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ON THE PROPERTIES OF AW INTEGRAL OPERATOR

/BIGNIEW JERZY JAKUBOWSKI

The main aim of the paper is to examine the properties of the

2
integral operator I(f) = ( (£ (u)1%u , a € C , defined on
Jo

some classes of functions f(z) =z + a222 + ... univalent and

convex in the disc |z| <1 . As special cases we obtain results

of Kim and Merkes and of Kumar and Shukla.

1.
Let K(zo, r)={z€cC: |z—z0| <r}, >0, K=k(0,1), Let U

be any fixed simply connected domain contained in the half-plane Re w > 0

and containing the point w=1, G = G(g, no, nl, ey nn) - a given

function defined in a sufficiently large domain W < Cn+2 , With

G(O, 0,1, n .s nn] =1 . Denote by F(G, U) the class of functions

2’
(1) f(z) =2z + a2z2 + .,

holomorphic in K and satisfying in this disc the condition

n
(2) G(z, flz), £ (2)s ...\ f( )(z)] €U .
It is evident that, with the right specification of the domain U and the
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function G , we obtain from (2) the definitions of various well-known

classes of functions of type (1).

Let F*(G, U) be a subclass of functions of the family F(G, U) ,
loecally univalent in X . Then, for each function f € F*G, U) ,
Ff'(z) # 0 in the disc X . Consequently, for any complex & , on the

family F* = F*(G, U) one can define an integral operator of the form

(3) 1) = [ ironta, 1% 1

0

Of course: in the case o = 1 , the operator I maps F* onto F* ;
when a =0, I(F*) = z . Certain questions concerning the properties
of operator (3) seem natural. In particular: whether or not, and for
vhich a € C, I(F*(c, u)) = 1(F*(s, v,)) .

In 1974 Kim and Merkes [8] showed that, for each 0 <a =<1 , if (1)
is any convex univalent function, then I(f) is also a convex function;

this interval cannot be enlarged in the class of all convex functions.

In the present paper, we consider the properties of operator (3) in
some classes of convex functions. As special cases we obtain the above-
mentioned result [8] and those of Kumar and Shukla [10]. We also give some

results concerning the extimations of coefficients.
2.
Let E = El v E2 where

E, = {(s, p) €C xR :|s-1| <p, 0<ps=sk},

1
(1)

E {(s, p) €CxR: |s-1|] <p=<Res, p>k}.

2
Denote by S°(s, p) , (s, p) € E (see [4]), the class of functions of
form (1) holomorphic in K and satisfying the condition

(5) 1+ 2f"(2)/f'(2) €K(s, p) , 2 €K .

From (4) we infer that if w € K(s, p) , then Rew > Re 8 - p =0 .

Consequently, S%(s, p) ¢ 8° where S$° 1is the well-known family of

functions of the form (1) univalent and convex in the disc X .
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Since the homography
(6) h(z) = (1+az)/(1+bz) , =z € K ,

where

(1) a-= (p2ezY+s]s-1|)p—l , b= Is—llp_l <1 ; Y= arg(l-s) ,
g1l ,; y=0, s=1,

maps the disc X onto K(s, p) , therefore condition (5) is equivalent to
(8) 1+ 2f"z)/f'(2)= h(z) , B €Kk,
(the symbol < stands for subordination). In papers [4], [6], the class

$°(s, p) was considered when (s, p) € E, s =35 . Also, other classes
of functions (starlike, Carathéodory and the like) satisfying the condition
of type G(z, f(z), F'(=), f"(z)) € K(s, p) were investigated when

(s, p) € E (for example, in [11, [51, [11]) or when (s, p) €E, s =35
(for example, in [7] to (3], [51 to (71, [9], [111]).

Let F€5%s,p), (s,p) €E, o €C and
(9) F=1I(f) .

Then, from (3), we have

(10) F'(z) = (F(z)*, z €k .

Consequently,

(11) 1+ 2F"(2)/F'(2) - o = a[l+(2f"(2)/f'(2))-8] , =z €K,
where

(12) o=1-0a+as .

So, from (11), we get

(13) 1+ 2F"(3)/F'(3) € K(od, R) , z €K ,
where
(14) R = [a]p,

while o is defined by formula (12).

Since (s, p) € E , therefore, for each a € C , from (4), (12) and
(14) ve have |o-1| = Jas-a| < |a|jp =R ; so, for each a € C ,
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1 € X(o, R)

In consequence, K(o, R) nK(s, p) #0 .

3.

Let us consider, for any fixed (s, p) € E , the followiﬁg sets of

points a € C :

(16)
(17)
(18)

(19)

(20)

D, =D (s, p) = {a : |s-1]|a-1]+p|a] = o} ,
D, = Dy(s, p) = {a :|s-1||a-1]|+p = |a|p} ,
Dy = Dy(s, p) = {a : |a|p = Re(1l-a+as)} ,
D, = D,(s, p) = C\(D, v D,)

Evidently:

1° Dl(s, p) © Dl(l, p) = {a : |a| =1} ;

2° the points 0, 1, o, € Dy

3° o €D if and only if @« € Dl 5

vhere a, = -(p—ls—ll)(p+|s-l|)_l »

4° the boundary of the set Lﬁ » in polar coordinates, is defined

by the equation

o=t =2rm

r = rl(t)
= (1-b2)-1[1 - b2 cos t - (2b2(l - cos t) - bh(l - coszt))%] s
with ri(t) <0 for 0<t<m and ri(t) >0 for
M<t<2n , and b is defined by formula (7).

Moreover:

1° Dyls, p) © Dy(1, p) = {a : |a| 21} 3

2° the points 1, l/al € D2 3

3° a €D, if and only if 1/a € D oa#0;
2

l >
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4° the boundary of the set D2 is defined by the equation

-1
r= r2(t) , 0=t = 2T , where r2(t) =r (t) , and rl(t)
is defined by (20).
It is also evident that:

_1}

3

1° D1, p) = {a: || =p

2° the points O, 1, a2, a3 € D3 where a2 = (p+l-Re S)_l ’

- o -1 . . < - -1
ag (1~p-Re s) with @, 21, ay (2p) 3

3° the boundary of the set D_ is defined by the equation

3

-l[l+T cos(t+Y)]-l , 0=t =27, where

r= r3(t) )

1
Tpe Y l-8, 0=1T<1, 0=Y<2T ; moreover, we have

o = r3(t) < o vhere @ = (p+|s—J.|)"l » O = (p-ls-l‘)—l .

So, from (16-19) we get:

{1} when s #1 , and

il

1° D, (s, ) n Dy(s, p)

ft

Dl(l, p) n 02(1, p) = {z : |a| = 1} ;

g ;

2° Dh(l, p)

_1}

{a : 1= |a| =p 5

o
3 Dz(l’ p) n D3(1, p)
yo Dz(s, p) n D3(s, p) # @ when s #1 .

Let us also notice that

c .
(21) Dl 03
Indeed, if there existed points (so, po) €E and o, € D, such that

a, ¢ D3 , then we would have, from (18),
lagley > Re[[ao—l}(so—l)] *+ Re 5, .

Since a, € D, , therefore from (16) there would be
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Py > Re[(0y-1) (s,-2)] + la-1]|s,-1] + Re s

0] 0’

This last inequality is a contradiction since from (L4) it follows that
Re so - po >0 .

So, from (12), (14), (15) and (16-19) we get, for any (s, p) € E ,

(22) K(g, R) c K(s, p) <=0 ¢ D, »
(23) K(s, p) © K(o, R) = a € D, »
(2k4) Ko, R)cT={w : Rew > 0} = qa € D_ ,

3

K(s, p)\K(o, R) # § = 0 €D (1 € k(o, BR) n K(s, p))

L

As a consequence we obtain, from {21-25).

LEMMA. Let (s, p) €E, a €€ . Then

(26) k(o, R) = {1} g k(s, p) ©€ T when a

[}
(@]
.

(21 k(o, R)

K(s, p)crT when a =1,

(28) k(o, R) = K(s, p) C T when |a]l =1, a#1 for s=1,
(29) K(o, R) g K(s, p) T when o €D, , Jaj #1, azo0,
(30) K(s, p)g.K(c, R)cT when a € D, n Dy, la] # 1,

(31) K(s, p), K{o, R) < T , K(o, R}\K(s, p) # 0 ,

K(s, p)\K(o, R) # @ when & € D) v Dy .

In the cases when o € D)\Dy or DN\D; , the dise K(o, R) ¢7 5
E, 0, R, D, - Dy, T are defined by formalae (1), (12), (1), (16-19) and

(2L) respectively.

4.
For obvious reasons, we will confine our attention to a € 03 , that

is, to cases (26-31). Then both the discs considered are subsets of the

half-plane T . We shall prove
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THEOREM 1. Let (s, p) €E, @ €Dy, 0=1-a+0as, R = lalp .

Then the operator (3) maps the class Sc(s, p) $° onto the class

Sc(o, R) L , where

(26') 5°(o, R) = {2} g (s, p) when o =0,

(27') S%(o, BR) = 5°(s, p) when o =1,

(28') 5°(o, R) = (s, p) when |a] =1, a#1 for s=1,
(29') $°(o, R) g L(s, p) when o €D, |af #1, a#o0,
(30") 5%(s, p) < 5%(o, R) when o €D, Dy, la| #1,

(31') S%(0, B)NS®(s, p) # 8, S°(s, p)\°(0, R) # § when a ¢ D, u Dy .

Proof. Let f € $°(s, p) and F = I(f) . Then from (9) and (3) we

get (11) and, in consequence,

(32) |1+ (2F"(2) /F'(2))-0| = |a||1+(af"(2)/f'(2))-s| , 2 €K.

So, from (5) and (14) we obtain (13), and, thus, F ¢ $°(o, R) . Since

a € D3 , we infer from (24) that F ¢ S° . Of course, f € S° by the

definitions of the class SC(S, p) and the set E . In view of (10) and

(32), the converse is true, too. It remains to prove relations (26'-31').
So, if o = 0 , then to each function f € Sc(s, p) there corresponds

a function Fo(z) = z . Consequently, the class S°(0, R) reduces to the

function FO which is, of course, one of the functions of the family

(s, p) .
If a=1, then F = I(f) = f , vhence we get (27').

In case (28') we have o= =1, R=p , and thus,
%(o, R) = K(s, p) . Hence the classes are equal. Obviously, here we do
not have to deal with the identity mapping, as in (27').

If a €D , la] #1 , o # 0 , then from (29) we infer that (29')
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holds. Analogously, from (390) and {31) we get (30') and (31'),

respectively.

Note that the solution f*(z) = z + ... of the differential equation
(see (8))
(33) 1+ z2fz)/f'(z) = hlz) , z €k,

where the function % 1is defined by formulae (6) and (7), has the form

F -1
f (l+bu)(a_b)b du for s #£1,
o]
(34) F*a) = A
2
{ Py for s =1.
e

Let F* = I(f*) . Then from (3) and (34) we have

4

r (1o @(@-DI ™

o]

du for s # 1,

F*(z) = 9

r]
J epaudu for s =1 .
e

If s #1 , we then obtain

(35) 1 + ZF*"(Z)/F*'(Z) =L+_@f_a_(.9ﬂk 2z €K .

1+bz >

Since the homography occurring on the right-hand side of formula (35) maps
the disc K onto the disc with centre at 0 =1 - o + 08 and radius
R = |a|p , therefore the results obtained in Theorem 1 cannot be improved.
Analogously, when s = 1 , we get
1+ zF*"(z)/F*'(2) =1 + apa ,

whence 0 =1, R=|a|] « p ; so, also in this case, the results of

Theorem 1 are unimprovable.

From the main theorem we obtain

a=a , then the

wl

COROLLARY 1 [101. If fe Ss,p), s=

2

funetion F = I(f) € S°(s, p) if and only if -3 <o =1 where
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p=(s-1) when s > 1 ,
p+(s-1)

(36) @ =11 when s =1 ,
p+(s-1)
o—(s-1) when % <s <1 .

In deed, the intersection of the set Dl with the real axis is the

interval (o,, 1) vhere o, = ~(p-ls-1])(p+]|s-1])"! , whence we

immediately obtain formulae (36).

COROLLARY 2. If f € 5%s, p), s =3 , then the function

F=I(f) € (s, p) for a € ko, —al)
This follows from the fact that min rl(t) = - = rl(ﬂ) where
r= rl(t) is the equation of the boundary of the set Dl . In paper [13],

in the case under consideration, the disc K(O, %p_l(p-s+1)] with radius

less than -, vas obtained. So the result from [13] in question is not

sharp.

COROLLARY 3 [8]. If f € S°, then the function F = I(f) € §° for
each o €(0, 1) . Moreover, the extremal function is of the form
2
) = | () 2du
Jo
This corollary follows directly from (36), (35) and (34). One should

put & = p and pass to the limit with p > +»o ,

In the case § =8 and o =a , from Theorem 1 one can, of course,
also obtain more specific properties of the operator (3). For instance, if

8§ #1 and a € |1, a , then from (30') we deduce that, for each function
2

Fesls, p) . F=If) €0, B) witn s, p) G %0, B) ©5° . For

a>a F = I(f) does not have to be a convex univalent function.

2 k]
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5.

Let S‘E , 0=B<1 (see [6]), stand for the family of functions of

form (1) satisfying the condition

(37) Re[i+(2f"(2)/f"(2))] > B, 2z €K .
et a=20, f¢€ SE . Then from (3) and (9) we get

Re[1+(2F"(2)/F'(2))] = « Re[Q+(af"(2)/f'(2))] ~ o+ 1z 0B -a + 1,
2 €K .

Consequently, from (37) and (33) we have

THEOREM 2. ILet 0 =8<1, o = (1—[3)—l . Then operator (3)

0=
rmaps the class Sg onto the class st where S = aB - a + 1 , where

(38) s g S% when 0 <a<1,
(39) st = S% when o =1,
(50) Sg 2 sg when 1 <a =< (1-8)'l .

2
The extremal function is of the form f*(z) = J{ (l+u)2(6_l)du .
0

Relations (38-L40) constitute another type of generalizations of the
result of [§].

6.

Let Sg ,

(1) satisfying the condition

0 < B = T7/2 , denote the family of functions of the form

(k1) larg f'(2)| <B, 2 €K, argl=0.
Proceeding analogously, we obtain, from (10),
THEOREM 3. Let 0 < B <kn, -1 =<a=1. Then operator (3) maps

the class S° onto the class S’l)al c S . The extremal function is of

B B B
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. B
the form f*(z) = J [(1-u)/(1+u) ) du .
0

Indeed, as is known, functions of the class sY

n/2
univalent; thus, for f € sY , we have f'(z) # 0 for =z € K . Besides,

[12]) are

by (10), arg F'(z) = o arg f'(z) , whence, in view of (41), we obtain the

assertion of the theorem.

Let us take the functions

(42) g(z) = ¥ gz, 3a)= T G,
k=0 k=0
holomorphic in the disc K , go = §0 # 0 , and satisfying in KX the
condition
(43) g(z)/g(z) = h(z)

where h is of form (6) anrd (7), (s, P) € E . Then, proceeding as in

paper [4], we obtain the following theorem on coefficients.

THEOREM 4. For each (s, P) € E and any pair of functions g, g

satisfying conditions (k2) and (L43), the following estimations

(bk) lg,-4,1 = la-bl = (o2-1s-112)071 ,
n-1
~ 2
(hS) lgn'gnl2 = ‘a‘b‘ ‘g0‘2 - Z: Ak 3 n = 2, 3’ LIRS 1
k=1
- 2 2
(46) Y 4, = la-b|%lg,]
= ©
take place, where
~ 12 ~ 2
(¥7) Ak = lgk_gk‘ - ‘agk‘bgk‘ s k=1,2, ...

From (bb), (b5) and (47) we get
COROLLARY 4. If, for fized g, g , (s, p) €E, all numbers A

are non-negative, then
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-~ 2 -
(48) l9,-5,1 = (0*ls-1Dp™, n=1,2, ...,

for a given n , equality holds only when Ak 0 for k=1, ..., n-1.

COROLLARY 5. If, for fized g, g, (s, p) € E, there exists an
index N (N= 3, L4, ...) such that Ak =0 for k=1,2, ..., N-2 and

Ak?.o for k=N-1, N, ... , then
( 2 2
la_bl |g0| E) n=2 s
n-2
2 2
= 12 < Llablflg T - X 4, ., n=3, ..., W,
(49) lgn-l gn_ll = 4 0 ok
2 o N2
|a-b| Igol -y A s no= AL, N2, L.
k=1

\

Let f of form (1) belong to S°(s, p) , (s, p) € E . Put
glz) = f'(2) + 2f"(2) , g(z) = £'{(z) . Then from (6) to (8), (42), (L3),

(46), (48) and (L9) we obtain the estimations of coefficients of functions
in the classes S°(s, p) . We have

THEOREM 5. et f of form (1) be any function of the class

(s, ), (s,p) €E. If (s, €C) , then
(50) Ianl = n—l(n-l)_lA , n=2,3, ... .

If (s, p) €C, , then

122 gy
(51) |an|577-|—=—|_|e Akb| , n=2,3, ..., N,
and
|an| = mﬁ IeiYA—ka , n o= N+, N+2, ...,
where
N=[k] +2, k= (0%-1n26)% + Re s - 1 > 1,
a=010%1s118) , b=0ts1],

https://doi.org/10.1017/50004972700009710 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009710

An integral operator 67

c

= (s, p) €E : Res <2andp= [s-2]}

Cs

{(s, p) €E : Re s = 2 or |s-2| < p}

Besides, we have
kzl (ks1) |y, |21K%- |ae™Vobk|?] < 4%

Estimations (50) and (51) are sharp.

We omit the proof of the above theorem (see, for example [4]). Of
course, in the case when p = 8§ > +o , from (51) we obtain the well-known

estimations of coefficients in the full family

Sc(lanl s1,n=2,3, ...}
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