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Let G, H and K be finite groups such that K acts on both G and H. The action of K
on G and H induces an action of K on their tensor product G ®H, and we shall denote
the ^-stable subgroup of G <8> H by (G <8> / / )* . In section 1 of this note we shall obtain
necessary and sufficient conditions for (G <S> H)K = G ®H. The importance of this result
is that the direct product of G and H has Schur multiplier M(G x H) isomorphic to
M(G) x M(H) x (G <8> / / ) ; moreover *: acts on M(G X / / ) , and M(G x # ) * is one of the
terms contained in a fundamental exact sequence concerning the Schur multiplier of the
semidirect product of K and G x H (see [3, (2.2.10) and (2.2.5)] for details). Indeed in
section 2 we shall assume that G is abelian and use the fact that M{G) = G A G to find
necessary and sufficient conditions for M(G)K = M(G).

1. To save repetition we shall continue to use the notation in the introduction. It will
be convenient for any finite group L to let L denote (L/L')/<b(L/L'), where 4>(L) is the
Frattini subgroup of L. Also since we shall be using tensor products it is most natural to
adopt additive notation for abelian groups.

We begin by recalling that G <S> H is generated by pure tensors g®h for g e G,
heH, (g ® h)x = gx ® hx ior xeK, and ( G ® / / ) K = { z e G ® / / : z ' = z for all xeK}.
Clearly if K acts trivially on G and H then {G®H)K = G®H; our main result can,
under suitably restricted circumstances, be regarded as a partial converse to this.

THEOREM 1. Let n denote the set of prime numbers which divide both the order of G
and the order of H. Then (G <8> H)K = G <8> H if and only if for each p ell and each xeK,

gx = s(x)g and hx = t{x)h

for all elements g and h of the Sylow p-subgroup of G and H respectively, where s{x) and
t(x) are integers such that s(x)t(x) = l(modp).

Proof. We have that G <8> H = G/G' <S> H/H' under the isomorphism defined on
pure tensors by g®h*-^gG'®hH' by [2, (V.25.9)], so for notational convenience we
shall assume henceforward that G and H are abelian. Next we note that if 6: G—>A and
(p-.H-^B are epimorphisms, then the homomorphism 6®^:G®H-*A®B defined
on pure tensors by (0 ® (f>)(g ® h) = 6(g) <S> <p(h) is an epimorphism by [4, (V.5.2)], and
so (G <8) H)/ker(d ® #) =A <8> B. All further isomorphisms considered in this proof are
constructed in this natural manner. Now we may express G and H as the direct sum of
their respective Sylow subgroups,

G = 0 5P, and H=®TPi
ieN ieN
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where p, is the ith prime number. We then obtain from [2, (V.25.9)] that
0 (Sp <8> 71), and consequently (G®H)K=® (Sp <8> TP)K. Thus we can now assume

that both G and H are p-groups. However we now have that G <8> H is trivial if and only if
G or H is trivial; to progress thenwe must assume that p divides the order of G and the
order of H. Now G®H=G®H and (G®H)K = G®H if and only if ( G ® / / ) * =
G <8>H, so that we may finally assume that G and H are elementary abelian p-groups.

It remains then to prove the theorem when G, H, and hence also G®H, are
elementary abelian p-groups; as such we may regard all three as vector spaces over Zp.
Let {gi,..., gm) and {hx,. . ., hn) be bases for G and H respectively over Zp. Then
{&• <8> fy: 1 < i < m, l < / < n } is a basis for G<S>H over Zp by [4,p. 142]. Let x eK,

m n

S"u — Ti aUigi for 1 < a < m, and hi = £ bvjhj for 1 < v < n, where am, feu; are integers.
1=1 /=1

Then

Thus gu ® gv is fixed by x if and only if

f 1 ( m o d ^) for
a b f

"; lO(mod/j) otherwise

which yields that auubvv = 1 (modp) and aui = bvj^O(modp) for all I ^ M and a l ly^u.
Since these conditions are required to be true for all values of u and v, we conclude that
fluu = an(modp) for l < « < m , bvv =bn(modp) for l < u < n , and flufru = l(modp).
We have thus obtained the desired result.

The most interesting consequences of the theorem occur when we set H = G and
consider a single action of K on G.

COROLLARY 1. Suppose the orders of GIG' and K are relatively prime, and let n
denote the set of prime numbers which divide the order of GIG'. Then {G®G)K =
G ® G if and only if every x e K either inverts or acts trivially on the Sylow p-subgroup of
GIG' for each peU..

Proof. By Theorem 1 we have that (G <8> G)K = G <8> G if and only if for each peU
and each x e K, gx = s(x)g for all elements g of the Sylow p-subgroup of G, where s(x) is
an integer with s(x)2 = l(modp). However the only element/elements in Zp whose square
is [1], are [1] for p = 2 and [±1] for p ¥= 2.

It remains, because of [1, (5.1.4)], to show that if G is an abelian p-group and x e K
inverts G, then x inverts G. In this situation x2 acts trivially on G and hence on G, so that
x is an automorphism of G of order 2. Let T = (x) and CT(G) = {g e G :gx = g}. Then
G = CT{G) x [T, G] by [1, (5.2.3)], and CT(G) < <D(G). Thus CT(G) must be trivial, and
the desired conclusion is yielded by [1, (10.1.4)].
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2. In this section we shall assume with the notation of section 1 that G is abelian.
Now K acts on M(G) via [a]x = [of] for all [a] e M(G) and x e K, where a denotes a
complex-valued cocycle of G and ofig, h) = a(gx, hx) for all g, heG. Also the action of K
on G <8> G induces an action of K on G A G = G <8> G/(g <8>g :g e G) in the obvious way.
However these two actions are related for there exists an isomorphism 6:M(G)—* G A G
such that 0{[aY) = 0([a]Y for all [a]eM(G) and xeK (see [3,(2.6.6) and (2.6.7)]).
Thus imitating Theorem 1 we obtain:

THEOREM 2. Let II denote the set of prime numbers such that G has p-rank at least two
for each p e II. Then M(G)K = M(G) if and only if for each p € II and each x e K either
(i) x acts as an element ofSL(2, p) on the Sylow p-subgroup of G if G has p-rank 2, or (ii)
x inverts or acts trivially on the Sylow p-subgroup of G if G has p-rank greater than 2.

Proof. The reduction to the case when G is an elementary abelian p -group is almost
exactly as in the proof of Theorem 1 with the symbol '<8>' replaced by ' A ' . The only minor
difference is that if G is an abelian p-group then G A G is trivial if and only if G is cyclic;
this accounts for the need to consider only those primes p for which G has p-rank at least
two.

It thus remains to prove the theorem for G an elementary abelian p-group. Let
{gi, • • •, gm) be a basis for G over Zp. Then {g, A g;: 1 < t < / < m} is a basis for G A G

m

over Zp, where g, A gj is the image of g, <8> g, in G A G. Let x e K and g* = £ au,g, for
1 < w s m, where the aui are integers. Then <=1

(gu{

i i</

+ E ^ujOviiigi ® ft) + (ft ® ft))-

Thus (gu A gvy = gu A gu for M < u if and only if

( l(modp) for (i,j) = (u,v)
O(modp) for all ( i , ; )# (H, u) with l s i < / s m .

Now assuming henceforward that G does have p-rank at least 3, these conditions yield
firstly that aui = avi = O(modp) for all (i, j) ¥= (u, v) with 1 ^ i <j ^ m , and hence secondly
that auuavv = l(modp). Since these conditions are required to be true for all values of u
and v with u < v, we conclude that auu = au(modp) for 1 ^ u ^ m and au = ±l(modp).
We have thus obtained the desired result in all cases.

We conclude this note with the obvious remark that if p does not divide the order of
K in case (ii) of Theorem 2, then the condition stated there can be strengthened to: x
either inverts or acts trivially on the Sylow p-subgroups of G if G has p-rank greater
than 2.
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