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To improve the computational efficiency and dynamic performance of low cost Inertial
Measurement Unit (IMU)/magnetometer integrated Attitude and Heading Reference
Systems (AHRS), this paper has proposed an effective Adaptive Kalman Filter (AKF) with
linear models; the filter gain is adaptively tuned according to the dynamic scale sensed by
accelerometers. This proposed approach does not need to model the system angular motions,
avoids the non-linear problem which is inherent in the existing methods, and considers the
impact of the dynamic acceleration on the filter. The experimental results with real data have
demonstrated that the proposed algorithm can maintain an accurate estimation of
orientation, even under various dynamic operating conditions.
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1. INTRODUCTION. A Micro Electro Mechanical System (MEMS)-based
Inertial Measurement Unit (IMU), which includes MEMS accelerometers and
gyros, has a wide range of applications due to its low-cost, small size, and low power
consumption. With given initial angles and gyros measurements, the Strap-down
Inertial Navigation System (SINS) algorithm can provide orientation results (yaw,
pitch and roll) through attitude updating. However, due to the large sensor noise and
bias of low-cost MEMS sensors (Geiger et al., 2008), such orientation results drift
quickly over time and cannot satisfy long term performance requirements. On the
other hand, accelerometer and magnetometer sensors can be integrated properly to
become an electronic compass. It can sense the gravity and geomagnetic field, and
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eventually provides orientation results without long term drift effects. However such
results would become inaccurate or even far from the truth, when the system is not
totally stationary. In order to achieve a long term stable solution, it is a suitable system
configuration for an Attitude and Heading Reference System (AHRS) to integrate two
such systems together. An electronic compass can be used to estimate the gyros’ drift
and compensate the orientation errors of SINS, and then the SINS can maintain the
performance for a long period of operations when the system is experiencing external
accelerations.
A Kalman Filter (KF) is generally used for the integration in AHRS. Based on

different attitude representations (Shuster, 1993), such as Euler angles and quaternion,
different kinematic and measurement models are developed. With regard to the
comparison between Euler angles and quaternion-based methods, Cooke et al. (1992)
pointed out that, in the orientation task, the Euler method has more calculation
efficiency than quaternion method, while the most significant advantage of the
quaternion is that no singularity exists when the pitch angle pass through ±π/2
(Stuelpnagel, 1964).
Emura and Tachi (1994) presented an Euler angle-based method, in which the KF

state vectors were formed by three Euler angle components and three angular rates,
and the Euler angle integration kinematics were adopted as the kinematic model of
filter. The drawbacks of this method are that the Euler integration kinematic is a non-
linear derivative equation and it suffers from a singularity problem.
Foxlin (1996) proposed an Euler angle error-based method and Setoodeh et al.

(2004) proposed a similar method for integration. Indirect KF was adopted in their
methods, and state vectors were formed by three Euler angle errors and three gyro
biases. However, since the Euler angle errors in their methods were used to express the
body frame (b frame) errors, the Euler angle integration kinematics were still adopted,
so their methods also have non-linear and singularity problems.
In order to fix the singularity problem, for modern applications, Euler angles are

often avoided in filter designs, and the quaternion has been the most widely used
attitude parameterization. A major advantage of using quaternion is that the
kinematics equation is linear in the quaternion and is also free of singularity
(Markley et al., 2005). However, the observation model of the quaternion-based
method is still non-linear (Nie et al., 2010).
With regard to the non-linear problem, Markley et al. (2005) presented a review of

several filtering methods for non-linear attitude estimation. Although it is possible to
find different families of approaches in literature, the Extended Kalman Filter (EKF)
is still the standard technique for non-linear attitude estimation in practical terms.
However, the EKF suffers from linearization error and it requires more system
complexities and computational time than a regular KF. Although processing devices
develop rapidly, it is still necessary to investigate the linear model for low-cost real-
time systems. Qi and Moore (2002) presented a direct Kalman filtering approach, in
which sensor non-linearities are pre-processed to adopt a simple and linear KF instead
the EKF. In this way, the computational time is reduced but performance parameters
are affected. Han and Wang (2011a) proposed an integration method for IMU and
magnetometers to avoid this non-linear problem, but the observation model in that
paper suffers from the singularity problem when the pitch angle passes through ±π/2.
In addition, no approaches discussed above consider the impact of dynamic

accelerations on the performance of an electronic compass. Actually, dynamic
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accelerations of the user platform would influence the gravity field measurement, and
eventually affect orientation results of an electronic compass. An Adaptive Kalman
Filter (AKF) can be adopted to fix such a problem. Wang et al. (2004) proposed an
adaptive filter, in which the filter gain can be tuned according to the scalar dynamic
accelerations sensed by accelerometers. However, in the gain adjustment procedure, it
did not consider the influence of dynamic accelerations to the electronic compass
heading, and then adds more errors into estimation results. Qin et al. (2009) adjusted
the filter gain by tuning the process noise covariance matrix Q and R according to
a fuzzy logic inference system; the drawback of this method is that the only tuning
coefficient could not get the optimal Q and R at the same time. Munguia and Grau
(2011) proposed an adaptive EKF with an additive function noise in the measurement
noise covariance matrix R, of which the increment decreases the influence of
acceleration corrections when the user platform is not stationary. It works well during
the low acceleration movement, but the drawback is that the additive function noise
part could not decrease the influence of accelerometer corrections effectively when
high acceleration occurred. Li and Wang (2011) proposed an AKF for AHRS, with a
multiplicative coefficient to tune R according to the system dynamics. However, it
could not reflect the influence of accelerations on R accurately.
In this paper, a new AKF with linear models is proposed for low cost AHRS. The

linear system kinematic model is developed based on the Psi-angle propagation
equation (Goshen-Meskin and Bar-Itzhack, 1992). The linear observation model is
derived with the residuals of heading and accelerations in N and E directions of the
local-level local-north frame. Considering the impact of dynamic accelerations, a
dynamic scalar sensed by accelerometers is defined to determine the system movement
mode. According to different movement modes, R can be tuned adaptively.
Meanwhile, an additive function noise is introduced to tune R with the dynamic
scalar in the low dynamic mode.
The contributions of this paper are as follows. Firstly, the long-standing non-linear

problem in the AHRS is avoided to improve the computational efficiency. Secondly,
the innovative adaptive procedure proposed here is effective. It can significantly
improve the AHRS performance even under dynamic acceleration conditions.
This paper is organized as follows. In Section 2, a brief introduction to the

orientation determination of electronic compasses is given to illustrate the impact of
dynamic accelerations on orientation results. The system kinematic model and the
corresponding system observation model are derived. The adaptive strategy for system
dynamics is developed in Section 3. Experimental results with a low-cost AHRS
device are presented in Section 4. For comparison, the same data in dynamic
experiments is processed by the proposed method and two other adaptive methods
from references. Finally, Section 5 draws concluding remarks and comments on future
work.

2. ORIENTATION DETERMINATION BASED ON
MAGNETOMETERS AND ACCELEROMETERS. The main task of
AHRS is to determine orientation angles which are the main navigation parameters.
These angles are also called Euler angles including yaw ψ, pitch θ and roll γ, which are
defined as the rotation angles from the body frame (b frame) to the navigation frame
(n frame). In this paper, the local-level local-North frame is chosen as the n frame.
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A good review of orientation methods of the SINS is given by Cooke et al., (1992),
which will not be repeated here. In this section, a brief introduction is given for the
magnetometer and accelerometer-based orientation determination.
An electronic compass can provide the heading and attitude angles with

geomagnetic field and acceleration signals (Caruso, 2000). Since these measurements
do not suffer from long term drift, they could be used for gyro measurements error
estimation. When the system is stationary, the relationship between gravity field
measurements of accelerometers in the b frame and the gravity vector in the n frame is
formulated as:

fx
fy
fz





 = Cb

n

0
0
−g





 =

sin θ
−sin γ cos θ
−cos γ cos θ





g (1)

where:

fx, fy and fz are measurements of accelerometers in the b frame.
Cn
b is the Direction Cosine Matrix (DCM) from the n frame to the b frame.
Based on Equation (1), attitude angles θ and γ can be calculated as:

θ
γ

[ ]
= arc sin( fx/g)

arc tan( fy/fz)
[ ]

(2)

The accuracy of these attitude angles is related to the accelerometers’ bias, which is
around 1 mrad/mg. In this paper, the bias of the employed accelerometers is 0·02 m/s2,
so the accuracy of attitude angles is about 0·1 degree.
With measured attitude angles, the rotation relationship between the geomagnetic

field vector measured by the magnetometers in the b frame Hb and the geomagnetic
field vector in the n frame Hn could be expressed as:

Hn = Cn
bpr
Hb (3)

where Hb and Hn are defined as:

Hb = [Hb
x Hb

y Hb
z ]T , Hn = [Hn

x Hn
y Hn

z ]T (4)

With attitude angles measured by accelerometers, the DCM from the b frame to the
n frame can be determined as:

Cn
bpr

=
cos θ sin γ sin θ cos γ sin θ
0 cos γ − sin γ

− sin θ sin γ cos θ cos γ cos θ





 (5)

After Hn is calculated from Equation (3), the magnetic heading can be determined:

ψc = −arc tan(Hn
y/H

n
x) (6)

Eventually, the orientation of the electronic compass can be determined by
Equations (2) and (6). In practice, the electronic compass needs to be calibrated for
soft iron and hard iron effects before orientation determination; Caruso (1997)
proposed a simple calibration method to determine the offset and scale factor values
of an electronic compass.
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Actually, an electronic compass can only work effectively under stationary or low
acceleration conditions. From Equations (2), (3) and (6), we can see that if the system
is not stationary, dynamic accelerations will influence the gravity field measurement in
the b frame. So the attitude results will not be accurate and, eventually, these errors
will be propagated into the magnetic heading result. If high dynamic accelerations
occur, orientation results of the electronic compass will be significantly biased.

3. ADAPTIVE KALMAN FILTER SCHEME. Customary integration
methods mentioned in the introduction section are subject to three annoyances: the
non-linear problem, the singularity problem and the impact of dynamic accelerations.
So the new design of AKF for IMU/magnetometers-based AHRS is based on the
following considerations:

. First, the error state model is adopted, rather than the full state model. In the
Euler angle-based full state model, because body angular rates are included in
states of the KF, the body angular motion modelling is required. It is a difficult
and complex task, leading to the non-linear and singularity problems. In the
quaternion-based full state model, such problems in the kinematic model are
avoided, but the corresponding observation model is still non-linear. Through
adopting Euler angle errors expressing the n frame errors as the error state model,
of which differential equation is linear, the non-linear and singularity problems in
the kinematic model can be avoided.

. Second, acceleration residuals in both N and E directions in the n frame, rather
than the pitch and roll errors, are used as the observation vector. Although it
is a straightforward way to adopt orientation difference between gyros and an
electronic compass as the observation vector in the KF, as Han and Wang
(2011a) did, it will lead to singularity problem in observation model when the
pitch angle passes through ±π/2. The acceleration residuals in both N and E
directions in the n frame contain equivalent frame errors information to the pitch
and roll errors but without singularity problem, which will be analysed in the
following subsection.

. Third, the impact of dynamic accelerations, which is illustrated in Section 2,
should be taken into account. Common AHRS implementations have not
considered such an impact which will actually decrease the filter performances
under dynamic conditions. By tuning the gain of filter adaptively according to the
magnitude of the dynamic acceleration, the filter can maintain the performance
for a long period of operations when the system is undertaken external
accelerations.

The system schematic diagram is shown in Figure 1.

3.1. System Kinematic Model. In this subsection, a linear kinematic model
is developed based on the Psi-angle error model. It is well known that the Psi-
angle error propagation equation of Inertial Navigation System (INS) is linear, in
which the Psi-angle error Ψ represents the difference between the true navigation
frame (n frame) and the platform frame. Here, the platform frame is a terminology
in INS and could be viewed as the computed navigation frame (nc frame) in
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SINS (Blankinship, 2008). As computational errors are negligible, arising from
errors of gyros, the nc frame is different from the n frame. Thus, Ψ is used to
represent such orientation difference between the n frame and the nc frame and
equals to the rotation vector from the n frame to the nc frame. The differential
equation of the Euler angle error expressing the n frame error for the AHRS could be
expressed as:

Ψ̇ = Ψ × ωn
in + εn (7)

where:

ωin
n is the n frame rotation angular rate vector relative to the inertial frame (i frame)

expressed in the n frame.
εn are errors of gyros expressed in the n frame, which include the constant bias Gb and

the scale factor error Gs.

So the matrix form of the system kinematic model can be written as

X = FX + w (8)

where the error state vector is constructed as:

X = [ΨN ΨE ΨD Gbx Gby Gbz Gsx Gsy Gsz]T (9)

where:

the ΨN, ΨE and ΨD are elements of Euler angle error Ψ.
Gbx, Gby and Gbz are elements of the gyro bias Gb expressed in the b frame.
Gsx, Gsy and Gsz are elements of the scale factor error Gs expressed in the b frame.
N, E and D are the subscripts of vector elements in the n frame.
x, y and z are the subscripts of vector elements in the b frame.

Heading 
Computation 

Attitude  
Correction 

Gyros  
Calibration 

Kalman Filter 

Gyros Orientation 
Computation 

Magnetometers 

Accelerometers Acceleration 
Residual

-

+

Figure 1. Schematic diagram of IMU/magnetometers integrated AHRS.
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The system matrix F is defined as:

F = ωnc
inc× −Cnc

b −Cnc
b diag G( )

06×9

[ ]
(10)

where:

ωnc
inc is the rotation rate of the nc frame respect to the i frame expressed in the nc frame.

ωnc
inc× is the skew symmetric matrix of ωnc

inc .

Cnc
b is the DCM from the b frame to the nc frame.

G represents the angular increment of each epoch in the b frame measured by three
axis gyros.

The process noise vector w is the independent Gaussian white noise with the zero
mean:

w � N(0,Q) (11)
where Q is the process noise covariance matrix.

3.2 System Observation Model. The acceleration residuals in the n frame, and
the heading residuals between the electronic compass and gyros are used for the
observation model. When the system is static, the sum of external accelerations in the b
frame is equal to the gravity, and the acceleration vector in the n frame is:

f n = [0 0 g]T (12)
The acceleration residuals in the n frame δf are defined as acceleration differences
between the n frame and the nc frame:

δf = f n − f nc (13)
in which f n is the acceleration vector in the n frame and f nc is the acceleration vector in
the nc frame, which can be written as:

f nc = Cnc
b f

b (14)
where f b is the acceleration vector in the b frame, which is the measurement vector of
accelerometers.
Following the DCM chain rule (Savage, 1998), Cnc

b an be expressed as:

Cnc
b = Cnc

n C
n
b (15)

where Cnc
n is the DCM from the n frame to the nc frame, and could be expressed as:

Cnc
n = I −Ψ × (16)

in which Ψ× is the skew symmetric matrix of the Psi-angle error vector Ψ.
Substituting Equations (12), (14), (15) and (16) into (13), the relationship between

acceleration residuals in the n frame and the error states can be written as:

δfN
δfE
δfD





 =

0 −g 0
g 0 0
0 0 0





 ΨN

ΨE

ΨD





 (17)

where δfN, δfE and δfD are the elements of acceleration residuals in the n frame. From
(17), the error state ΨD is not observable.
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The heading residual between the electronic compass and gyros can be written as
(Foxlin, 1996):

δψ = ψ̂ − ψc = −ψD (18)
where:

ψ̂ is the heading calculated by gyro measurements.
ψc is the heading from electronic compass.

Combining Equations (17) and (18), the observation model is obtained:

Z = HX + v (19)
where Z=[δfN δfE δψ]T, and the observation matrix H is written as:

H =
0 −g 0
g 0 0
0 0 −1

03×6





 (20)

and the measurement noise vector v is the independent Gaussian white noise with the
zero mean:

v � N(0,R) (21)
where R is the measurement noise covariance matrix.

3.1. Adaptive Kalman Filter (AKF). With regard to the AKF, there are
primarily two different strategies (Wang et al., 2010). The majority of adaptive
algorithms focus on how to sequentially improveQ or R, or both ofQ and R. Another
strategy aims to find a balance between the time update and measurement update. In
this paper, the proposed adaptive algorithm only deals with improving R, since
dynamic accelerations mainly influence the measurement procedures.

3.3.1. Initialization of Q and R. In fact, the effect of the initial state vector along
with its variance will be gradually reduced over time in KF operations. However, a
major obstacle in applying a KF is specifying the covariance matrix Q and R (Louv,
1984). Users should make their best effort to approximate Q and R with the available
information about their applications. In general, specified values for the covariance
matrix Q and R are experimental.
The process noise covariance matrix Q is composed as:

Q =
Qa 0 0
0 Qb 0
0 0 Qs





 (22)

where:

Qa is the matrix of the gyro angular random walk (ARW) process.
Qb is the matrix of the gyro bias driven by the rate random walk (RRW) process.
Qs is the matrix of gyro scale factor stability.

These parameters can be determined by Allan variance analysis (Lam et al., 2003;
Han and Wang, 2011b) experiment.

106 WEI LI AND JINLING WANG VOL. 66

https://doi.org/10.1017/S0373463312000331 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000331


When the AHRS system is static, the measurement noise covariance matrix R is
composed as:

R =
σ2fN 0 0
0 σ2fE 0
0 0 σ2ψc





 (23)

where σ2ψc
is the variance of the electronic compass heading angle which can be

determined by the electronic compass calibration experiment, σ2fN and σ2fE are the
variances of the acceleration residuals between the nc frame and the n frame as:

σ2fN 0 0
0 σ2fE 0
0 0 σ2fD





 = Cnc

b

σ2fbx 0 0
0 σ2fby 0

0 0 σ2fbz





CncT

b (24)

where σ2fbx , σ
2
fby

and σ2fbz are the variances of accelerometer measurements in the

b frame, which can be determined by an accelerometer calibration experiment.
3.3.2. Adaptive Tuning of R. When the AHRS is stationary, the initialization of

Q and R yield optimal gain for the best state estimation (Wang et al., 2004). However,
when the AHRS is in the dynamic mode, measurements of accelerometers consist of
both gravity and dynamic accelerations, which lead to the change of R. In order to
yield the optimal performance, R is tuned according to the dynamic scalar that is
defined as:

α = f b − g
∣∣ ∣∣ (25)

where the g is gravity vector [0 0 g]T and the fb represents accelerometer
measurements. The adaptable gain has the following scenarios:

. Non-acceleration mode: when α 4





















σ2fbx + σ2fby + σ2fby

√
, with R being defined in

Equation (23), the filter is properly modelled as a stochastic process with an
optimal estimate output.

. Low-acceleration mode: when





















σ2fbx + σ2fby + σ2fby

√
, α 4 Thacc, such small

dynamic acceleration could be treated as a part of measurement noise.
The measurement noise covariance matrix should be adjusted on-line according
to α:

Ra = R+
kα2 0 0
0 kα2 0
0 0 k α/g

( )2




 (26)

where kα2 is the additive function noise.
It is included to increase the accelerometer measurement noise proportionally

to increments of the b frame acceleration. In order to include the influence of
such acceleration on the magnetic heading calculation, the additive function
noise for the magnetic heading measurement noise is formed as k(α/g)2, since the
relationship between the accuracy of attitude angles calculated by accelerometers
and accelerations is around 1 mrad/mg. Both the scale parameter k and the
threshold Thacc can be determined by the experiments and the design
requirements.
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. High-acceleration mode: when α>Thacc, measurements of accelerometers are
far from the value of the gravity, and then, the acceleration residuals and the
heading calculated by accelerometers and the electronic compass are far
away from the truth. In order to avoid such measurements affecting the filter, a
proper solution is to set the gain of the KF to 0 during the high dynamic period,
and then the system would become a stand-alone SINS. Therefore, R could be
written as

R =
ThL 0 0
0 ThL 0
0 0 ThL





 (27)

where ThL is a large number which would set the corresponding KF gain close
to 0. Most real-world user platforms do not experience acceleration for a long period
and error states of the KF are usually well estimated before such high acceleration

Table 1. RMS Error in the stationary test.

Yaw/deg Pitch/deg Roll/deg

MTi 0·078 0·033 0·037
AKF 0·044 0·016 0·015
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Figure 2. Errors of Euler angles in the stationary test.
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occur. As a result, the stand-alone SINS can maintain the orientation calculation
during the high acceleration interval. The threshold ThL is determined by experiments
and the design requirements.

4. EXPERIMENTAL TEST. The experimental data were logged by an Xsens
MTi sensor, which can output both raw sensor data and Euler angles at the same time.
A magnetic calibration procedure was executed according to the user manual of MTi
sensor before the experiment, and then the expected accuracy of electronic compass is
0·5 degree, the data refresh frequency was set to 100Hz and other configurations of
the MT software remained default. Experiments were implemented through both
stationary and dynamic tests.
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-200

0

200

ψ
 /

 d
eg

Time / s

 

 
C-MIGITS

MTi

AKF_I
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-20
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20

γ 
/ 

de
g

Time / s

Figure 3. Time series outputs of different orientation results in the low dynamic test.

Table 2. C-MIGITS II and MTi technical specifications.

C-MIGITS II MTi

Accelerometer bias 500 μg 2mg
Gyro bias 5 deg/h 1 deg/s
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4.1. Stationary Test. In the stationary test, the system was fixed on a static
table. Euler angle outputs of MTi and the proposed AKF were analysed. Euler angle
errors in the stationary test are shown in Figure 2, and the error analysis is shown in
Table 1. The results indicate that the accuracy of the AKF in the stationary test is
within 0·1 degree.

4.2. Low Dynamic Tests. The low dynamic tests were conducted with a BEI
C-MIGITS II which is a tactical grade INS, and an Xsens MTi which is a low-cost
AHRS. The MTi was firmly fastened to the top of the C-MIGITS II so that their
dynamics would be the same during the test. The performance of the C-MIGITS II
and the MTi is compared in Table 2.
As shown in Figure 3, the outputs of C-MIGITS II, MTi, the AKF_I proposed by

Wang et al. (2004), the AKF_II proposed by Munguia and Grau (2011), and the
AKF_III proposed in this paper are very close to each other.
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Figure 4. Errors of Euler angles in the low dynamic test.

Table 3. RMS Error in the low dynamic test.

Yaw/deg Pitch/deg Roll/deg

MTi 0·782 0·768 0·347
AFK_I 0·448 0·127 0·164
AFK_II 0·882 0·121 0·166
AKF_III 0·418 0·108 0·149
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Setting the output of C-MIGITS II as the ground truth, Euler angle errors are
plotted in Figure 4, and the error analysis is shown in Table 3. The results show that
the accuracy of the proposed AKF_III in the low dynamic test is within 0·5 degree.

4.3. High Dynamic Tests. Setting the output of C-MIGITS II as the ground
truth, the Euler angle errors in the high dynamic test are plotted in Figure 5, and the
error analysis is shown in Table 4. The results show that among all the tested filters,
the proposed filter (AKF_III) can provide the best performance even during the high
dynamic test.

5. CONCLUDING REMARKS. This paper has presented an effective
Adaptive Kalman Filter (AKF) for a Micro Electro Mechanical System

Table 4. RMS Error in the high dynamic test.

Yaw/deg Pitch/deg Roll/deg

MTi 3·655 0·684 0·382
AFK_I 8·879 0·906 0·815
AFK_II 3·117 0·726 0·669
AKF_III 0·691 0·403 0·122
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Figure 5. Errors of Euler angles in the high dynamic test.
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(MEMS)-based Inertial Measurement Unit (IMU) and magnetometers integrated
Attitude and Heading Reference System (AHRS).
A linear system error model based on the Psi-angle error model has been developed,

and the corresponding observation model has been derived. Moreover, an effective
adaptive strategy has been adopted in this method. According to the dynamic scalar
which is defined to determine the system movement mode, the measurement noise
covariance matrix R can be tuned adaptively to yield optimal performance during the
dynamic periods. Experiments have shown that the proposed method can improve the
orientation performance of low-cost sensors. With measurements from an Xsens MTi
AHRS device, the proposed filter method can provide the stationary accuracy of less
than 0·1 degree, and the low dynamic accuracy of better than 0·5 degree, the high
dynamic accuracy of less than 1 degree, which are far better than the results from the
commercial system itself or other existing filtering methods.
Further research is under way to consider the effects of magnetic anomalies, and

integrate this system with other navigation systems, such as a vision-based system.
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