Pierve Gilles de Gennes

CHANCE AND NECESSITY

IN COOPERATIVE PHENOMENA

I. GENERAL CHARACTERISTICS OF COOPERATIVITY

1.1 Magnets and Fish

A lone fish swims haphazardly in any direction, but if we
get enough fish of the same species together so that neigh-
boring individual fish may exchange signals, they adopt a com-
mon direction. Here we have a phenomenon of cooperation:
many individuals find themselves in strong interaction with
each other, and overall behavior is noticeably affected.!

The physical sciences offer us a large variety of such pheno-
mena. For example, inside an iron crystal we find a small
microscopic compass on each atom, the “moment” of the iron
atom. All these moments are connected, and at a temperature
which is not too high they all point in the same direction: the
metal is then said to be ferromagnetic?

Some researchers quickly seized on the idea that a strong

Translated by Jeanne Ferguson.
1 Callen and Shapero, Physics Today, July, 1974, p. 23. )
2 N. Boccara, La physigue des transitions, Coll. “Que sais-je?,” P.UF., 1970.
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link exists between quite different cooperative phenomena,
whether it was a question of magnets, fish or human societies
(which for example show vascillation in opinions).’> The analogy
is tempting, but ticklish; some obvious differences must be
immediately pointed out:

a) Elementary objects in physics ot chemistry (for example,
individual magnets) are relatively simple and wellknown. When
the “elementary object” is a living organism, if we are to
describe it in the same terms we must proceed to a dangerous
reduction: we must sum up its behavior in a certain number of
carefully-chosen quantitative parameters;

b) Structures met with in the natural sciences are much more
primitive than those found in the social sciences. On the other
hand they may well serve as the subjects of active experi-
mentation in which a natural system is subjected to various
disturbances, each of which may be observed by us;

c) the natural sciences are relatively mature, and their meth-
odology has reached a certain stability. Their researchers have
a wide experience in the construction of “minimal” quantitative
models, those which give the pertinent aspects of the phenc-
menon,

The younger sciences, on the other hand, go through suc-
cessive and opposed phases: qualitative theories, overmathe-
matization (especially now that there are computers).

The aim of this article is to present some basic concepts
which have emerged from the study of the simplest cooperative
physical-chemical phenomena, with the hope that some of these
ideas may prove useful for social phenomena.

We will go even further: beginning with different physical
situations, we will suggest possible transpositions toward social
problems. These attempts will be made from the “outside” with
no reference to the sociological literature (with which the
present author is far from being well-acquainted). Thev make
no claim to novelty: even inside the physical sciences the con-
cepts described herein have often been found by diflerent
researchers using different examples.

3 Weidlich, “Dynamics of Interacting Social Groups,” Progress in Synergetics,
North Holland, H. Haken, ed., 1974.
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1.2 Closed Systems and Open Systems

Certain physical settings insure that the studied system may
achieve a permanent equilibrium within an enclosure (for exam-
ple, a container with a uniform temperature). Others keep the
system out of balance by its being enclosed in a container two
sides of which are of different temperatures. In the first case
we speak of a closed system. In the second case, on the
contrary, a certain flux crosses the container (a flow of heat
goes from the warm side to the cold side), whence the term
open system. This distinction is fundamental: closed systems
evolve toward an equilibrium following relatively simple laws
and only later deviate from it because of weakening fluc-
tuations. Open systems are much more versatile. Fig. 1 well
illustrates the possibilities for open systems. The bucket is
continually fed by a faucet. When there is little water in the
bucket it is in the “a” state and fills. But when the water
rises above a certain level (the “b” state) it tips, empties and

returns to “a.” Here we have an “oscillation of relaxation”

.

I

,“1
a) Filling b) Spontaneous
emptyin
(Fig. 1) g
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which is indefinitely repeated and is typical of certain open
systems.

We will first consider closed systems, and we will show,
following Weidlich,* that they may have not negligible social
counterparts. Then we will consider open systems, whose im-
portance is fairly well admitted at present’ For all socio-
economic (or ecological, or biological) cases in which a flow
(of energy, of raw material) enters the system at the same
time as a flow (of heat, of waste) leaves it, we may think in
terms of an open system.

1.3 Symmetries and broken symmetries ®

It often happens that the behavioral laws of a system under
observation will obey certain symmetries, for example, a school
of fish:

a) In the absence of any external stimulus, the speed of
movement of a single fish from one place to another does
not depend on the direction he has chosen (north, or east)
on a horizontal plane;

b) the grouping of fish is also independent of the overall
direction of movement. '

Then we say that the school is grouped in a symmetry Go
(here indicating the set of rotations around a vertical axis).

Similarly, let us now consider a group of elementary mag-
nets, as in iron, and let us suppose that each magnet has
only two possible positions: pointing upward or pointing
downward:

a) a single magnet, in the absence of any external dis-
turbance, may point either upward or downward;

b) the energy of coupling between two “upward-pointing”
magnets is equal to that of two “downward-pointing” mag-
nets.

4 Weidlich, British Journal of Mathematics and Statistical Psychology, 1971,
24, p. 251.

5 1. Prigogine, P. Glansdorfl, Thermodvnamic Theory of Structure. Stability
and Fluctuations, Wiley, 1971. Cf. also ]J. De Rosnay, Le Macroscope, Ed. Seuil,
1975.

¢ Cf. N. Boccara, Symétries brisées el transitions de phase, Hermann, 1975,
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The essential observation is then the following: if the
system organizes itself as a result of a cooperative phenom-
enon, it spontaneously adopts a state which has losz the Go
symmetry. And so also with fish: if the coupling between
them is weak, each will take off haphazardly on its own with
no common direction: the symmetry of rotation is respected.
But if the coupling is strong the fish will line up side by side
and choose a common direction of movement. If we make
calculations on such a school (by sonar, for example) we will
find an anisotropic behavior: the symmetry Go is broken.

There are in fact two ways to break the G, symmetry:

i) by external means (for example, putting food in a certain
direction near the school);

ii) spontaneously: if we start from a given situation and
the grouping is suddenly reinforced (by making the water
more transparent so that it is easier for the fish to exchange
signals) the school chooses one direction, haphazardly. Or more
precisely, it proceeds by an amplification in fluctuation. If at
the beginning there were a few too many fish (with respect
to the average) going north-east, the entire school will head
toward the north-east. Here we see an important association
of chance with necessity: a common action must occur, but the
choice of the action is left to chance.

This concept is of course found again in magnets: in an
ordered state they tend to line up and point upward. At this
moment the upward/downward symmetry is broken.

vI.4 A Link with Curie’s Principle

About a hundred years ago Pierre Curie expressed a very
general principle concerning the structure of physical laws:” .
“The symmetry of effects is the same as the symmetry of

. causes.” This principle is important and almost always correct.
But it is violated when a spontaneous rupture of symmetry
occurs: at the moment of the rupture there is the possibility
of several final states, and the system chooses only one of
them. Curie’s principle only has meaning when the final state
(which defines the “effects”) is unique.

7 Pierre Curie, Journal de pbysique, Sept., 1894, p. 393.
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1.5 Rupture of Symmetry in Open Systems

The example of magnets given above corresponds to a closed
system. But it is important to realize that spontaneous rup-
tures are also frequent in an open system. Thus, when we
heat a thin sheet of water from underneath we see above a

ORDINARY STATE
Cold

(LSS L AL L AL LLLLLLLLLLLLLLL L L LLLLLL

Stationary water

T777/777777/7777/7/7 7777777777 77777777
Warm

STRUCTURED STATE
Cold

Hot
(Fig. 2)
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certain threshold an instability (Bénard’s instability) which is
due to the fact that warm water, being lighter in weight,
tends to rise. This is an example of an open system (traversed
by a flow of heat). And there is a definite rupture of sym-
metry, as Fig. 2 shows.

On this side of the threshold the water has a “translational
symmetry”: if we move along the axis xx’ we find the same
properties everywhere. On the other side of the threshold,
this symmetry is broken: “eddies of convection” appear.

Here we have a very simple example of structuration in an
open system. The underlying qualitative description for sciences
other than the natural is found in a work by R. Caillois.® The
importance and the general application of this process (for
example, the formal discussion of the origin of life) was very
early appreciated by I. Prigogine.’

1.6 Discrete Symmetries and Continuous Symmetries

In mathematical language, there may be two groups of G,
symmetry: “discrete” and “continuous.” Without going into
detail on this definition, we point out that it is linked to the
number of accessible states after a rupture of symmetry: for
our magnets, there are only two, upward and downward. On
the other hand, there are an infinite number of possible direc-
tions for a school of fish to take—all the angles of a marine
compass. The first case is discrete, the second continuous.

This geometrical difference may appear very formal: it is
essential however when more complex situations claim our
attention, for example, the encounter between two schools
of fish. In the situations of a discrete Go a well-defined fron-
tier will exist between two differing spheres. In situations
of a continuous G, there is no frontier but there are progres-
sively more distortions and at times formation of lines or
single points.”

8 R. Caillois, Symétrie et dissymétrie, N.R.F.
9 1. Prigogine, op. cit.
1 M. Kleman, “Points lignes parois,” Editions de Physique, 1977.
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II. COOPERATIVE EFFECTS IN EQUILIBRIUM

A closed physical system evolves toward an equilibrium and
at that moment has a rather trivial behavior. However, as
we have seen, things change if more than one state of equil-
ibrium is possible—if the system “hesitates” before choosing
one of several states. We will now see how this hesitation
may appear at a critical point, when we vary certain control
parameters.

I1.1 The Concept of a Critical Point

At high temperature the elementary magnets in an iron
crystal are in a totally unorganized state. There is no privileged
orientation. On the other hand, below a certain critical tem-
perature—T—the magnets become orderly; most of them
will point in the same direction. There are some which go
against the current, but the lower the temperature the stricter
the ordering, as is shown in the following schemas:

a) T greater than T

i {1l
U B

50% pointing upward
50% pointing downward

b) T slightly less than T.:

I AR T
I b !
609% pointing upward
40% pointing downward

¢) T very much less than Te:

| % i
90% pointing upward
10% pointing downward

(Fig. 3)
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To illustrate the mechanism involved, we propose another—
though conjectural—example based on the social behavior of
young children in a nursery. Below a certain critical age (around
two and a half) they exchange signals and play, but the games
are not coordinated. On the contrary, when the critical age
has passed, a significant fraction of the group tends to take
part in the same game. Let us start from the hypothesis that the
relationship magnets «<—> children makes sense. What will we
then draw from our experience with magnetic systems? First,
it will suggest the extraction of two essential parameters:

a) strength of coupling between individuals;

b) an individual susceptibility which measures the aptitude
of a subject to respond to external signals. (In the case of
magnets this susceptibility decreases when the temperature rises.)

When the product (coupling x susceptibility) is above a certain
level, behavior becomes cooperative: we pass through a critical
point. It would be interesting to know if these concepts have
been (or can be) applied to the question of the social behavior
of young children.

I1.2 Response Functions™

We introduced individual susceptibility above. Another im-
portant quantity is collective susceptibility, which measures the
response of an individual when the system is subjected to a
common external action: a “magnetic field” for our little
magnets or a loudspeaker pouring out music for the children
in the nursery. Collective susceptibility may be much greater
than individual susceptibility: each child receives not only the
sound from the loudspeaker, but he sees his neighbors clapping
their hands, etc.

At the critical point, the collective susceptibility becomes
infinite; the laws which govern this anomaly are known. Whence
a possibility to see in advance the approach of a critical point,
for example by measuring the collective susceptibility of children
a little below the critical age.

U N. Boccara, Symétries brisées et transitions de phase, Hermann, 1975,
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Collective susceptibility is an ezample of the more general
concept of the response functions—important in all statistical
systems. Further on we will give other examples.

11.3 Spontancous Fluctuations and Response Functions

Let us return to the system of coupled magnets and let us
assume the temperature to be above the critical point T.. Under
these conditions there are, on the average, 50% of the magnets
pointing upward and 509 pointing downward. But there are
of course fluctuations with respect to this average. A large
segment of closed systems then obeys a convenient theorem:
the intensity of the fluctuation is in proportion to collective
susceptibility. Particularly, as the critical point is approached,
fluctuations become very important, and this brings up another
method of inquiry on this point.

11.4 Vicinal Systems

In many cases, the physical system in which cooperative phe-
nomena may be observed are solids, wherein the constituent
atoms are either arranged in perfect order (crystals) or in a
certain disorder (glass).

Under these conditions, an entire series of questions arises
connected with the spatial correlation between individuals: the
most important developments in statistical mechanics in the last
ten years have been specifically directed to this type of question.
The situation which we have just described corresponds on the
sociological level to a collection of individuals occupying fixed
positions and exchanging information only with their nearest
neighbors—what we call a vicinal system. In such a system,
individuals may still be subjected to the influence of mass media,
which plays an analogous role to that of the external field for
magnetic compasses. On the other hand, there is no direct, -
binary interaction between two individuals who are distant
from each other.

This restriction, which corresponds to the normal laws for
condensed matter in physics, seems more limiting in sociology;

12 Ibid.
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at least in contemporary society, a lively, close contact between
individuals has a considerable effect. It is no doubt true that
a subject interacts mostly with a limited number of people, but
these (colleagues at work, for example) may live quite far from
him: spatial rapports are less constraining in a city than they
are in a crystal.

For this reason, we will not stress the spatial properties of
vicinal systems and will only present two basic concepts which
are associated with them: a non-local response function and the
degree of correlation.

The non-local response function is defined by the following
operation: a weak external disturbance is applied to an indi-
vidual located at point “r.” Other individuals feel absolutely
no external disturbance. But “r” changes his behavior and
reacts upon his neighbors. These in turn change their behavior
and on the one hand influence “r,” while on the other they
influence more distant neighbors. Finally, we may measure a
change in behavior in an individual who is quite far away
(located at a certain point “r’”). This change is in proportion
to the strength of the disturbance at “r”: the ratio defines the
non-local susceptibility X(rr’). Most often X(rr’) decreases when
the observation point “r’” withdraws from the point of attack
“r” (Fig. 4).

Xre')
4

distance lr—vr’1

(Fig. 4)
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In most cases—at least in the disordered phase: in the
ordered phase, if the group Go is continuous, the rate of
decrease is very slow—the X function becomes negligible be-
yond a certain characteristic point &, the degree of correlation.

In a very disordered situation the degree of correlation is
weak (comparable to the distance between neighbors.) But
if we approach the critical point, the degree (of length) &
increases greatly and diverges toward T = T.. It has taken
fifty years to understand well the mathematical laws which
govern this divergence, but now the situation is under con-
trol.”

Note: In all the above discussion, we have assumed that
connections between neighbors were actually present. In the
case where certain ties between neighbors are cut and com-
munication is seriously reduced, a phenomenon of percolation
is involved, for which we refer the reader to another article.

I, SCHEMES OF TEMPORAL EVOLUTION

1I1.1 Weak Disturbances in the Vicinity of an Equilibrium

The system (or the population) we are observing is almost
always subjected to external influence: a school of fish receives
a variety of stimuli (directional, lighting, gradients in tem-
perature and salinity, etc.) Up until now we have discussed
only the response to a weak and permanent stimulus. In the
presence of such a stimulus the system ends by reaching an
internal equilibrium.

Two generalized axes appear:

a) cases of stimuli which are weak vary in time;
b) cases of strong disturbance and resultant instability.

Here we will briefly discuss the first case. The basic tool
for analyzing these situations is the concept of a delayed
response function: a disturbance of brief duration occurs at
the moment t1, and the response is measured at a later time t.

B 1bid.
14 P. G. De Gennes, La Recherche, 1976, 7, p. 919.
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The response function defined in this way X (t1 t2) gives pre-
cious information on the internal dynamics of the system. Let
us mention here as an example the fact that the responses
become very slow when we near a critical point.

I11.2 Two Kinds of Instability
All usual systems may be rendered unstable:

i) a closed system of coupled magnets becomes unstable if
there is an influence opposed to the orientation the system
has chosen;

ii) an open system traversed by a violent flux is often
unstable: so it is for the sheet of water heated from beneath
and illustrated in Fig. 2. We see how it passes from an ordinary
state (O) to a structured state (S).

Instabilities can appear in many different forms: the
“theory of catastrophes”™ gives us a certain geometric clas-
sification for them. For our purposes in this article, we must
make a fundamental distinction between two types of insta-
bility:

— instability of fluctuation: even a slight split with relation
to the O state will inexorably widen in time and cause the
evolution of the system from O to S (a cause met in the
sheet of water);

— instability of nucleation: system O remains stable with
respect to weak fluctuations but becomes unstable for certain
strong fluctuations.

We are going to illustrate these rather austere concepts by
some concrete examples.

111.3 Two Inustabilities of Fluctuation: Laser and Fads

A laser is an enclosure in which we find grains of light
(photons) P and atoms (A*) excited by an annexed device.

15 R. Thom, Stabilité structurelle et morphogénése, New York, Benjamin,
1972, For its application in sociology, see C. Isnard and E. Zeeman in Use of
Models in the Social Sciences, ed. by L. Collins, London, Tavistock, 1974.
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In essence the process is as follows: a photon (P) arriving at
an atom (A*) may de-excite it (A¥*—> A) and cause the for-
mation of a second photon P’:

P+ A*—>P+ P + A

This mechanism (anticipated by Einstein) constitutes what is
called a stimulated emission. It may lead to an instability in
fluctuation: the stimulated emission increases the number of
photons, all the more so because this number is already
large. Of course, the process has to compete with certain losses
(absorption of photons): instability occurs only when the
fraction of excited atoms A 1is sufficiently large. Then fluc-
tuations in the number of photons increase. There is com-
petition between the different possible types of photons: the
“type” that increases the most is victorious and installs itself
in the laser cavity as a particularly pure, “coherent” beam.

It took a long time to pass from stimulated emission to
laser, but at present this kind of cooperative instability is
found in extremely varied branches of science. For a reader
who does not fear the formalism of the natural sciences, the
book by Haken' will be of great help. The process of the
evolution of a living species (a virus) subjected to accidental
mutations and to the pressure of Darwinian selection is
governed by equations somewhat analogous to those of the
laser.”

Here we will give a slightly different example: that of fads.
A new style abruptly and unexpectedly appears: this is indeed
a cooperative instability, putting several systems into play (con-
sumers, producers) brought together by the media. We will
choose here a relatively simple case in which only an elemen-
tary phenomenon figures, one I will call the Fontanges Insta-
bility. Finding herself in a park on a windy day, Mlle. de
Fontanges, nearly strangled by her long hair, chanced to tie
it back with a ribbon. The next day all the elegant women
of the court imitated her. This example was perhaps distorted
because of the king’s favor. I nonetheless retain it, because

16 1. Haken, Introduction to Symergetics, Springer, 1976.
17 M. Eigen, Quarterly Review of Biophyscs, 1971, 4, p. 149,
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it describes a case in which the appearance of a new fashion
was not complicated by problems of supply (ribbons are easy
to come by), production or price.

The process is as follows: we start from a stationary collec-
tivity in which a certain number of hair styles are adopted
and acceptable. Then comes a statistical fluctuation: a subject
(Mlle. de Fontanges) finds itself in an abnormal situation.
This “abnormal” P meets a spectator A*, who is surprised and
charmed by the irregularity. After a very short time (time enough
to return to her mirror) the spectator changes into an actor
and adopts the P state:

P+ A* =P + P

The mechanism follows its course, each newly-created P
creating in turn new actors. The analogy with stimulated
emission is striking. Here also, of course, there are dissipative
mechanisms which fight against instability (the acid comments
of the dowagers cause some. timid young ladies to retreat). But
if the initial conditions are right, if the court is mentally
disposed at that moment, (an analogy with the number of
excited atoms in a laser cavity) the instability will take place.

There is much to say about the later evolution, the different
time scales involved, the role played by the means of produc-
tion and the media, evolution coupled with these different
subsystems. But one question remains particularly open: do
we, like laser, have final states in fashion which all differ
because of their rate of increase, so that the system necessarily
chooses the one whose growth rate is the most rapid? Or
have we a situation in which a number of possible final states
have the same rate of initial growth?

If we are in the second case, a second cooperative effect is
required in order to understand the fact that, most often, only
one fashion is chosen. This second effect may be psycho-
sociological (mutual support among the “abnormals” of the
same type) or economic (launching of the means of production
in only one direction). So many ways to explore.
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I11.4 Phenomena of Nucleation and Voters’ Attitudes

To illustrate the effects of nucleation, let us first return
to a group of coupled magnets (below its critical point) and
let us suppose that they are oriented “downward” (here we
explicitly choose a vicinal system with, in addition, a discrete
Go group). Now let us suppose that an external influence is
applied to the magnets and that it tends to orient them “up-
ward”: the initial situation has become unstable, but how
will the change be made?

The system begins by creating a “germ,” that is, a group
of neighboring magnets oriented in the right direction (upward).
The spontaneous fluctuations in the system—always present—
permit it to create such a germ. But its future is not certain:
if it is too small, the influence of its surroundings will most
often force it to regress. In order to triumph over its sut-
roundings, it must have already reached a certain critical size.
But the fluctuations which create a germ of this size are rare.

On the whole, if the external force is weak, the time
required for the gestation of an efficacious germ is long: the
corresponding quantitative laws are known." But there is a
complication: the formation of germs is very sensitive to local
heterogeneities, that is, to small groups whose behavior is at
some distance from the average. The process of nucleation is a
revealer of the defects of the initial structure.

Also to be noted: nucleation, as it has just been described,
only exists for systems in which the broken symmetry group Go
is discrete. For systems with continuous G. there are more
efficient means for the propagating of instability, since there
is no longer a distinct wall between a germ and its environment.
These theorems may be more easily perceived through the
example of an election:

a) In a presidential election with fwo candidates, X and Y,
each voter has three possibilities—X, Y, or abstention: G is
discrete. Nucleation may occur if at the beginning the voters
make up a cooperative majority (through mutual support) in
favor of X, but the media launches a campaign in favor of Y.

18 Nucleation, ed. A. Zettlomayer, M. Dekker, New York, 1969.
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If the system is vicinal, the process of slow nucleation de-
scribed above may occur, and the majority will switch to Y.

b) A counter-example: for an election in which a large
number of candidates participate, with a wide and almost
continuous spectrum of opinions, group Go is continuous. If,
in this case, the media launches a “counter-campaign” (with
respect to the initial cooperative attitude of the electoral body)
we find an instability of fluctuation involving a large frac-
tion of the voters, and not a nucleation.

I11.5 Post-Instability Situations

Here let us consider an open system subjected to more and
more powerful fluxes, for example, the sheet of water de-
scribed earlier which is heated from beneath. In this par-
ticular case the sequence of events encountered at an increas-
ing temperature is incredibly complex: we are far from
understanding it. We may nevertheless give a rather precise
classification of the regimes (in an increasing flux):

a) a banal stationary regime after the initial instability;

b) a structured stationary regime after the initial instability
(see Fig. 2);

c) after a time, the appearance of oscillating phenomena
(see Fig. 1);

d) chaos, a state in which the system is in constant evo--
lution, so that no definite periodicity can be observed.

For flowing liquids chaos corresponds to what is called

turbulence: the type of strange and unpredictable agitation
. which is seen behind bridge piers. For the moment turbulence
is not understood, but there are simpler examples of chaotic
situations. '

The most striking is undoubtedly that of the problem of
annual production as it is formulated in elementary works on
economiics. Let Q. be the quantity of artichokes produced by
such and such a grower for the year “n.” When the moment
arrives to decide on the volume of production for “n,” the
most important available information is the profit or loss oc-
curring the preceding year (n-1). This profit was itself a func-
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tion of the quantity Qui: Usually the most primitive pattern
describing the adjustment of production assumes that Qn de-
pends only on Qni.

For a small Qu1 there is the ratio Qn = & Qui. But for a
large Qni1 prices have fallen and the growers react by limiting
their production, thus the curve again falls (Fig. 5).

Oy

&

/

41 2 3

oV

n—1
(Fig. 5)

It is amusing to see that this pattern, long known, has only
recently been really understood (through studies at Princeton
on the biology of populations).” There are a number of regimes
according to the value of the “initial slope” a: .

19 R. M. May, Journal of Theoretical Biology, 1975, 49.
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a) for @ < 1, production slows down and tends toward
Z€ero; ‘

b) for a slightly larger than 1, the Qa quantities tend toward
a fixed point: there is a stable regime of production;

¢) for a slightly larger a the system tends to oscilate {(an-
nually or biennially, according to the value of «);

d) finally, for a very large @ we find chaos: the Q. quanti-
ties vary with the year in an apparently erratic manner. This is
the point which escaped an entire generation of economists.

The four regimes given above may be easily perceived by
means of the graphic constructions on the curve Qn, Qui or
by the use of a pocket computer, by calculating the sequence
of the Qu. The chaotic behavior is particularly striking: an
observer receiving the sequence of the realized Q. factors
would have great difficulty tracing their formative law.

IV. FINAL REMARKS

We have presented in these pages a catalogue, that of the
principal instruments forged by physicists and chemists for the
study of cooperative phenomena. As in any catalogue destined
for a wide public, the items are not furnished with descriptive
technical labels, but each has a brief text suggesting possible
use. Technical labels exist—and the references we have given
permit their accessibility. But there are two things to fear:
one brings the reader to a halt, the other carries him too far.

1) The complexity of “technical labels”: scientific literature
is based on a language requiring about eight years to learn
and for which at present there is no accelerated course. How
can this barrier be overcome?

2) The fetishistic cult of the scientific tool: we have seen
the appearance of such a cult around a method or a particular
formalism in many developing sciences. The physical sciences
themselves are subject to this failing® Thus, when a sup-
plementary tool is proposed to the researchers there is a real

2 P. G. DeGennes, “Le¢on inaugurale,” Collége de France, 1971.
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danger of excessive and dogmatic use. How may cooperative
effects of this sort be avoided?

In my opinion, the solution to these two problems does
not lie in the drawing-up of “simplified technical labels.” No
explanatory work by a single author can keep its readers from
taking one or the other direction. Real progress will only be
made by the formation of mixed working groups, in which
different scientific disciplines come together to combine their
data and participate in a common creation. An action of this
kind is currently making its debut apropos of the history of
science.”. Let us hope that it succeeds and that other groups
having different objectives will spontaneously appear—by means
of one of those instabilities which we would like to understand,
in time.

(The author wishes to thank many colleagues for their criticism

and advice, especially J. de Ajuriaguerra, A. Pacault, and K.
Pomian). .

21 Under the motivation of Klapisch and Pomian.
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