equals

p(
0−D′−ϑW )v2 ·
b∑

e=0

ae(−D′−ϑW +�0+ log |λ|)e
(

respectively −pκ(�)v2 ·
b∑

e=0

de(−θ log |x| + κ(
))e
)
.

A straightforward simplification then yields the expression asserted by (i). Here, the coefficients are
written ae(
), de(
) so as to emphasize dependence on 
. (In fact, ae(
) depends on v2, b, �0, and
de(
) depends on v2, b, 
. Since the dependence on 
 is the most significant, this is emphasized in
the notation.)

An analogous argument applies if R�(r1, λ) = +∞. The letter a will continue to be used to
denote the coefficients that depend on 
. (The actual values will differ of course from the preced-
ing ae(
).) One first observes that R�(r1, λ) = +∞ implies N2 = 0. Thus, the value of v2 must
equal the s2 axis intercept of the line L2 =def{M2s2 + µ2 = 0} (see (1.6)). As a result, v2 < 0,
which implies the exponent of |y| in (2.9) is larger than −1. So, the integral converges absolutely

215

https://doi.org/10.1112/S0010437X04000922 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000922


B. Lichtin

since limq→−∞ v2(r′1η +m2 − qD′) = −∞. One next concludes by Lemma A.3, that∣∣∣∣
∫

E(x,λ)
|y|−v2−1 log b|y|χ2(ac y)Ψ(λy)|dy|

∣∣∣∣
� C ·

∑
−∞<q�[B]

p(r′1η+m2−qD′)v2(r′1η +m2 − qD′)b

= C · p(r′1η+m2−([B]+1)D′)v2 ·
b∑

e=0

ae(r′1η +m2 − ([B] + 1)D′)e.

Since r′1η +m2 − ([B] + 1)D′ = (ε+ �0) −D′ remains as above, the preceding argument applies to
complete the proof.

The proof of (ii) is similar, using (2.9), the fact that

r′1η +m2 − ([B] + 1)D′ = θ′r1 + κ′(
), r′1η +m2 − �A�D′ = θ′′r1 + κ′′(
), (2.11)

and
p(r′1η+m2−�A	D′)v2 = |x|−θ′′v2 · pκ′′(�)v2 .

Using (2.11) in place of (2.10), the proof of (ii) when R�(r1, λ) = +∞ is the same as that in (i).
The proof of (iii) follows immediately from the fact that the ae only depend on v2, b, and the

assumption that θ′′r1 + κ′′(
) = θr1 + κ(
).

Remark 2.9. Since one does not a priori know whether, in Claim 1,
⊔

j [bj]2δ+1 = U2
p , it appears to

be difficult to precisely evaluate the inner integral. To do so would require a better understanding of
the exponential sum

∑T
j=1 χ2(bj,2)Ψ(peλbj,2) for each e such that e+ ordλ ∈ [−ϑW ,−1]. One case

in which this is (fortunately) possible is discussed in § 4.2.

3. Decay rates for the integrals (1.8) and (1.9)

This section completes the proof of Theorem A by establishing the purely local bounds (1.8), (1.9)
for a given ω = (ι,M,b,χ) ∈ YW . Recall that (f, g) = P ◦ θ − P ◦ θ(x) when W = θU(x), and
Ωk = {λ : |λ| = |λk|}.
Theorem 1. We have the following.

(i) If x is a good point for (f, g), then M∗
ω(λ) = Oε(|λ|σι+ε), where σι = max j{σj-axis intercept

of Γι}.
(ii) If x is bad for (f, g), then for each k,

∫ Mω(τ )Ψ(λ · ζk(τ ))|dτ ||Ωk
= Oε(|λk|σ2(Γι,k)+ε), where

σ2(Γι,k) is the σ2-axis intercept of Γι,k.

An immediate consequence of Theorem 1 is the following characterization of the local decay rate
α(W ) for GW (λ) in terms of the geometry of the polygons Γ(W ),Γk(W ) (see Definition 1.7).

Theorem 2. We have the following.

(i) If x is a good point for (f, g), then GW (λ) = Oε

(|λ|σ(Γ)+ε).

(ii) If x is a bad point for (f, g), then for each k, GW (λ)|Ωk
= Oε(|λk|σ2(Γk)+ε), where σ2(Γk) is

the σ2-axis intercept of Γk(W ).

Before proceeding to the proof, some remarks will be useful.

Remark 3.1. The proof of Theorem 1 is the same for parts (i) and (ii). It is based on the discussion
in § 2, which applied uniformly to the pair (f, g) in Ω2, (g, f) in Ω1, or each (Fk, Gk) in Ωk.
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By Definition 2.2, it therefore suffices to prove part (i) in Ω2 with the exponent given by σ2(Γι).
The extension to Ω1 is done by interchanging f with g, and using the fact that the σ2-axis intercept
of the polygon

Γ̂ι = ∂

( 2⋂
i=1

{
(σ1, σ2) ∈ (−∞, 0]2 : Miσ1 +Niσ2 � −µi

})

equals the σ1-axis intercept of Γι. The proof of (i) will therefore use the discussion of § 2 by
setting λ = λ2, and t = t = (f, g) (i.e. (x, y) = (t1, t2)). The extension to Ω1 then follows by setting
λ = λ1, t = t = (g, f). To prove part (ii) in Ωk one chooses λ = λk and t = τ = (Fk, Gk)
(i.e. (x, y) = (τ1, τ2)). In either case, ε = −ordλ− ϑW is unbounded in the appropriate cone. Set k′

to denote the complementary index to k in the sense that {k, k′} = {1, 2}.
Remark 3.2. For the reader’s convenience, It is useful to record here the expressions for the axis
intercepts of Γι. This depends on the quadrant containing the intersection point v(= L1 ∩ L2)
(see (1.6) and Figure 1) as follows:

v1 < 0, v2 � 0 implies β <∞, σj(Γι) = σj(L2), j = 1, 2,

and σι = max
{
v1 + βv2,

v1
β

+ v2

}
;

v1, v2 < 0 implies σ1(Γι) = σ1(L1), σ2(Γι) = σ2(L2),

and σι =




max
{
v1 + αv2,

v1
β

+ v2

}
if β <∞

max {v1 + αv2, v2} if β = +∞;

v1 � 0, v2 < 0 implies α > 0, σj(Γι) = σj(L1), j = 1, 2,

and σι = max
{
v1 + αv2,

v1
α

+ v2

}
.

By Remark 2.7, for fixed j = 1, . . . , 5, the set of possible r1 = ordx values is partitioned into
the sets S ′

j(ε, 
),S ′′
j (ε, 
) for 
 ∈ Ij. For ∗ ∈ {′,′′ }, define the following integrals (for simplicity, the

domain of integration in x is defined in terms of ordx) for part (i):

I∗j (λ, 
) =
∫

ord x∈S∗
j (ε,�)

|x|−v1−1 log b1 |x|χ1(ac x)Ψ(λ1x)

×
(∫

E(ij)(x,ε)
|y|−v2−1 log b2 |y|χ2(ac y)Ψ(λ2y)|dy|

)
|dx|. (3.1)

It is clear that

M∗
ω(λ) =

5∑
j=1

∑
�∈Ij

(I ′j(λ, 
) + I ′′j (λ, 
))

where the sum is for j ∈ {1, 3, 4} if N2 > 0 and j ∈ {2, 3, 5} if N2 = 0.
For given k define for part (ii) (see (1.2c)):

I∗j (λ, 
) =
∫

ord x∈S∗
j (εk,�)

|x|−v1−1 log b1 |x|χ1(ac x)Ψ(c0λk′xγ + λkψ(x))

×
(∫

E(ij)(x,λk)
|y|v2−1 log b2 |y|χ2(ac y)Ψ(λky)|dy|

)
|dx|. (3.2)
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It is clear that ∫
Mω(τ )Ψ(ζk(τ ) · λ)|dτ | =

5∑
j=1

∑
�∈Ij

(I ′j(λ, 
) + I ′′j (λ, 
)).

Thus, it suffices to show the bound in part (i) restricted to Ω2, (respectively part (ii) in Ωk) for a
single term I ′j(λ, 
) + I ′′j (λ, 
), whose summands are defined by (3.1) (respectively (3.2)).

Notation. If P is any predicate (an expression having a true or false value depending on the value
of a certain variable), then denote by δP the function that equals one if the expression is true and
equals zero if the expression is false.

Proof of Theorem 1. Throughout the discussion one works with any nonempty and fixed Sj(ε, 
) =
{c+uL : u � 0} and uses the objects (and notations) introduced in Remark 2.7. To estimate I ′j +I ′′j
from above, one uses Lemma 2.8(i) (respectively (ii)) for the inner integral of I ′j (respectively I ′′j ).
As a result, the values of the quantities, denoted by θ, θ′, θ′′ in the statement of Lemma 2.8, need
to be specified first, given that R(j)

� �= +∞ and S ′′
j (ε, 
) �= ∅. These are as follows:

j = 1 implies θ = θ′′ = β, θ′ = α, κ(
) = κ′′(
) = −κ′1(
),
j = 3 implies θ = θ′ = θ′′ = α, κ(
) = κ′′(
) = κ′3(
),

j = 4 implies θ = θ′ = θ′′ = β, κ(
) = κ′′(
) = −κ′4(
), (3.3)

where the indicated expressions for κ(
) (in terms of κ′j(
)) are determined by Lemma 2.5. If R(j)
� =

+∞, then j ∈ {2, 5}. If j = 2, then Lemmas 2.5 and 2.8(ii) imply θ′ = α. Recall that S ′′
j (ε, 
) = ∅

(i.e. Uj = ∞) can only occur if α = 0 and j ∈ {1, 2}, or if j = 5. Moreover, Lemma 2.5 implies that
j = 3 (respectively j = 4) implies α > 0 (respectively β <∞).

It now follows that

|I ′j(λ, 
) + I ′′j (λ, 
)| � δUj=∞ ·
{
δj=1 ·

b2∑
e=0

ae(
) ·
∫

ord x=c+uL
u∈[uj ,∞)

|x|−v1−θv2−1 log e+b1|x||dx| (3.4)

+ |λ|v2

b2∑
e=0

de(
) log e|λ| ·
∫

ordx∈S′
j(ε,�)

ordx=c+uL
u∈[uj ,∞)

|x|−v1−1 log b1 |x||dx|
}

+ δUj<∞ ·
{
δj∈{1,3,4} ·

b2∑
e=0

ae(
) ·
∫

ord x=c+uL
u∈[uj ,∞)

|x|−v1−θv2−1 log e+b1|x||dx|

+ |λ|v2

b2∑
e=0

de(
) log e|λ| ·
∫

ord x=c+uL
u∈[uj ,Uj ]

|x|−v1−1 log b1 |x||dx|

+
b2∑

e=0

d′e(
)
∫

ord x=c+uL
u∈[Uj+1,∞)

|x|−v1−θ′v2−1 log e+b1 |x||dx|
}
.

Remark. The improper integrals, whose integrands contain a factor |x|−v1−ϑv2−1, ϑ ∈ {θ, θ′}, and
are determined by the conditions u ∈ [uj ,∞) and u ∈ [Uj + 1,∞), converge absolutely. This follows
from the fact that for any value of θ, θ′, v1 + θv2 and v1 + θ′v2 are axis intercepts of the lines
L1,L2 and, thus, must be strictly negative. As a result, if Uj <∞, then the two contributions over
u ∈ [uj , Uj ] and u ∈ [Uj + 1,∞) with integrand |x|−v1−θv2−1 log e+b1 |x| can be added together by
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Lemma 2.8(iii) and (3.3) to equal one integral over {x : ordx = c + uL, u ∈ [uj ,∞)}. The only
other type of improper integral occurs when j = 2, U2 = ∞, and S ′

2(ε, 
) is unbounded. Since these
conditions occur exactly when β = +∞ and α = 0, it must be the case that v1 < 0, so that
the integral does converge absolutely. Note that Lemma 2.5 ensures that if j = 5 then S ′

5(ε, 
) is
bounded, so the integral is not improper.

One next estimates each integral in (3.4). To do so, one now uses Remark 2.7 to express c+ uL
in terms of ε, α, β when u = uj or u = Uj + 1. This earlier discussion implies the following:

c+ ujL =




ε

β
+O(1) if j = 1, 4

ε

α
+O(1) if j = 3

O(1) if j = 2, 5;

c+ (Uj + 1)L =




ε

α
+O(1) if j = 1, 2, 3 and S ′′

j �= ∅
ε

β
+O(1) if j = 4 and S ′′

j �= ∅

∞ if j = 5 (since S ′′
j = ∅),

(3.5)

where O(1) denotes a function (in particular, of ε though there is also dependence on j, 
, of course)
that is bounded uniformly in ε as ε → ∞. Using Lemma 2.5, Remark 2.7, and (3.5), the estimates
for (3.4) are straightforward and are left to the reader to verify as a useful exercise. For convenience
they are organized into the following four claims.

Claim 3. For each j ∈ {1, 3, 4} and i = 0, 1, . . . , b1 + b2,

δUj<∞ · δj∈{1,3,4}
∫

ord x=c+uL
u∈[uj ,∞)

|x|−v1−θv2−1 log i|x||dx| =

{
Oε(|λ|v1/β+v2+ε) if j = 1, 4

Oε(|λ|v1/α+v2+ε) if j = 3.

Similarly,

δU1=∞ ·
∫

ord x=c+uL
u∈[u1,∞)

|x|−v1−θv2−1 log i|x||dx| = Oε(|λ|v1/β+v2+ε).

Claim 4. For each j � 4 and i = 0, 1, . . . , b1,

δUj<∞ · |λ|v2

b2∑
e=0

de(
) log e|λ| ·
∫

ord x=c+uL
u∈[uj ,Uj ]

|x|−v1−1 log i|x||dx|

=




Oε(max {|λ|v1/α+v2+ε, |λ|v1/β+v2+ε}) if j = 1

Oε(max {|λ|v2+ε, |λ|v1/α+v2+ε}) if j = 2

Oε(|λ|v1/α+v2+ε) if j = 3

Oε(|λ|v1/β+v2+ε) if j = 4.

Claim 5. For each j � 4 and i = 0, 1, . . . , b1 + b2,

δUj<∞ ·
∫

ord x=c+uL
u∈[Uj+1,∞)

|x|−v1−θ′v2−1 log i|x||dx| =

{
Oε(|λ|v1/α+v2+ε) if j = 1, 2, 3

Oε(|λ|v1/β+v2+ε) if j = 4.
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Claim 6. For each j ∈ {1, 2, 5},

δUj=∞ · |λ|v2

b2∑
e=0

de(
) log e|λ| ·
∫

ord x∈S′
j(ε,�)

ord x=c+uL
u∈[uj ,∞)

|x|−v1−1 log b1 |x||dx|

=

{
Oε(|λ|v1/β+v2+ε) if j = 1

Oε(|λ|v2+ε) if j = 2, 5.

Checking the expressions in Remark 3.2, one verifies that the exponent of |λ| in the bounds of
each of these claims is always at most the σ2-axis intercept of the appropriate polygon, Γι or Γι,k,
plus an arbitrary ε. This completes the proof of Theorem 1.

4. Condition P (2) and an improvement of Theorem 2

The estimate in Theorem 2(i) will be Oε(|λ|−1+ε) if at least one side of Γ(W ) lies on the line
σ1 = −1 or σ2 = −1. The same occurs for the estimates in (ii) if the σ2-axis intercept of either
polygon Γk(W ) equals −1. For arithmetic purposes, this estimate is too weak to be used for any
global purpose. This section introduces a geometric property, which, if satisfied, can often help lead
to a significantly better decay rate in max {|λ1|, |λ2|}. Igusa identified a (local) property in the case
of one polynomial and called it ‘Condition P’ [Igu78, p. 154]. There is a natural analog of this
condition for two polynomials.

Definition of Condition P (2)
. Let W = θU(x) be a good P wedge. Assume that x is a good

point for (f, g)(= P ◦ θ − P ◦ θ(x)). Then Condition P (2) is satisfied at x if and only if the matrix
A(x) (see Definition 1.7) contains at most one column vector proportional to

ê1 =


1

0
1


 or ê2 =


0

1
1


 .

If a column vector c of A(x) is proportional to êi, then, in fact, c = êi.
If x is bad for (f, g) in the sense of Remarks 1.2(iii), and (Fk, Gk) → (f, g) is an amelioration,

then Condition P (2) is satisfied at x if the preceding property holds for the matrix Ak(x).

Remark. The argument in Appendix B shows that if Condition P (2) holds for one value of k, then
it also holds for the other possible value of k.

Throughout this section W will be a good P wedge with presentation W = θU(x), Condition
P (2) will be assumed to hold at x, and (f, g) = P ◦ θ − P ◦ θ(x).

4.1 Statement of the main result
Let A denote the matrix A(x) if x is good for (f, g) (respectively Ak(x) if x is good for (Fk, Gk)).
By a permutation of local coordinates at x, one can always arrange the nonzero columns of the
matrix A so that if ê1 (respectively ê2) is a column vector of A then it is the left-most (respectively
right-most) column. Let R be the number of nonzero columns of A, ι = {i, R} ∈ I0 (see (1.6)), and
ω = (ι,M,b,χ) ∈ YW . Set σj(Li) to denote the σj-axis intercept of Li.

The principal result is as follows.

Theorem 3. We have the following.

(i) Assume that x is good for (f, g), and Li is a nonvertical line. Set σ∗ι (x) = max j{σj(Li)}.
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Let Mω be an asymptotic monomial for FW (see Definition 1.8). Then for any ε� 1,

M∗
ω(λ) = Oε(|λ|σ∗

ι (x)+ε). (4.1)

If Li is vertical, then M∗
ω(λ) = 0 if max {|λ1|, |λ2|} � 1.

(ii) Assume that ζk : (Fk, Gk) → (f, g) is an amelioration at x, Li is a nonvertical line, and Mω is
an asymptotic monomial for the fiber integral FW,k. Then for any ε� 1,∫

Mω(τ )Ψ(λ · ζk(τ ))|dτ ||Ωk
= Oε(|λk|σ2(Li)+ε). (4.2)

If Li is vertical, then this integral equals zero if |λk| � 1.

As in § 3, Theorem 3 easily scales to bound GW (λ) in terms of a polygon from which one
or both of the lines {si + 1 = 0}, i = 1, 2, have been deleted. Using the above notation, define
U = {j ∈ [1, R] : the jth column of A �= ê1, ê2}. Write the jth column as (Nj ,Mj , µj). Set

Γ∗ = ∂

( ⋂
j∈U

{(σ1, σ2) ∈ (−∞, 0]2 : Njσ1 +Mjσ2 � −µj}
)
,

and σ(Γ∗) (respectively σ2(Γ∗)) to denote the maximum of the axis intercepts of Γ∗ (respectively
the σ2-axis intercept of Γ∗, if it exists).

It can happen that σ(Γ∗) or σ2(Γ∗) is considerably smaller than −1. When this does occur,
the bound in Theorem 4 represents a nontrivial improvement of Theorem 2. Examples of this were
discovered in [Lic03].

Theorem 4. Assume the hypotheses in Theorem 3.

(i) If x is good for (f, g) and Γ∗ �= ∅, then

GW (λ) = Oε(|λ|σ(Γ∗)+ε).

If Γ∗ = ∅, then GW (λ) = 0 if max {|λ1|, |λ2|} � 1.
(ii) If (Fk, Gk) → (f, g) is an amelioration, and A = Ak(x), then

GW (λ)|Ωk
= Oε(|λk|σ2(Γ∗)+ε).

If σ2(Γ∗) does not exist, then GW (λ)|Ωk
= 0 if |λk| � 1.

4.2 Proof of Theorem 3
The proof of (4.1) will be given, and the very similar proof of (4.2) is left to the reader. The first
ingredient required for the proof is the following.

Lemma 4.1. Assume that x is good for (f, g) and ê2 is a column vector of A(x). Then b2 = 0 for
any ω = (ι,M,b,χ) ∈ YW .

Proof. By [Lic00, Proposition 5.2] and condition P (2), it follows that the polynomial S = 1−p−(1+s2)

defines a component, with multiplicity one, of the polar divisor of the local zeta function for the
wedge W ,

Zx(χ, s) =
∫

U(x)−{f ·g=0}
χ1(ac f)χ2(ac g)|f |s1 |g|s2 |θ∗dµ|.

Denoting the first two rows of A(x) by (N1, . . . , NR), (M1, . . . ,MR) with indices chosen so that
(NR,MR) = (0, 1), it follows that Mj/Nj < MR/NR =def +∞ for any j < R. Thus, the vector (0, 1)
is an ‘extremal vector’ of the lattice, denoted by C(x) [Lic00, p. 70]. Moreover, there exists a unique
index � so that M
/N
 = +∞. One can then apply Proposition 6.8 of [Lic00]. This ensures that the
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multiplicity of S does not increase beyond one in the partial fraction decomposition [Lic00, (5.2.1)]
for Zx(χ, s). Since the partial fraction decomposition determines the set of vectors appearing in
YW , according to the recipe of [Lic00, § 6], it follows that for any (ι,M,b,χ) ∈ YW it must be the
case that b2 = 0.

Remark 4.2. The same reasoning also shows that b1 = 0 must occur if ê1 is a column vector of A(x).
The argument also applies to the case in which x is bad and (Fk, Gk) → (f, g) is an amelioration.
In this case, the data in YW are determined by a partial fraction decomposition for the local zeta
function for W of the map (Fk, Gk) (i.e. replace f, g by Fk, Gk in the above integral). The conclusion
is as follows: for any (ι,M,b,χ) ∈ YW , if ê2 is a column vector of Ak(x), then b2 = 0.

The second ingredient in the proof of (4.1) is as follows. Set χ0 to denote the trivial character
on Up.

Lemma 4.3. If (ι,M,b,χ) ∈ YW is such that χ2 �= χ0, then no side of Γι lies on {σ2 + 1 = 0}.
Proof. By [Lic00, (5.6.1)], the formula for the inverse Mellin transform implies that the proof of the
lemma is a straightforward consequence of the following.

Claim. If χ2 �= χ0 then Zx(χ, s) is not polar along {s2 + 1 = 0}.
Proof. Using the expression and notations from [Lic00, (5.2.6)], Zx(χ, s) is a sum of integrals
taken over finitely many cosets [c + (pe)n] whose disjoint union equals U(x). If the assertion is
false, it follows that the integral over at least one such coset, say [c′ + (pe)n], must be polar along
{s2 + 1 = 0}.

Let (z1, . . . , zn) be the centered (at x) local coordinates on U(x), such that the first R columns
of A(x) are nonzero (only) and the Rth column equals ê2. It then follows that the integral over
[c′ + (pe)n] equals the product of a nonzero constant C = C(c′,χ) (subsequently dropped since it is
not needed in the discussion) and

R∏
i=1

∫
[c′i+(pe)]

χNi
1 χMi

2 (ac zi)|zi|Nis1+Mis2+µi−1|dzi|

=
∫

[c′R+(pe)]
χ2(ac zR)|zR|s2|dzR| ·

(R−1∏
i=1

∫
[c′i+(pe)]

χNi
1 χMi

2 (ac zi)|zi|Nis1+Mis2+µi−1|dzi|
)
.

Since χ2 �= χ0, the evaluation of the integral with respect to |dzR| (see [Igu78, p. 89]) shows that
this factor is an entire function in s2. Moreover, since Condition P (2) is satisfied at x, the polar
locus of any other factor in the parentheses cannot be {s2 + 1 = 0}. Thus, the integral could not be
polar along {s2 + 1 = 0} whenever χ2 �= χ0. This proves the claim.

To finish the proof of Lemma 4.3 set wi = p−si , i = 1, 2, and use the expression obtained in
[Lic00, (5.2.1), (6.6.1)]:

Zx(χ, w) =
∑

L⊂{1,...,R}
uL(w,χ)/vL(w)

=
∑

L⊂{1,...,R}

∑
{i,j}∈I0

{i,j}⊂L

hi,j(w,χ)

Ski
i S

kj

j

+
∑
i,


i∈L

h
(w,χ)
S


i

, (4.3)

where Si = 1 − p−µiwNi
1 wMi

2 , vL(w) =
∏

j∈L S
νj

j , and each νj is a positive integer. If χ2 �= χ0,
then the claim ensures that SR = 1 − p−1w2 is not a factor of any vL(w) whenever uL(w,χ) �= 0.
Thus, χ2 �= χ0 implies that SR cannot appear as a factor in the denominator of any nonzero term
on the second line of (4.3). Applying the operator Res w1=0Res w2=0(·w−ord t1−1

1 w−ord t2−1
2 ) to each

fraction on the right-hand side determines the asymptotic monomials Mω(t). One concludes that
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if ω = (ι,M,b,χ) ∈ YW , and χ2 �= χ0, then R /∈ ι. In other words, no such Γι can have a side that
lies on the line {σ2 + 1 = 0}.

One now completes the proof of (4.1) as follows. For any ω such that ι = {i, R} ∈ I0, b = (b1, 0),
and χ = (χ1, χ0), it suffices to bound M∗

ω(λ)|Ω2 in terms of σ2(Li). A similar bound in Ω1 is then
argued in the same way (see Definition 2.2 and § 3). Reindexing so that i→ 1 and R→ 2, the cone
Cι = 〈(N1,M1), (0, 1)〉Z+ , with α = M1/N1 and β = +∞. Using the notation in § 2.1, the elements
of each effective slice E(i)(r1, λ2), are determined in Lemma 2.3. Since (N2,M2) = (0, 1) it follows
that D′ = N ′

1 = 1 and Q(r1, ε2) = r′1η +m2 − ε2 (recall that ε2 = −ordλ2 − ϑW ). Thus, the set of
all possible q equals (−∞, Q(r1, ε2)], and the set of all r2 values equals [ε2,∞) ∩ N. Furthermore,
when β = +∞, this condition can only occur if j ∈ {2, 3, 5} in Definition 2.4.

The next point is the crucial one. Recall from § 2.1 that the monomial map z ∈ U(x) → zM

determines the range of the second component of the map (f, g) = P ◦ θ − P ◦ θ(x). Thus, the set
of angular component values of elements of the range of g|U(x) equals

{ac y : y = g(z)} = {uM1
1 · · · uMn

n : u1, . . . , un ∈ Up}.
Condition P (2) and the choice of indexing above now states that u2 must be a factor of this
monomial on Un

p . Thus, for any u ∈ Up there exist units u1, . . . , un such that uM1
1 u2u

M3
3 · · · uMn

n = u.
Writing bj = (bj,1, bj,2) in Claim 1, one concludes that the set {b1, . . . ,bT } satisfies the following
property:

T⊔
j=1

[bj,2]2δ+1 = Up.

One now observes that if j ∈ {2, 5} and r1 ∈ S ′
j(ε2, 
) (satisfying N1 | r1 − m1) is such that

ordx = r1, then the fact that v2 = −1 implies∫
E(ij)(x,λ2)

Ψ(λ2y)|dy| =
∑

e∈E(ij)(r1,λ2)

p−e
∑

bj,2∈Up (mod p2δ+1)

p−2δ−1Ψ(pe+ordλ2bj,2)

=
∑
e�ε2

p−e

∫
Up

Ψ(pe+ordλ2u)|du| =
∫

(pε2)
Ψ(λ2w)|dw| = 0,

since ε2 + ordλ2 = −ϑW < 0 (see Corollary A.2 below).
Thus, the inner integral for M∗

ω can only be nonzero if r1 ∈ S ′′
j (ε2, 
) for some j and 
∈Ij.

Since β = +∞, Lemma 2.5 shows that S ′′
j (ε2, 
) �= ∅ only occurs when α > 0 and j ∈ {2, 3}.

By Lemma 2.8(ii), the inner integral over E(ij)(x, λ2) is bounded (uniformly in λ2) by |x|−αv2∑
e d

′
e(
) log e|x|. In addition, using the notation from Remark 2.7 to write the elements of S ′′

j (ε2, 
),
it follows that if ordx ∈ S ′′

j (ε2, 
), then ordx = c+uL for some u � Uj , where c+UjL = ε2/α+O(1).
Thus, the estimation argument from § 3 shows that for any e one has:∫

ord x∈S′′
j (ε2,�)

|x|−v1−αv2−1 log b1+e|dx| = Oε(|λ2|v1/α+v2+ε) = Oε(|λ2|σ2(L1)+ε).

If Li is vertical, this states that α = 0 so that S ′′
j (ε2, 
) = ∅ for any 
, j. By the above argument,

this ensures that M∗
ω(λ)|Ω2 = 0 for ε2 � 1. This completes the proof of (4.1).

Appendix A. Evaluation of some one variable oscillatory integrals

The evaluation of certain one variable oscillatory integrals are assembled here for the reader’s
convenience. First, one recalls the following result [Igu78, p. 56].
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Lemma A.1. If R is any integer such that R � −ordλ− 1 and α > −1, then∫
(p)R

|t|αΨ(tλ)|dt| = pα+1

[
(1 − p−1)p−(α+1)

1 − p−(α+1)
− 1
p

]
|λ|−α−1.

A consequence of Lemma A.1 is important when α = 0.

Corollary A.2. If λ satisfies ordλ < −R, then
∫
(p)R Ψ(tλ)|dt| = 0.

A version of the above with an additional log b|t| factor in the integrands is also needed.
The following suffices. It is proved using Lemma A.1 and partial summation.

Lemma A.3. We have the following.

(a) If R+ ordλ � 0 and b, L � 1, then for any α,∫
(p)R−(p)R+L

|t|α log b|t|Ψ(tλ)|dt| =
b∑

i=0

(c′i(R + L+ 1)ip−(R+L+1)(α+1) − ciR
ip−R(α+1)),

where each ci, c
′
i depends only on p, b, α. Assuming that α > −1 and letting L→ ∞, it follows

that ∫
(p)R

|t|α log b|t|Ψ(tλ)|dt| =
b∑

i=0

(−ci)Rip−R(α+1).

(b) If b, L � 1, then for any α,
∫
(p)R−(p)R+L |t|α log b|t|Ψ(tλ)|dt| = 0 if R + (L − 1) + ordλ � −1.

If R+ L+ ordλ � 0 and R � −1 − ordλ, then∫
(p)R−(p)R+L

|t|α log b|t|Ψ(tλ)|dt| =
∫

(p)−1−ord λ−(p)R+L

|t|α log b|t|Ψ(tλ)|dt|.

Appendix B. Proof of the assertion Remarks 1.4(ii)

Although the argument is elementary, it is rather long, so it seems best to place the proof in this
appendix. One chooses indexing so that (i, k) = (1, 2).

Assume that z are local coordinates on U(x) (centered at x) such that (see (1.1)):

F2(z) =
∏

i

zLi
i u1(z), G2(z) =

∏
i

zMi
i u2(z), rank

(
L1 . . . Ln

M1 . . . Mn

)
= 2,

ζ2(F2, G2) = (cF γ
2 , ψ(F2) +G2) = (f, g), where ψ(F2) = cκF

κ
2 + cκ+1F

κ+1
2 + · · · , cκ �= 0.

Since the rank of the matrix equals two, there exist coordinates w = (w1, . . . , wn) such that if
L = (L1, . . . , Ln) and M = (M1, . . . ,Mn) then

F2(w) = wL, G2(w) = wM.

Since x is bad for (f, g) in the sense of (Remarks 1.2(iii)), it follows that wκL|wM; that is, κLi � Mi

for each i, but strict inequality holds for at least one i. Choosing indexing so that L1 > 0, define
new coordinates v = (v1, . . . , vn) by setting

v1 = w1

(
1 +

cκ+1

cκ
wL +

cκ+2

cκ
w2L + · · ·

)1/κL1

, vi = wi, i � 2.

Writing w1 = v1(1 + ϕ(v)), ϕ(0) = 0, one then observes that

ϕ(v) = Φ(vL).
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This is verified by induction by showing that for each integer � � 1, there exists a polynomial ϕ
(t)
such that

ϕ(v) ≡ ϕ
(vL) (mod (v1, . . . , vn)
|L|).
Since ϕ(v) is analytic, the sequence ϕ
(vL) converges to an analytic Φ(vL) on some open compact
U1(x). Thus,

F γ
2 = vγL(1 + Φ(vL))γL1 , ψ(F2) +G2 = cκvκL[1 + c−1

κ · vM−κL · (1 + Φ(vL))M1 ].

Next, define the coordinates y = (y1, . . . , yn), analytic in some U2(x), by setting

y1 = v1 · [1 + c−1
κ · vM−κL · (1 + Φ(vL))M1 ]1/κL1 , yi = vi, i � 2.

It is then evident that g(y) = cκyκL. Now, writing

[1 + c−1
κ · vM−κL · (1 + Φ(vL))M1 ]1/κL1 = 1 + vM−κL(c+ u(vL))

where c+ u(vL) is a unit in U2(x), it follows that

v1 = y1(1 + yM−κLV (y)), vi = yi, i � 2, V = an analytic unit in U2(x);

F γ
2 (y) = yγL · (1 + yM−κLV (y))γL1 · (1 + Φ(vL))γL1 |v1=y1(1+yM−κLV (y)).

It is clear that one can write

(1 + yM−κLV (y))γL1 = 1 + yM−κLV ′ where V ′ is an analytic unit on some U3(x).

Either Φ(vL) = 0, or there exists j0 � 1 such that Φ(vL) =
∑

j�j0
ejv

jL and ej0 �= 0. It also follows
by an elementary manipulation that if Φ �= 0, then

(1 + Φ(vL))γL1 |v1=y1(1+yM−κLV (y)) = 1 +
∑
j�j0

ejy
jL(1 + yM−κLV (y))jL1

= e(yL) + yM−(κ−j0)L · V ′′(y),

where e(yL) and V ′′(y) are analytic units on some U4(x).
Now define

i0 =

{
0 if Φ = 0
j0 if Φ �= 0.

An additional manipulation then shows the existence of an analytic ψ1(t)(�= 0) of order γ such that

F γ
2 (y) = ψ1(yL) + yM+(γ−κ+i0)L · V ′′′

where V ′′′ is an analytic unit on some U5(x). Setting F1 = yL, G1 = yM+(γ−κ+i0))L · V ′′′, and
defining ζ1 : (F1, G1) → (f, g) by

ζ1(F1, G1) = (ψ1(F1) +G1, cκ · F κL
1 ),

it is clear that ζ1 is an amelioration of type 1 at x. In addition, note that the role of γ in (1.2c) is
now played by κ = ord tψ(t).
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