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SUMMARY

Bovine tuberculosis (bTB) is an important disease of cattle caused by infection with
Mpycobacterium bovis, a pathogen that may be extremely difficult to eradicate in the presence of a
true wildlife reservoir. Our objective was to identify and review relevant literature and provide a
succinct summary of current knowledge of risk factors for transmission of infection of cattle.
Search strings were developed to identify publications from electronic databases to February
2015. Abstracts of 4255 papers identified were reviewed by three reviewers to determine whether
the entire article was likely to contain relevant information. Risk factors could be broadly
grouped as follows: animal (including nutrition and genetics), herd (including bTB and testing
history), environment, wildlife and social factors. Many risk factors are inter-related and study
designs often do not enable differentiation between cause and consequence of infection. Despite
differences in study design and location, some risk factors are consistently identified, e.g. herd
size, bTB history, presence of infected wildlife, whereas the evidence for others is less consistent
and coherent, e.g. nutrition, local cattle movements. We have identified knowledge gaps where
further research may result in an improved understanding of bTB transmission dynamics. The
application of targeted, multifactorial disease control regimens that address a range of risk
factors simultaneously is likely to be a key to effective, evidence-informed control strategies.
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INTRODUCTION

Bovine tuberculosis (bTB) caused by Mycobacterium
bovis infection is an important infection of cattle and
can also infect a wide range of domestic and wild
animals as well as humans [1]. Cattle act as the
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maintenance hosts in many countries and the infection
has proved extremely difficult to eradicate in domestic
species once it has become established in a wildlife re-
servoir [2]. The incidence and epidemiology of bTB
varies widely both internationally and locally [3-5].
Much of Europe is officially bTB free but the infection
is endemic in cattle in parts of England, Wales,
Ireland and Spain and other parts of Europe, which
are dissimilar in terms of environmental features and
wildlife reservoirs [6, 7]. Transmission of M. bovis is
influenced by many factors including the intrinsic
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characteristics of the bacterium and potential host, the
persistence of the bacterium in different environments,
the probability of exposure of infected animals, e.g.
cattle or wildlife vectors and/or fomites and the effect-
iveness of control strategies such as removal of
infected animals.

Assessment of risk is dependent on unbiased meas-
urement of factors associated with transmission
between the bacterium and host and accurate classifica-
tion of the infection status of animals and herds. A risk
factor is defined as a characteristic, that in its presence
increases the likelithood of the detection of infection,
and they may be causal or non-causal [8]. Many risk
factors are inter-related, e.g. each animal production
system has its own distribution of sexes, breeds and
age groups, which contribute to the exposure profile
of each herd. Diagnostic tests for bTB range from
those used in live cattle [e.g. tuberculin skin test
(TST) and blood tests for interferon-gamma (IFN-y)
or antibodies] to post-mortem inspection confirmed
with culture for M. bovis. Intrinsic test performance
varies with the animal’s immunological profile, disease
infection stage and many other factors. For example,
increasing the frequency of skin tests, a feature of inten-
sified surveillance and control strategies for bTB, can
modulate cell-mediated immunity and depress the re-
sponse to subsequent skin tests [9, 10].

The relative importance of different risk factors for
M. bovis transmission will vary with the background
prevalence and magnitude of other risks. An under-
standing of risks and how they may interact is there-
fore necessary to understanding the epidemiology of
the disease and the design of bTB eradication and con-
trol policies and forms the focus of this review.

METHODS AND RESULTS

A series of search strings were developed to identify
relevant papers from CAB Abstracts, Web of
Science, Medline and Current Contents electronic
databases (see Supplementary material for the specific
search strings). Two sets of searches were performed,
the first deliberately excluding Mycobacterium avian
paratuberculosis (MAP) and the second, specifically
including it as a risk factor. The results of these
were then combined. The search period was not lim-
ited historically and initially ended on 14 March
2013. Abstracts to 3738 non-duplicate references
identified were reviewed by three reviewers to deter-
mine whether the entire article was likely to contain
relevant information. Twenty-cight abstracts were
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reviewed by two reviewers to detect any perceived in-
consistencies in selection. Inconsistencies were resolved
through discussion, which then informed abstract selec-
tion. All publications that specifically investigated the
risk of infection to cattle, or where that risk could be
inferred, were included and the full text was requested.
Papers in German, Spanish, Italian and French that
were selected for further review were translated into
English. Entire texts for selected papers were then
obtained and assigned to one of ten full-text reviewers
who each had a specific risk factor category as follows:
animal-level, herd-level, environment and landscape
features, herd history including previous testing, wild-
life factors, and other risk factors. Reviewers were
free to add further papers that had been omitted during
the electronic search. The search was updated to 6
February 2015 using the original search criteria and a
further 517 references identified, of which 81 were con-
sidered potentially relevant by one of the original
reviewers.

The search was not limited geographically, but dur-
ing the review emphasis was placed on references that
could improve understanding of the Great Britain
(GB) epidemiological situation. Methodology and
reporting was consistent with PRISMA (http://www.
prisma-statement.org) where possible with respect to
the introduction, eligibility criteria, information sources,
search and discussion, and as far as the qualitative
assessment of the publication allowed.

ANIMAL-LEVEL RISK FACTORS
Genetics

Significant variation in heritability of susceptibility to
bTB has been reported in studies of dairy cattle, mainly
Holstein Friesian pure bred or crosses, in GB [11] and
in Ireland [12]. In these population-based studies,
around 16% and 18% of the variance in bTB resistance,
measured by responsiveness to the single intradermal
comparative cervical tuberculin (SICCT) test and post-
mortem evidence of infection, respectively, was esti-
mated to be heritable [13]. There has been less investi-
gation of heritability of resistance in beef herds.
However, a study in Ireland has estimated heritability
of susceptibility to bTB of around 13% in beef herds
and also reported variation in susceptibility across dif-
ferent beef breeds [14]. These large studies, using sur-
veillance data from thousands of cattle, may
underestimate the contribution of heritability due to
misclassification of the resistant phenotype because of
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imperfect accuracy of diagnostic tests and variation in
level of exposure to M. bovis [15]. Greater variability
in the estimates of heritability of susceptibility to bTB
has been observed in high- compared to low-infection
prevalence herds [14].

Resistance to bTB is likely to be multifactorial and
polygenic [16]. In addition to heritability studies
using phenotype data, candidate and whole genome
approaches are being taken [15]. These approaches have
indicated that resistance can be conferred by a single
nucleotide polymorphism. Both breeding strategies and
genomic selection are likely to have utility in bTB control
[17-19]. Breeding for performance traits has led to large
increases in milk outputs from dairy cows. Until recently
the latter was accompanied with a reduction in fertility
[20]. No association between susceptibility to M. bovis in-
fection and economically important traits has been mea-
sured to date [21].

Breed

The earliest evidence for differences in resistance to
bTB infection by breed originates from the 1920s
and 1930s [15, 22]. Evidence mainly originates from
Africa and strongly suggests that native cattle such
as zebu, found in pastoral environments, are more re-
sistant to bTB than introduced European -cattle
[22-26]. A weakness of some comparisons of bTB
prevalence between breeds is the reliance on an ante-
mortem test which may be less specific than evidence
from post-mortem examination. There has been com-
paratively far less evaluation of the differences in the
susceptibility to infection between European breeds.
A study in India showed a threefold higher prevalence
of SICCT test reactors in Jersey cattle compared to
Holstein Friesian [27] but differences in exposure to
M. bovis between breeds require exploration.

The UK Bovine HapMap Consortium has illu-
strated that greater diversity exists in allele frequencies
between cattle breeds than within breeds [28]. Greater
variability in resistance might be anticipated with beef
cattle than with cattle in the modern dairy sector since
the latter are more homogeneous in terms of breed.

Sex

Differences in bTB prevalence by sex are confounded
by differences in the production environment and hus-
bandry. Contact rates are higher for many dairy cat-
tle. Additionally, milk-producing dairy cattle and
suckler cows tend to have longer lives than beef cattle,

https://doi.org/10.1017/5095026881600131X Published online by Cambridge University Press

Review of bTB risk factors 2901
increasing the lifetime probability of exposure to M.
bovis [29, 30]. Incidence of bTB infection in dairy cat-
tle, aged >2 years, was 40% higher than beef cattle,
although incidences in very young cattle (0—1 years)
were similar [31]. Most studies report a higher preva-
lence or incidence of bTB in female cattle compared to
males [31-37], but not all [38], and none comprehen-
sively controlled for differences in infection pressure,
production environment and husbandry. At this
time, an intrinsic difference in susceptibility to bTB
between male and female cattle has not been
demonstrated.

Reproductive status and milk yield

Few studies have examined the effect of reproductive
status on susceptibility to bTB infection, possibly be-
cause of the difficulty in separating out gestation
and lactation effects. The dairy cow experiences
large hormonal shifts and stresses throughout produc-
tion and it seems likely that these will affect both her
response to diagnostic tests that measure immuno-
logical factors and susceptibility to infection. In con-
trast to susceptibility to bTB infection, cows in the
weeks before and after calving tend to have weaker
reactions to the TST, but the IFN-y is less affected
[39]. Evidence is primarily found in studies outside
of Europe and in the absence of stringent control pro-
grams where animals may experience advanced clin-
ical disease. In Bangladesh, consumption of infected
milk is also a potential (pseudo-vertical) transmission
route for infection between cows and calves and a
higher prevalence of bTB was observed in lactating
cows compared to pregnant cows [40]. In Argentina,
calves fed raw milk from a herd with endemic bTB
were more likely to test positive (caudal fold test)
than calves fed replacement milk substitute [41].
However, a large cohort study in Northern Ireland
found no evidence of an increased risk of bTB in the
progeny of TB-confirmed dams compared to those
born to non-reactors in the same herd [risk ratio 1-2,
95% confidence interval (CI) 0-8-1-79] [42].

Age

Virtually all studies reviewed reported that the preva-
lence of bTB infection increased with age [23, 27, 34,
43-48]. The relationship between bTB infection and
age is generally shown as monotonic or linear al-
though a U-shaped relationship has also been reported
[23, 49]. Modelling bTB surveillance data from GB
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showed that age-specific incidence increased mono-
tonically to 24-36 months, followed by a levelling-off,
with cattle aged between 12 and 36 months experien-
cing the highest rates of infection [31]. The most likely
explanation for a positive correlation between bTB in-
fection risk and longevity is a higher probability of
contact and/or prolonged exposure to other infected
cattle, wildlife or environmental contamination;
infected cattle aged >36 months are possibly more re-
sponsive to the skin test [31] and therefore more likely
to be detected in surveillance tests. A review of age
effects in Tanzania, Zambia, Chad and Ireland also
concluded that the positive association with increasing
prevalence of bTB is a result of cumulative exposure
[50]. Other possibilities include decline in resistance
with age [1]. The influence of latency on detection
and transmission of bTB in cattle is not known, al-
though it is recognised as an important influence on
disease prevalence and transmission in human infec-
tion with M. tuberculosis [51].

Nutritional status and body condition

Poor nutrition can suppress the cellular immunity re-
sponse and increase susceptibility to infectious dis-
eases [52-54]. Responsiveness to the SICCT test was
positively correlated with body condition score and
fat production in lactating Holstein-Friesian dairy
cows in GB, which implies some association between
susceptibility or at least responsiveness to the diagnos-
tic test [21]. A cross-sectional study of cattle from
herds with bTB infection found that significantly
lower levels of the dietary selenium-requiring enzyme
glutathione peroxidase were associated with a higher
prevalence of post-mortem confirmed infection [55].
However, two Irish studies comparing animals with
energy-restricted and unrestricted diets did not detect
significant differences in bTB infection [56, 57].
Reports from Ethiopia are similarly mixed, with one
study reporting a higher prevalence of bTB in animals
with lower body condition scores [47] while another
found no differences [44]. Future research needs to dis-
tinguish nutritional status/dietary factors and body
condition from the immunological consequences of in-
fection and the possible confounding effects of breed
and other factors.

Behavioural factors

Contact networks between and within wild and do-
mestic animals are heterogeneous [58, 59]. Cattle are
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inquisitive towards new objects and calves and some
adult cattle are particularly so [60]. A study using
proximity data loggers identified individual adult cat-
tle with higher levels of contact both with other cattle
in the herd and with badgers [61]. In a New Zealand
study, 86% of the tuberculin test-positive cattle were
among the most dominant fifth in the herd, and in
four of five herds, the dominant animals investigated
a sedated possum (the principal wildlife vector of
bTB) most actively [62]. The differing contact behav-
iour of cattle towards live and inanimate objects im-
plies that the individual risks of exposure to
infection are heterogeneous.

Concurrent infection

Parasitic helminth infection status has been shown to
be negatively correlated with bTB infection status in
bovids [63-65]. Evidence suggests that infection with
the helminth Fasciola hepatica may bias the immuno-
logical response towards a Th2 (eosinophilic) type at
the expense of the Thl (cell-mediated) immune re-
sponse that influences the ability to control M. bovis
[65]. Concurrent infection with or vaccination against
MAP can influence the sensitivity and specificity of
diagnostic tests for bTB [66, 67] (see below for further
discussion). Outbreaks of bTB in two herds with a
concurrent bovine viral diarrhoea (BVD) infection
have been described anecdotally [68]. Compared to
calves with M. bovis infection alone, calves co-infected
with BVD and M. bovis show non-significantly
increased bacterial shedding in nasal secretions, in ex-
perimental infections [69]. Further studies are needed,
however, to evaluate whether there is an association
between the two diseases.

HERD-LEVEL RISK FACTORS

Many factors describing the characteristics and man-
agement of herds have been associated with infection
risk, but the direction of findings is inconsistent, even
between studies conducted using a similar sampling
frame [70, 71], possibly due to difficulty in character-
ising management factors accurately. A number of ob-
servational studies relating to herd-level risk factors
within the UK and Ireland in specific circumstances
have been well reviewed recently [72-75]. Rather
than add to these, we have supplemented these with
information from other countries that may inform
the situation in GB.
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Herd size

Herd size is the most frequently identified risk factor for
bTB incidents (herds that are found to have at least one
infected animal). Dynamic modelling has shown that,
adjusting for test performance, the increased probability
of between-animal contacts in larger herds could in-
crease within-herd transmission [76]. Most studies, but
not all [77-79], conclude that the risk of infection
detected in a herd increases with herd size; this holds
true across a broad geographical and prevalence range
(Table 1). Herd size may be a proxy for other factors,
such as replacement policy, farm acreage, number of
premises and neighbouring herds; each of which may
be independently associated with the risk of a bTB inci-
dent. Additionally, most studies have not adjusted for
the imperfect specificity of diagnostic tests for bTB
which may affect the strength of association since the
number of animals that are false positives will also in-
crease with herd size. However, increased herd size
could also result in increased risk of disease persistence.

Herd type

Dairy herds are generally considered to be more at
risk of infection than beef herds because of longer
life expectancy of the former and management prac-
tices that increase the risk of contact with other cattle
[31, 50, 80]. Relatively few studies have considered
herd type and of those, even fewer studies differentiate
between beef fattening/finishing herds and beef breed-
ing/suckler herds. The relative risk to beef cattle may
be greater in areas where there is a local wildlife reser-
voir because beef cattle more frequently use rough or
dispersed grazing. Direct contact between cattle and
badgers at pasture is relatively rare [81], although in-
direct contact may be more common. In Italy, enter-
prises consisting of both dairy and beef animals,
presented a greater risk [odds ratio (OR) 4:92, 95%
CI 1-26-19-19] than exclusively dairy enterprises,
attributed to differences in purchasing policy [78].
Dairy herds experienced a recurrent bTB incident
sooner than non-dairy herds in Northern Ireland,
even after controlling for herd size [82], but a similar
study in Ireland showed that dairy animals had a
lower risk of a future restriction [83]. GB surveillance
data indicate that the relationship between bTB inci-
dence rate and herd type may be a result of the larger
sizes of dairy herds and their location [84].

Dairy reactors to field tests for bTB appear to be less
likely than non-dairy reactors to have post-mortem
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evidence of infection such as culture, histological
evidence or macroscopic lesions typical of bTB
PMC than non-dairy [55, 84-86]. In Northern
Ireland the adjusted odds ratio for visible lesions in
non-dairy reactors detected during routine surveil-
lance was reported to be twice that in dairy [86].
The reason for the differences in post-mortem evi-
dence of infection confirmation between dairy and
beef production classes exposed to bTB is currently
unknown [87].

Total farm area, fragmentation and neighbouring herds

Many authors identified the importance of contact be-
tween adjacent herds as a risk factor. This can be
expressed in terms of lengths of common boundary,
fragmentation of holdings, or observed contact with
cattle from contiguous farms [70, 88, 89]. Farm size
(acreage) has been associated with a higher probabil-
ity of a bTB incident [90, 91], even after controlling
for herd size [92] and it may be a proxy for increased
risk of infection from contiguous premises or for
increased wildlife contact. Operating over multiple
premises has been associated with infection in GB
[71, 90] although not in all studies [91, 93].

Many studies have shown an increased risk of bTB
spread associated with bTB in neighbouring or con-
tiguous herds. In Ireland, 23-25% of incidents were
attributed to spread from herds on adjacent farms
[94] and herds with a neighbouring infected herd
were almost four times as likely to sustain a bTB inci-
dent themselves [95]. In Northern Ireland, ~40% of
breakdowns were attributed to the presence of a
neighbouring herd with a breakdown [89]. Contact
with an infected neighbouring cattle herd was asso-
ciated with persistent incidents (lasting more than 5
years) in Spain [92] and was associated with a more
than twofold increase in the odds of a bTB incident
in high incidence areas of England and Wales [70].
In Ireland, it was estimated that being within 1 km
of higher animal incidence in the previous 2 years
accounted for 35% of bTB incidents [96]. However,
distinguishing between spread from one herd to an-
other and sharing a common source of infection is
difficult where there is a significant reservoir of infec-
tion in wildlife.

Cattle movements

A large number of studies have considered the risk of
introducing stock in general and in specific scenarios,
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Table 1. Risk factors identified in the literature according to theme, country in which the study was conducted and case definition

Y06¢

Animal Herd Environment
Wildlife
Nutrition/ Farm area/ Cattle Bio- TB Local Land

Country  Diag. Genetic Breed feeding Age fragmentation Size Type Management purchasing security history TB use Weather Badger Ref.
GB SICCT x [12]
Ireland SICCT x [11]
Ireland SICCT x [297]
GB SICCT X [283]
GB SICCT X X [31]
GB PMC X [55]
Ireland PMC X [21]
GB SICCT X [76]
Italy PMC X X [78]
N. Ireland Rct TB X X X X [82]
Ireland Rct TB X X X X [83]
Spain PMC X X [298]
N. Ireland PMC X X X X [86]
Ireland PMC X X X X [88]
N. Ireland PMC X X [89]
England PMC X X X X X X [70]
Ireland PMC X X X [95]
Spain Pst TB X X X X [92]
Ireland SICCT+ X X X X [96]
England PMC X X [91]
England PMC X X [90]
England  SICCT+ X X X [71]
England Pst TB X X X X X X X [93]
England  SICCT+ X X X [93]
Scotland  SICCT+ X [106]
Belgium  PMC X X X X [103]
England PMC X X X X [6]
England PMC X X X [114]
Spain SICCT+ X X X [115]
England PMC X X X [116]
Spain SICCT+ X [117]
GB Pst TB X [123]
Ireland SICCT+ X X X [125]
GB Rct TB X [124]
Ireland Rct TB X X [130]

]

GB SICCT+ X X [198
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such as restocking after foot-and-mouth disease in
2001 in UK [6, 97, 98] (Table 2) and the influence of
trading in England and Ireland has been well reviewed
[72, 73, 75]. All report an association between restock-
ing and subsequent increased risk of infection [71, 78,
99-101]. Molecular epidemiology is used increasingly
to confirm sources of incidents [102, 103]. The
reported percentage of bTB incidents attributed to
cattle movements in Ireland, where disease is spread
throughout the country, varies from 6% to 15%
[103-105]. In GB, where disease is clustered in the
West and South-West Wales, the proportion of infec-
tion attributable to purchased infection is much higher
in lower incidence areas. An investigation of 31 inci-
dents in a low bTB incidence area of England found
that all but one were most likely due to purchased ani-
mals [102]. Prior to legislation requiring the pre- and
post-movement testing of cattle imported into
Scotland from regions with a high bTB incidence,
Scottish farms importing cattle from these regions
were almost four times as likely to experience a break-
down than farms that did not. Following the legisla-
tion change (2006-2009), this risk, while still
significant, had reduced substantially (OR 2-5, 95%
CI 1-03-6-27) [106].

Markets and agricultural shows

The evidence for a role of markets in bTB disease
transmission is inconsistent. Moving animals into
herds from markets has been identified as a significant
risk factor in GB [6, 71]. One analysis found that herd
owners buying cattle from markets had a lower risk of
bTB infection than those that did not but this only ap-
plied to one region and it was not significant when
herds that had been under restrictions, and so could
not purchase, prior to the study were excluded [70].
The largest investigation found no relationship be-
tween movement or purchasing via markets and
bTB in 1544 lesioned, TST reactors compared to
matched controls in Northern Ireland [107]. The evi-
dence for a role for agricultural shows in transmission
is anecdotal. A descriptive account of an outbreak in
the 1970s found that 51 of 56 cattle from 42 herds
reacted to the skin test 80 days after being at the
same agricultural show [108].

Farm management

There is evidence that ‘good’ management and hy-
giene practices may reduce the risk of M. bovis
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Table 2. Studies investigation an association between introduction of stock and bTB incident

Study size
Study type (herds) Country/year Measure of risk Comment, e.g. market/shows/dispersal Ref.
Source of stock: type
Case-control 268 England Logistic regression: RBCT triplets after initial pro-active badger cull and prior to Jan. 2001  [71]
OR 3:26 (95% CI 1-71-6-21) Markets
OR 193 (95% CI 1-03-3-60) Farm sales
Retrospective 148 England Logistic regression: RBCT from Oct. 2001 to Nov. 2004 [6]
cohort Response rate 40%
Incidence of 50% over 3 years
24% restocked
OR 195 (95% CI 1-05-3-63) Markets
Matched 218 England and Conditional logistic regression: Only confirmed cases. Analysis by region [70]
case-control Wales OR 0-18 (95% CI 0-03-0-91) Market (Taunton)
Source of stock: bovine bTB history
Retrospective 4742 Ireland Multivariate logistic regression (GEE): Slaughterhouse cases excluded [49]
cohort OR 1:78 (95% CI 1-06-1-55) Source herds had incident with SICCT. > 8§ reactors in previous 7
months compared to source herd not being under restrictions in last 7
months
Matched 218 England and Conditional logistic regression: Case used confirmed and unconfirmed [70]
case-control Wales OR 093 (95% CI 0-96-0-99) per Proportion sourced from 4yrly testing interval
additional 10%
OR 1-90 (95% CI 1-0-3-62) Sourcing from herd with incident within previous 2 years
OR 848 (95% CI2:23-32-2) Sourcing form herd with incident in previous 2 years
(Stafford data only)
Case-control 18 670 GB OR 1-35(95% CI 1-22-1-49) perevery log ~ Number of cattle brought form yearly testing interval compared [97]
increase in number of cattle introduced to not purchasing
Type of stock introduced
Case-control 160 Ireland, Conditional logistic regression: Matched on herd size. Cases under restrictions for 12 months [95]
1986-1990 OR 39 (95% CI 1-2-12-4) Purchasing a bull in previous 5 years
Comparative 229 UK, 1995-1999  OR 4-9 (95% CI 1-1-22-8) Risk of persistent incident (>6 months) when introducing adult cows  [93]
case-control compared to store, calves and no introductions
Case-control 102781 Ireland, 2006 OR 1:04 (1-03-1-05) Incident defined as the presence of one reactor to the SICCT. [96]
Introduction of stock >1 year in the previous year
Number of stock introduced
Comparative 229 UK, 1995-1999  Multivariate logistic regression: Risk of transient incident (<6 months) [93]
case-control OR 4:0 (95% CI 1-:0-16-0) Comparing introduction of >50 cows to <50 cows
Case-control 62 Argentina, Logistic regression Pastoral systems, herd size 50-500. Using caudal fold test. Cases >4 [79]
2005-2007 reactors, Controls no reactors in 24 months

OR 3-3 (95% CI 1-1-10-2)

>19 heifers introduced into the herd in 3 years

OR, Odds ratio; CI, confidence interval; RBCT, Randomized Badger Culling Trial; SICCT, single intradermal comparative cervical tuberculin test.
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transmission, particularly in developing countries
[109-113] but also in Europe [114, 115]. In Spain,
the communal use of equipment (cattle race) between
herds was positively associated with a positive TB test
[115]. In GB, poor dairy herd management such as;
farm buildings and feed stores being accessible to bad-
gers, allowing grazing at field margins and grazing in
fields with badger activity were associated with an
increased risk of bTB [114].

Intensive management practices that increase cattle
to cattle contact within a herd are associated with an
increased risk of bTB incidents [116]. Case-control
studies have found dairy herds kept in cubicle housing
[95] and covered yards [71] have a substantially
increased risk of bTB. This type of housing may be
a proxy for the effects of greater stress or reflect a
more intensive management system that increases cat-
tle contact rates. This is supported by studies in GB
that found the presence of a loafing yard or paddock
adjoining cattle housing [114] and not providing hous-
ing for cattle [75] reduced the risk of bTB. The use of
barns in which cattle can move freely was associated
with a positive SICCT test in Spain; the aggregation
of cattle within the barn increasing both direct and in-
direct contacts [117].

Rough grazing in Ireland [95], set stocking in
England [70] [114] and grazing cattle on sown or ley
pasture [114] have all been associated with an
increased risk for bTB in multivariate analyses con-
trolling for herd size. Feeding from the ground either
at pasture or during housing [115], storing silage in
clamps [93] and feeding green foods/kale or barley
have been associated with an increased risk of a
bTB incident [114]. These findings could be potential-
ly attributed to increased contact with wildlife. Silage,
in particular maize silage [118] is attractive to badgers,
and was found to be associated with badgers entering
farm buildings in one study [119], but visits to silage
clamps were rare in another larger scale study [120].
The storage and feeding of silage from clamps is asso-
ciated with persistent breakdowns [93] potentially
related to the clamps being more accessible to bad-
gers. Feeding hay rather than silage/concentrates has
been reported as protective [93, 95, 121], and a case-
control study found herds fed silage had a greater
risk of a breakdown [116]. In one study, all farms
that experienced a persistent breakdown were fed
grass silage, although 85% of the TB-free farms also
did so [93].

Three studies have found that nutritional supple-
mentation lowers the herd-level risk of bTB. Farms
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with areas of rough grazing that did not supply min-
eral licks were up to 30 times as likely to be infected
with bTB, although with wide 95% ClIs (1:46-594-4)
suggesting it should be interpreted with caution [95].
Two further studies in England support the finding,
however, as the provision of protein supplement
blocks [114] and vitamin and mineral licks [6] were
protective.

There is some evidence, although none from the
UK and Ireland, of an increased risk of transmission
of M. bovis infection to calves fed raw milk or colos-
trum. However the evidence as to its contribution to
bTB risk within the context of an ongoing control pro-
gram is weak. A case-control study in Argentina
found no increased risk in herds feeding raw milk,
but did find a higher risk in herds where weaning
had been delayed for 4 days, which could be attributed
to either drinking infected colostrum or increased ex-
posure to an infected dam [79]. In Spain, bTB inci-
dents in herds where calves were fed replacement
milk from test-positive dams were more likely to be
persistent but this verged on significance [92].

Other domestic species

While M. bovis has been isolated from a range of non-
bovine domestic species in GB [122], they are not
thought to represent a substantial risk to cattle. Few
studies have directly examined the risk they pose and
no clear trend has been identified [92, 123, 124]. In
Spain, bTB incidents were almost four times more like-
ly to be persistent if goats were present on the farm,
although only a small number of farms were affected
(N=11) while incidents in herds that also farmed
pigs were more likely to be resolved quickly [92].
Conversely, contact with any domestic species from a
non-contiguous farm was associated with an increased
risk of a prolonged incident in GB [123].

bTB HISTORY AND TESTING
bTB history in the region and herd

Local geographic areas with a history of bTB have
been consistently identified as being at significantly
higher risk of future incidents than other areas [100,
103, 125-127]. The origins of recurrent infection are
difficult to separate. There may be a failure to detect
and remove all infected cattle or there may be repeated
reinfection of the herd through exposure to one of sev-
eral risk factors which might include infected cattle in
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contiguous herds, local movements and exposure to
other wildlife or environmental sources of M. bovis.
Evidence that reinfection can cause recurrent bTB in
GB has come from studies of bTB incidents in herds
after complete depopulation and restocking, ruling
out infection persistence within the herd [97, 128]. In
Ireland, herds depopulated for bTB control were no
more likely to have a further bTB incident than herds
that had been depopulated because of BSE control,
but localized badger culling prior to depopulation
had occurred in the bTB herds [129].

The number of reactors or the duration of previous
bTB incidents is also associated with future risk at a
herd level [82, 83, 123, 125-127, 130] and also at an
animal level [131, 132]. Post-mortem evidence of in-
fection in cattle in the original incident has been posi-
tively associated with a higher future incident risk in at
least one study in Ireland [125], although in others no
such relationship has been found [82, 123, 126, 130].
Mathematical modelling of recurrence of bTB within
a herd estimated that around 24-50% of recurrent
incidents are attributable to persistence of infection
in the herd, depending on the length of the assumed
latent period [76].

In some countries including GB, inconclusive reac-
tors (IRs) are re-tested and, depending on the result,
either remain in the herd or are culled. Follow up of
IRs has found that they are more likely to have
post-mortem evidence of infection than cattle that
had a negative response to the skin test [133].
Furthermore, IRs that re-tested negative and
remained in the herd were almost four times more
likely to be diagnosed with bTB at a later date [134].

Persistence and test performance

Recurrence and infection persistence in a herd may in-
dicate failure of testing, thereby allowing infected ani-
mals not only to remain in the population, but
potentially to continue to spread infection. Several
factors have been identified that influence test per-
formance and hence possible failure to detect
infection:

(1) Intrinsic test sensitivity. Diagnostic accuracy varies
between different types of tests and tests currently
approved for bTB in Europe are considered to
have fairly moderate sensitivity and variable spe-
cificity [135]. Potency of the tuberculin (purified
protein derivative; PPD) may also affect the sensi-
tivity and specificity of tests that rely on this
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biological product such as TST and the IFN-y
blood test [136-138].

Choice of diagnostic cut-off. The interpretation of
the SICCT test relies on comparing the difference
in size between the reaction to avian tuberculin
and bovine tuberculin. Altering the cut off for a
reactor from >4 mm size difference (standard in-
terpretation) to >2mm (severe interpretation)
increases the sensitivity of the test and decreases
specificity [139].

Rigorous test procedure. Qualitative research has
identified several key issues that may influence
the quality of testing, including on-farm condi-
tions, tester training and experience, and the con-
flict of interest in the relationship between private
veterinarians and the farmer [140]. Some breeds
of cattle may pose testing difficulties that can
cause decreased sensitivity, for example bullfight-
ing cattle in Spain [85]. Considerable variation
has been found between veterinarians in their ap-
plication of the comparative test [141], although
this study was in Belgium, which has had
‘officially tuberculosis free’ status since 2003 and
so TB testing would be relatively infrequent.
Differences in test protocol have also been
shown to influence the IFN-y test [142]. In
Ethiopia, higher throughputs in abattoirs have
been associated with lower lesion detection in rou-
tinely slaughtered cattle [143].

Disease stage in the animal. bTB is a chronic,
slowly progressing disease. The sensitivity of abat-
toir surveillance based on detection of visible
lesions increases with disease advancement [143].
While the TST detects early immunological
changes associated with infection, there is still a
delay, with earliest detection being estimated at
between 21 and 50 days post-infection [10, 136].
During the late stages of the infection, particularly
in severe and generalised disease, responsiveness
to the skin test is reduced (anergy) [10, 143,
144]. During anergy, the infection is likely to be
systemic and severe, cattle are potentially more in-
fectious thus increasing the significance of inad-
equate detection.

Desensitization to the test. The majority of studies
reviewed, but not all [10], have shown that the re-
sponsiveness to tuberculin is reduced for up to 60
days after the skin test [136, 145]. Some evidence
suggests that a TST may increase the sensitivity
of subsequent IFN-y tests [146], although findings
tend to vary [142, 147]. Immunosuppression due
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to stress, comorbidity, advanced tuberculosis or
calving may also lead to variation in reactivity
to tests [51, 145, 148, 149].

Host or pathogen genetic variation. There is some
evidence that some cattle may be genetically pre-
disposed to pass the standard TST used in GB
[150]. However, in an extensive study (21 000 iso-
lates) in Northern Ireland, no association between
skin test response and M. bovis genotype was
detected, after controlling for confounding factors
[151].

Cross-reactivity. A diverse range of saprophytic
mycobacteria exist in the environment, which al-
though they rarely cause disease in cattle, are sign-
ificant in immunological diagnosis. For example,
M. avium [152-154], M. fortuitum [155] and M.
kansasii [156—158], may all interfere with the inter-
pretation of diagnostic tests for M. bovis. Such
bacteria can cause animals to react to bovine tu-
berculin and hence be interpreted as a false-
positive bTB diagnosis, or otherwise interfere
with test interpretation [144, 155, 156, 159].
Conversely, it has been shown experimentally
that a genuine positive response to bovine PPD
can be masked by a larger or commensurate re-
sponse to avian PPD [153, 157, 160, 161], suggest-
ing that M. bovis infection may be concealed for
some time in cattle sensitized by mycobacteria of
the aviumlintracellulare complex, thus preventing
detection and removal.

Concurrent infection. There is accumulating evi-
dence that concurrent infection with F. hepatica
and with MAP may affect the performance of
immunological tests for bTB infection. Evidence
suggests the immunomodulatory effects of the hel-
minth F. hepatica may reduce the sensitivity of
immunological diagnostic tests for tuberculosis
[63, 65, 109, 162]. Stronger skin responses to tuber-
culin tests have been reported in cattle that had
been dewormed compared to animals that had not,
although bTB infection status was not determined
[163]. Cross-reactivity of some proteins shared
between M. bovis and MAP, can impede diagnosis
of bTB in concurrent infections [164-168].
False-positive bTB diagnoses, by the caudal fold
test, have been recorded in animals that tested posi-
tive for MAP either by the detection of MAP in their
faeces or a positive ELISA [166]. Conversely, infec-
tion with MAP has been known to obscure the detec-
tion of M. bovis in concurrent infections in Spanish
cattle [167]. Vaccination against MAP can interfere
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with immunological methods of bTB diagnosis in
cattle [169-172] although, in one study, animals vac-
cinated with an inactivated MAP vaccine in field
trials showed cross-reactivity to the single intrader-
mal tuberculin test (SIT) but not to the SICCT
[173]. Despite its limitations, serology has been
used to distinguish TB-free cattle that have been vac-
cinated against Johne’s disease [174].

LANDSCAPE, CLIMATE AND OTHER
ENVIRONMENTAL RISK FACTORS

Survival and persistence of M. bovis in the environment

Estimates of environmental survival of M. bovis, eval-
uated for artificial and natural contamination of sev-
eral sites and substrates are extremely variable,
ranging from a few days to 2 years [175] (Table 3).
Much of the data derives from early studies in GB
and other countries where levels of natural environ-
mental contamination may have been high, given the
abundance of clinically advanced bTB in cattle. In
general, tubercle bacilli survive best in cool, moist
environments shaded from direct sunlight and survival
depends on temperature, sunlight and relative humid-
ity (Table 3). Longer survival times in winter com-
pared to summer months have been recorded for M.
bovis in experimental studies conducted in GB [176],
New Zealand [177], Michigan [178] and Australia
[179] (Table 3). M. bovis remained viable up to twice
as long in shady conditions compared to sunny condi-
tions [180].

Experimental studies demonstrate that M. bovis can
be isolated >5 months after inoculation when mixed
with faeces [176] and after one month in spiked possum
carcasses [181]. Viable bacteria were recovered from
hay at 7 days after inoculation and could still be iso-
lated from samples of apples, corn and potatoes after
112 days [182]. In silage, the survival of M. bovis is like-
ly to be shortened by the acidity (pH reduction) and
temperature during fermentation. When silage contain-
ing large quantities of naturally infected faeces was fed
to guinea pigs, it was infective for up to 10 weeks post-
inoculation (Ulli Reuss, 1955 quoted in [80]).

Farm practices relating to both the storage and
spreading of slurry can increase the risk of a herd
bTB incident [6, 93, 95, 183] and the role of slurry
in the transmission of bTB has recently been evaluated
[184]. M. bovis can persist in slurry for up to 6 months
[183, 185] and spreading of slurry after storage for
<2 months has been associated with an increased


https://doi.org/10.1017/S095026881600131X

2910  J. M. Broughan and others

Table 3. The effect of environmental variables on the survival of M. bovis

Conditions Exposure Survival Detection by Ref.

Temperature

Mixed with faeces in open air (Berks) Winter from November >5 months Guinea pig [176]
Autumn from September 4 months infectivity
Summer from June <2 months

Mixed with faeces or soil (Berks) Summer from June or May 5 months [300, 301]

Absorbed onto cotton ribbon (New Zealand) Winter and spring >14, <28 days [177]
Summer <7 days

In the laboratory 0°C 50% at 36 days Culture [302]
16 °C 50% for <1 day

In soil, water, hay or maize (Michigan, USA) Autumn and winter 30 £ 13 (s.p.) days Culture [178]
Winter and spring 29 +26 days
Spring and summer 69+ 12-5 days

In possum carcasses on pasture (New Zealand) Winter 20-27 days [181]
Summer <3 days

Moisture

In the laboratory 100% relative humidity 50% at 43 days Culture [302]
57% relative humidity 50% at 8 days
5% relative humidity 50% for <1 day

In faeces, dry soil and moist soil in Tropical ~ Shaded conditions Favourable for [179]

Australia survival
Ultraviolet radiation (including solar radiation)
Mixed with faeces in open air (Berks) Exposed 4 months Guinea pig  [176]
(September) Shaded and sheltered from 6 months infectivity
rain
In the laboratory UVA radiation (375 nm) 80% for 20 min Culture [302]

risk of bTB [105]. Experimental studies have demon-
strated that M. bovis can remain viable for up to 12
h after aerosolization and the bacteria is resistant to
stresses of being airborne [186]. Methods that reduce
the distance over which slurry is dispersed and inject-
ing slurry into soil, rather than spraying under pres-
sure, reduces the risk of drift [183].

M. bovis has been recovered from soil sampled from
badger setts and fields on a farm in Ireland that had a
recent TB incident [187] and was isolated from one
water sample from yards frequented by infected bad-
gers in England [188]. In the United States, despite ex-
tensive sampling, M. bovis was not detected in soil,
water, livestock bedding, feed, faeces, hay, pasture
and grass samples collected from farms in Michigan
and Texas recently positive for bTB [189-191].
However, prevalence in cattle and in local wildlife, in-
cluding white-tailed deer (Odocoileus virginianus)
(<2%), was much lower than apparent M. bovis preva-
lences in badgers that have been recorded in GB and
Ireland (14-16%) and infection in cattle populations
was also lower [192-195].

Estimating the extent of environmental contamin-
ation with M. bovis may be confounded by the
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practical difficulties inherent to its isolation and cul-
ture from environmental samples [175, 190].
Procedures for concentrating bacteria from larger
samples are required to compensate for the patchy dis-
tribution of bacteria in environmental samples [189].
Molecular methods specific to M. bovis have been
developed to detect and quantify mycobacterial DNA
in environmental samples [196, 197] although they
have limited sensitivity and positive results do not ne-
cessarily indicate viability or infectivity. On the other
hand, DNA in dead cells did not survive beyond 10
days, suggesting that the DNA extracted from environ-
mental samples may have come from intact cells [187].

Weather and climate

Wint et al. [198] were able to predict the geographical
distribution of bTB in England and Wales with a high
level of precision (kappa=0-68) using monthly
remote-sensing data for weather-related variables
(resolution 1-5 km) and cattle density. These variables
were more important predictors than land use or vege-
tation. Areas with the greatest risk of bTB were more
moist, having a lower water vapour pressure deficit
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(VPD). They also had their peak VPD later in the year
and had lower variability of VPD and temperature.
Recently, Jin ez al. [299] were able to predict bTB in-
cidence from rainfall over a 5-year period in an area of
Wicklow, Ireland; the strongest correlations being
with rainfall one or two quarters before the break-
downs. However, a previous study from Ireland failed
to consistently predict the incidence of bTB reactors
over 15 years using a range of weather variables [299].
The North Atlantic Oscillation (NAQO), a major deter-
minant of weather conditions in Western Europe, has
been shown to be a significant correlate of culled badger
M. bovis prevalence, but its inclusion in statistical models
left a great deal of unexplained inter-annual variation
which was better explained by the effect of the 2001
foot-and-mouth disease outbreak [200].

Flood and drought could affect the risk of infection
with bTB by influencing the survival of M. bovis
(Table 3) or by affecting contact patterns between cattle
and other cattle or infected wildlife but there is little
published evidence for any relationship between flood-
ing in temperate climates. It has been hypothesized
that, in times of drought, badgers may resort to wood-
lands for prey in moist leaf litter and their contact with
cattle would be reduced [201]. In Africa, associations
between increased bTB prevalence and flooding have
been attributed to enforced contact between herds
[202], and with drought as it forces cattle to use com-
munal water sources shared by infected and naive cattle
[203] and encourages large-scale movements [204].

Landscape

A number of landscape and environmental factors
have been found to be associated with increased or
decreased herd bTB incidents, although the degree
of association varies [93, 100, 116, 205-207].

Many landscape factors identified determine the
suitability (or otherwise) of an area for badgers or
act as barriers for the geographical spread of bTB
[208]. Landscape characteristics such as altitude and
habitat composition are correlated with badger abun-
dance [209, 210]. Soil type has also been associated
with badger abundance [211, 212] with badgers
preferring sandy loamy soils for sett construction.
Interestingly, soil characteristics also correlate with
bTB risk, with bTB-affected farms being less likely
to have deep clay soils or seasonally wet soil [70]
and M. bovis was more likely to be isolated from
sandy soil in cattle farms in Michigan [213]. This
soil type may provide a moist, well drained
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microclimate that could maintain suitable pH and
moisture levels that favour bacterial survival.

The distribution of badger latrines in a high density
population in South-West England varied according
to habitat types and landscape features [214].
Latrines are generally more commonly found in
woodland and are less common in arable or grassland
[214, 215]. A high proportion of latrines are located
within 5 m of a linear feature (especially hedges and
stone walls) [214] or are associated with runs crossing
such linear features [209].

Higher densities of hedgerows [205] and a higher
percentage of boundaries composed of hedgerows
[116] on a farm were associated with a reduced risk
of a bTB incident in the resident herd. The authors
suggested that this was because longer forage (pre-
ferred by grazing cattle) is associated with higher
hedgerow density and thicker hedgerows may mean
that cattle cannot access areas that may be more con-
taminated with badger faeces and urine.

Water sources

Aggregation at communal water sources encourages
closer contact between cattle and may increase the
likelihood of contact with wildlife, although there is
little evidence for a risk pathway in GB. Evidence
from Spain found farms with high density of streams
had a lower risk of TB, thought to arise because dis-
persed water resources reduced aggregation of cattle
and wildlife [115]. The presence of water sources
(ponds and creeks) with uncontrolled access has
been associated with an increased risk of bTB in
Michigan, USA [207] and in Western Uganda [216].

Transmission through birds, invertebrates and protozoa

Mechanical transfer of M. bovis bacteria on the feet of
birds [189] or via invertebrates [217] is considered a
theoretical risk although has yet to be demonstrated.
M. bovis has been isolated from various species of
birds in Europe, although they were predominantly
birds of prey [218]. A report from the Soviet Union
describes M. bovis and M. avium in several species
of tick [219]. M. bovis has also been detected in horn
flies (Haematobia irritans) [220].

Experimental studies have demonstrated that M.
bovis can survive in protozoa (Acanthamoeba castellanii),
potentially facilitating transmission by extending the
survival of the bacteria in the soil [221]. However,
co-incubation of both organisms under laboratory
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conditions substantially reduced levels of bacteria,
suggesting that while there is the theoretical potential
for environmental amoebae to act as a reservoir of M.
bovis, they may also reduce environmental contamin-
ation [222]. Acid-fast microorganisms have been
observed inside amoebae isolated from infected bad-
ger setts, although attempts to confirm them as M.
bovis by culture or PCR were unsuccessful [222].

WILDLIFE
Badgers

In the UK and Ireland the European badger (Meles
meles) is the main wildlife reservoir for bTB infection
in cattle. A reservoir is defined as a epidemiologically
connected population in which infection is permanent-
ly maintained and transmitted to a target population
[223]. Furthermore, this reservoir of infection in bad-
gers is often cited as the main barrier to eradicating in-
fection in domestic livestock in these countries. The
most compelling evidence of the infection risk that
badgers pose to cattle comes from large-scale trials
in the UK and Ireland, where badger culling had sign-
ificant impacts on the incidence of bTB in cattle [224—
227]. Within the boundaries of proactively culled areas
during the Randomized Badger Culling Trial (RBCT)
cattle bTB incidence was reduced by 33% after four
annual rounds of proactive culling [227]. Given that
not all badgers were culled [228], this is likely to re-
present a minimum number of incidents that are at-
tributable to badgers in these areas. More recent
analyses of the RBCT data suggests that in an endemic
area, badgers are directly responsible for 6% of bTB
infections in cattle and the overall contribution from bad-
gers, through onward cattle to cattle transmission, is
~50% [229]. How badgers transmit bTB to cattle is not
known, although several likely routes are described below.

Proximity and abundance of badgers

Presence and abundance of badgers near cattle farms
have been included in a range of analyses of potential
bTB risk factors. Analyses of risk factors associated
with cattle herd incidents that include the distance
from farm buildings to badger setts have produced
conflicting results. Johnston et al. [71] found that in-
cluding presence of occupied badger setts within 1
km of farm boundaries did not improve their bTB
risk prediction models, and Griffin ez al. [88] likewise
observed that the distance to badger setts did not vary
relative to bTB incidents in herds. Conversely, Martin
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et al. [230] found a significant, though weak, reduction
in the risk of an incident with increasing distance to
badger setts and [89] found positive associations be-
tween the presence of badgers and herd incidents in
Northern Ireland. In South-West England, finding
dead badgers on a farm was associated with a three-
fold increase in the risk of a bTB incident [70].

Studies investigating cattle bTB risks in relation to
local badger density have also produced mixed results.
For example, Reilly & Courtenay [93] reported an as-
sociation between high densities of badger setts and
persistent cattle herd incidents, but only after adjusting
for farm management-related variables. Similarly, an-
other study reported a correlation between the number
of active badger setts within 1500 m of a farm and the
probability of cattle herd incidents [91]. However, a
study by Mathews et al. [205] found little evidence of
an association between badger density and bTB risk,
as farms with management practices that favoured
wildlife had a lower risk of bTB.

M. bovis transmission routes

Badger-to-cattle transmission has been experimentally
demonstrated [188], but the principal routes of trans-
mission in the field can only be inferred at present.
Infected badgers may excrete M. bovis bacilli in urine,
faeces, sputum and exudate from open abscesses [231].
Studies have identified M. bovis in soil and latrines
[232], and there is evidence for bacilli remaining infec-
tious for some time after being deposited, at least in
certain environmental conditions [233].

Potential routes of transmission include direct
transfer via very close contact between badgers and
cattle, and indirect contact where cattle encounter in-
fectious material from badgers. Both mechanisms
could theoretically occur at pasture or in farm build-
ings, but the relative importance of these transmission
routes is unknown. As smaller numbers of bacilli are
needed to infect cattle via the respiratory system
than via the digestive system [50], inhalation of bac-
teria is likely to be the main route of infection [234].
This could occur during nose-to-nose contact with
badgers, but also while grazing, as cattle aerosolise
and inhale bacilli on contaminated pasture or forage.

Direct transmission risks

Previous observational studies suggested that close
contact between badgers and cattle at pasture is un-
likely [235] and other research suggests that badgers
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may actively avoid pasture with grazing cattle [236].
Studies using proximity loggers have shown that
close contact between badgers and cattle does occur
at pasture although it was reported as relatively infre-
quent [61] or very rare [81, 237]. The available evi-
dence suggests that direct contact at pasture is
unusual, although contact rates could vary across dif-
ferent landscapes. Badgers may frequently visit farm
buildings, where they may readily come into close
contact with cattle [119, 238-240]. The evidence
from several studies suggests that direct contact may
be more frequent in buildings and it has been sug-
gested that it may be easier to reduce risks by modify-
ing buildings to exclude badgers [238, 241].

Indirect transmission risks

Badgers habitually defecate and urinate at latrines
[242] This may concentrate potentially infectious ma-
terial and give rise to enhanced infection risk to cattle
at certain locations, although it may conversely reduce
risks elsewhere [243]. Early research suggested that
cattle avoided grazing on pasture contaminated by
badger faeces [235, 244]. However, subsequent studies
showed that cattle would explore contaminated pas-
ture, and a small proportion would graze at latrines
[245]. Visits by cattle to badger latrines recorded by
proximity loggers found that 85% of the cattle in
one herd actively investigated badger latrines and
15% of them visited latrines over 100 times in a
6-month period [237]. The extent to which this occurs
may be affected by farm management practices such
as grazing rotation patterns [244] which in turn influ-
ence factors such as sward height [245].

Badger urine may present a significant bTB
transmission risk to cattle as it can contain up to
300 000 bacilli/ml [209, 246]. Grazing cattle do not ap-
pear to avoid badger urine deposited away from
latrines [209, 247], which often occurs on runs crossing
linear features such as hedgerows [209]. Cattle have
been shown to graze readily at such crossing points,
and elsewhere on pasture contaminated with badger
urine [209, 245].

Badgers have been observed both defecating and
urinating onto stored cattle feed in farm yards, build-
ings and cattle troughs [119, 240, 248]. Cattle have
been recorded showing little or no avoidance of feed
contaminated with faeces from rodents and wild
birds [249]. It has been suggested that this non-selective
feeding behaviour may represent a bTB transmission
risk especially if the contaminated feed is well-mixed.
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One questionnaire-based study provided some support
for this hypothesis, finding a significant positive associ-
ation between the perceived reported presence of bad-
gers in feed stores or cattle housing and an increased
risk of cattle herd incidents [227].

Wild boar

M. bovis infection has been isolated from wild boar in
several European countries [250-257], including in a
feral wild boar (Sus scrofa) in the UK [258].
Research on the Iberian Peninsula has reported bTB
prevalence of up to 52-4% [259] and positive associa-
tions between the density of wild boar populations
and cattle bTB incidence [260, 261]. The presence of
wild boar on cattle farms in Spain, as reported in
farmer questionnaires, was associated with TB break-
downs [115]. Furthermore, the M. tuberculosis com-
plex genotypes found in wild boar are of the same
origin as the bovine and caprine genotypes found in
domestic swine, deer and humans [259, 262, 263].
Hence, there is evidence to support the role of the
wild boar as a reservoir host of M. bovis in
Mediterranean areas (reviewed in [264]). In the UK,
wild boar have a limited geographical distribution,
mainly confined to small areas in Kent/Sussex and
Gloucestershire/Herefordshire. Therefore, the current
risk to livestock from this species in the UK is consid-
ered to be low, although this has the potential to
change should wild boar numbers and geographical
distribution change. There is currently no empirical
data on the growth trajectory of wild boar populations
in the UK. This species has a very high reproductive
rate for an ungulate and hence the potential to in-
crease population size rapidly [265], although hunting
and restricted woodland cover may constrain their
numbers and distribution in the UK [266].

Deer

Several wild deer species in Europe have been found
to be susceptible to bovine bTB infection, including
fallow (Dama dama), roe (Caprolus capreolus), red
(Cervus elaphus), sika (Cervus nippon), Reeves’” munt-
jac (Muntiacus reevesi), reindeer (Rangifer tarandus)
and elk (Alces alces) [218]. Spatial associations be-
tween strain types in deer and cattle have been demon-
strated by restriction fragment-length polymorphisms
in Ireland [267] and by spoligotyping in Spain [26§],
suggesting that bTB is transmitted between these
species. Furthermore, experimental studies have
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demonstrated that indirect transmission of bTB could
occur between white-tailed deer (Odocoileus virginia-
nus) and cattle through sharing of feed [269].
Spatially explicit modelling of density and distribution
of white-tailed deer and cattle herds with bTB break-
downs in Michigan, USA, demonstrated that infected
deer play an important role in the maintenance of
bTB in that area [213].

In a case control study in Michigan, USA, Kaneene
et al. [207] found that the prevalence of bTB in the
local deer population was an important risk factor
for bTB in cattle. They also found that bTB risk
was increased when water was provided to cattle out-
doors and large quantities of hay bales were stored in
fields or on pasture fence lines. Conversely, the risk
was reduced if feed was stored indoors or properly
protected by bagging or wrapping. A semi-quantitative
assessment of the risk of transmission from deer to cat-
tle in the UK, based on prevalence of infection, extent
of potential bacterial excretion, likelihood of contact
with cattle and approximate biomass suggested that
red and particularly fallow deer represented the greatest
potential risk. However, any risk is likely to be localised
given the geographical variation in deer densities [270].

Other species

M. bovis has a wide host range and is the most com-
mon cause of tuberculosis in mammal species [271].
M. bovis infection has been identified in numerous
wild mammal species in the UK (see [271]), although
a semi-quantitative risk assessment suggested that spe-
cies other than deer and badgers are unlikely to pose a
significant risk of bTB transmission to cattle [270].

HUMAN-TO-CATTLE TRANSMISSION

There are a large number of documented cases of
human to cattle transmission from the first part of
the 20th century in Europe, in Denmark [272], the
UK [273], Germany [274-277], The Netherlands
[148]. However a case was reported relatively recently
in Switzerland [278]. More recently, associations be-
tween tuberculosis in humans and cattle have been
predominantly documented in Africa [202, 279-282].

DISCUSSION

We present an overview of risk factors that have been
identified for bTB in cattle, with a primary focus on
the UK and Ireland, but where gaps exist drawing

https://doi.org/10.1017/5095026881600131X Published online by Cambridge University Press

on evidence from further afield. However, there are
difficulties in extrapolating from many studies and in
weighting the relative importance of the various risk
factors identified in the literature owing to differences
in study design, circumstances, follow-up time, selec-
tion criteria and case definitions. Variation in herd
composition, management, history of infection and
local circumstances, including exposure to potential
sources of infection from wildlife, will all vary in
space and time creating serious challenges for between
study comparisons. The case definition for a bTB-
infected herd in Europe is detection of one or more
reactors to the SIT or SICCT test (64/432/EEC) at
standard interpretation but definitions in the literature
range from other interpretations of the skin test [44,
48, 93] to laboratory-confirmed M. bovis infection
[207], or to the detection of reactors with evidence of
infection [89]. The principal outcomes examined also
varied from detection of infection to disease character-
istics such as duration [123], chronic persistence [92]
and recurrence [82, 83, 124] (Table 1). This range sup-
ports the use of a review of evidence from several stud-
ies looking at similar research questions over a
relatively broad geographical range.

Nevertheless, despite differences in study design
some clear and consistent patterns have emerged
across a broad range of infection prevalence and
environments. Prominent are the increased risks asso-
ciated with animal age, contact with a wildlife reser-
voir and the size of the herd. Purchasing strategies
and management practices that favour intensive pro-
duction, also promote increased contact among cattle
(housing) and with wildlife (fragmentation, farm size)
at the expense of hygiene and biosecurity. Herds with
a history of bTB are consistently identified as being at
higher risk of a future bTB incident. The relative im-
portance of different risk factors also varies according
to incidence. In low-incidence areas, infection is pre-
dominantly related to cattle movements [103, 106].
In higher risk areas, risk factors reflect increasing con-
tact rates, as is unsurprising for a contagious disease,
e.g. herd size, farm size, movements, housing, and ex-
posure to wildlife (Table 1).

Causality between markers for infection or disease
and many risk factors cannot be assumed. Many
risk factors may act as proxies for contact and trans-
mission opportunities or other unmeasured variables.
Landscape characteristics will influence the distribu-
tion and abundance of wildlife and reflect different
cattle management practices, and so may be proxies
for contact rates among cattle and between cattle
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and wildlife. Also, the quality of animal husbandry
may affect the level of M. bovis contamination and atti-
tudes to biosecurity. Hence, the significance of the
reported protective association between vitamin and
mineral supplementation and bTB [6, 55, 95, 114]
may be a proxy for poor management and hygiene
practices on infected farms. More research is needed
to determine the impact and relative contribution of
management factors, such as nutrition and housing
on infection transmission and pathogenesis within the
host animal.

The risk that bacilli released into the environment
by infected cattle or wildlife will infect other animals
depends on the rate at which they lose their viability
and virulence. Survival of M. bovis in soil and other
environmental substrates depends on temperature,
moisture, pH, exposure to sunlight, oxygenation,
and interactions with other microflora, and so will
be expected to vary widely in space and time. Such en-
vironmental factors have been associated with vari-
ation in the risk of bTB in cattle [183].

Knowledge gaps and the way forward

The relative importance of the risk factors identified to
date are likely to vary among farms and environ-
ments, and over time making it difficult to identify
generic patterns. Many risk factors have been iden-
tified in relation to different types of herd manage-
ment such as sharing of equipment [115] and types
of housing [71, 95], but their impact is unknown. In
many studies once location, bTB history and herd
size are accounted for, the degree to which manage-
ment factors may influence the risk of an incident is
low. The calculation of the population attributable
fraction in bTB risk factor studies is relatively rare,
but can provide an assessment of the absolute contri-
bution of a risk factor to infection incidence or preva-
lence [71, 96, 138]. It can be used to provide a measure
of how many bTB cases might be prevented by modi-
fying or removing a risk factor or range of factors. If
prevalence of the exposure is low, then the relative im-
portance of the risk factor will be low, even if the as-
sociation with disease is quite strong.

Few risk factor analyses have matched cases and
controls on herd size [70] but the dominance of herd
size in many risk factor studies (Table 1) [73, 75,
283], supports a case for conducting studies matched
on herd size, to attempt to tease out other manage-
ment characteristics that may be a feature of large
herds and may promote infection transmission.
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In the UK and Ireland there is a large body of
evidence to support transmission from badgers to cat-
tle [224-227, 230, 284] and transmission is likely to be
reciprocal [285] suggesting that in at least some cir-
cumstances the two populations may constitute a
host community in which M. bovis circulates. Hence
there is the potential for interactions and inter-
dependency among cattle management and wildlife-
related risk factors. The potential impact of transmission
from badgers to cattle has been estimated from the
RBCT at ~33% [227] although identification of the
most important routes of transmission remains unre-
solved, thus hampering the development of targeted con-
trol measures.

In GB, mathematical modelling supports other
work showing cattle movements, re-infection from
wildlife and the performance of the main diagnostic
test have a substantial influence on infection incidence
[286]. Currently approved diagnostic tests for bTB are
known to be variable in their performance and have
only moderate sensitivity [135]. Significant improve-
ments in diagnostic test accuracy and hence case-
definition could improve the estimation of the impact
of risk factors, transmission rates and hence the devel-
opment of appropriate control strategies. It has been
estimated through modelling that up to 24% of
British herds had residual infection in at least one ani-
mal when restrictions were lifted [76]. This is congru-
ent with estimates from a descriptive analysis in Spain,
where 22% of incidents were determined to have been
caused by residual cattle infection [287]. There is evi-
dence that the TST is influenced in the presence of
Johne’s disease [29] and liver fluke [63, 162] but the ex-
tent to which this might impede diagnosis is unknown.
Potential impacts could be significant as the herd-level
seroprevalence of Johne’s disease in South-West
England is high [288]. The geographical distributions
of liver fluke and bTB infections are negatively corre-
lated in England and Wales and it has been suggested
that this is a result of masking of infection [289].
However the highest prevalence areas for liver fluke,
such as Cumbria in Northern England [290] are not
associated with higher than average detection of
bTB infection by meat inspection, and bTB incidence
remains low [84].

Accumulating evidence suggests that the suscepti-
bility of cattle to M. bovis infection can be affected
by breed and genotype but further work is required.
About 20% of variation in resistance to bTB in
British and Irish dairy cattle can be attributed to sire
lineage, and there is evidence of similar variation in
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resistance in beef breeds. However, these may be
under-estimates of heritability because of misclassifi-
cation of estimated exposure to infection and imper-
fect diagnostic tests [291]. This approach of breeding
resistance is being taken forward by the dairy industry
in GB [292].

The risk from within farm movements of animals
and herds, although hypothesised, has thus far not
been investigated. It is rare for this data to be captured
centrally and so investigation would require a bespoke
study.

The identification of tractable risk factors for
bTB is critical to a better understanding of infection
dynamics and the development of cost-effective
approaches to disease control. While a cattle farmer
can alter their behaviour or farm management strat-
egies including purchasing choices, it is less likely or
more challenging to exert substantial control over ex-
trinsic factors related to the environment or wildlife,
or the level of infection in the surrounding area. In
recognition of this there is a need to account for farm-
er behaviour and the drivers of their decisions in the
development of infection control strategies [293,
294]. Few studies have related farmer perceptions to
bTB incidence, and those that have shown conflicting
results [115, 117, 295].

Knowledge of the importance of risk factors could
be deployed to facilitate integrated control in two
ways. First, certain risk factors may be shared
among a range of pathogens of cattle although disease
control in livestock usually focusses on individual
infections. The identification of common risk factors
should be used to develop more efficient, cost-effective
holistic infection control programs. The identification
of shared risk factors for brucellosis and bTB has indi-
cated that such an approach is possible [117]. Second,
the combination of country- and region-specific risk
factors could be used to focus on multiple transmission
pathways simultaneously to continuously improve a
more effective, integrated and evidence-based control
strategy. Such an approach would need to be carefully
validated and its effects would need to be measured.

If Ry is just >1, changes in factors with a moderate
effect on transmission will have a big impact [296].
Modelling approaches suggest that focusing on a sin-
gle route of transmission will not reverse the increas-
ing trend in incidence [286]. This suggests a tailored
package of control measures, addressing many trans-
mission pathways, made possible by the identification
of relevant risk factors is likely to be the most effective
approach to bTB control in cattle.
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