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A numerical study on the effect of surface slip on the flow in a constricted channel is
presented, with the aim of exploring the use of surface slip to control flow separation.
Our focus is on two-dimensional flow in a channel over a bump, with a fixed aspect ratio,
upon which a Robin-type slip boundary condition is imposed. When the channel walls are
fully no-slip, such a flow is known to develop a region of separation behind the bump, at
sufficiently large Reynolds numbers. The effect of slip on the separation bubble dynamics
occurring behind the bump is investigated, for Reynolds numbers 2000 and 4000. It is
shown that surface slip (i) attenuates the intensity of separation as it diminishes the
minimum of the streamwise velocity within the recirculation region; (ii) delays the onset of
flow separation, shifting it downstream, along the bump, and (iii) reduces the dimensions
of the separation bubble behind the bump, allowing the flow to reattach sooner. Ultimately,
slip inhibits separation, with both the points of separation and reattachment coalescing, for
a slip length λ of approximately 0.2.

Key words: channel flow, separated flows, computational methods

1. Introduction

Flow separation is the detachment of a viscous fluid layer from a body surface. It results
in flow reversing its direction and is effectively driven by an adverse pressure gradient,
which may arise due to significant regions of surface curvature such as corners on a
body’s surface (in the case of external flows) or geometry constrictions (in the case of
internal flows); an excellent description of flow separation can be found in Sychev et al.
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(1998). Amongst other potential negative impacts, flow separation can directly lead the
flow to transition from a laminar to a turbulent state, which in most cases is considered
detrimental (Hanks 1963). In aerodynamics, flow separation significantly impacts lift, and
laminar–turbulent transition contributes to an increase in the friction component of drag.
In particular, skin-friction drag is one of the largest contributors to aerodynamic drag in
commercial aircraft. The implications of such increases thus impact globally on both an
economical and environmental level. Although fuel efficiency is one of the main concerns
in the aircraft industry, requirements on environmentally friendly transports are providing
an added impetus for more fuel-efficient aircraft.

Studies of laminar–turbulent transition, with the aim to delay transition or, ideally,
avoid transition, continue to be a focus of international research efforts. On one hand,
focus is drawn to receptivity mechanisms and how they trigger internal instabilities
(Sengupta et al. 2018). Such instabilities develop in space and time, potentially leading
to laminar–turbulent transition. On the other hand, external disturbances are also of
interest as they may influence the flow through different growth mechanisms. In fact,
an approaching unstable Tollmien–Schlichting wave to a surface can have a significant
impact on transition, especially if the surface has localised imperfections (Xu et al. 2016;
Xu, Lombard & Sherwin 2017). Because of its potential to trigger early transition, the
ability to control flow separation is considered crucial in many technological applications.
One way of achieving this is through an alteration of the pressure gradient, which can be
obtained by modifying the shape of the surface over which the fluid flows. For this reason,
significant effort has gone into the design of aerodynamic and hydrodynamic surfaces that
delay flow separation and ensures the local flow remains attached for as long as possible.

As flow separation occurs on the surface of the body, it becomes natural to explore
different ways in which the surface itself could be modified to control it. One approach is
to slightly alter the shape of the surface, introducing a particular texturing, such as dimples
or spherical beads (Beratlis, Balaras & Squires 2018). Alternatively, the surface can be
made slippery (or non-wettable) using the developments in surface chemistry and laser
physics (Vorobyev & Guo 2015). These types of surfaces, known as superhydrophobic,
have been shown to be effective in reducing turbulent frictional drag in water (Wang &
Gharib 2020) and when the stability of the Cassie–Baxter state is achieved (Chang & Lu
2020).

According to the Navier slip model (Navier 1823), a slip wall is typically quantified
by a slip length λ, which is the artificial distance below the slipping surface where the
velocity goes to zero. In other words, in the modelling of fluid flow over a slippery surface,
it is assumed that the fluid immediately adjacent to the surface has non-zero tangential
velocity. This corresponds to a Knudsen number Kn = γ /L between 10−3 and 10−1, where
γ is the mean free path of the fluid molecules and L is a characteristic length scale.
For moderate levels of wall slip, experimental results have shown excellent agreement
with the linearised Navier slip model (Thompson & Troian 1997). Results by Wang
& Hadjiconstantinou (2019) and Hadjiconstantinou (2021), based upon first-principles
atomistic models, confirm the utility of the linearised Navier model. We will adopt a
linear Navier-slip approach throughout this work. In this case, the flow can be classified
as being in a, so-called, slip-flow regime where the system dynamics can be modelled
with the Navier–Stokes equations combined with slip boundary conditions. It was shown
by Matthews & Hill (2008) that as the slip length λ increases, the rate of change of the
tangential velocity decreases. This happens because the velocity on the solid surface is no
longer zero and slips with a velocity that increases with the slip length.

There have been many studies on the impact of slip on both suppression of instabilities
and a reduction in turbulent drag production; see for example Lauga & Cossu (2005) and
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Min & Kim (2004), and references contained therein. Lauga & Cossu (2005) undertook
a linear stability analysis of the flow in a channel with slip applied to both lower and
upper walls. Slip was found to increase the critical Reynolds number for linear instability,
especially when slip is applied on both walls. Min & Kim (2004) also found that the
direction of slip plays an important role in channel flow dynamics. Exploiting direct
numerical simulations (DNS) of turbulent channel flow, they demonstrated that slip
applied in the streamwise direction led to a decrease in turbulent skin friction, whereas
slip applied in the spanwise direction was found to increase turbulent drag.

In this paper, we consider the two-dimensional channel flow with a Gaussian-shaped
bump. Introducing a curvilinear obstacle between the two flat plates establishes flow
separation behind the obstacle, which increases in magnitude as the Reynolds number
increases (Smith 1976; White & Smith 2012). However, it has been shown, for the flow
past a circular cylinder, that a generic slip boundary condition has a significant effect in
controlling flow separation and decreasing its intensity (Legendre, Lauga & Magnaudet
2009). The aim of the current work is to combine these two approaches, by introducing a
moderate curvature in the geometry and applying slip along its length. Thus, the influence
of a slip boundary condition on the flow over a bump is investigated, with particular
attention to the question, can slip inhibit flow separation in such cases? In § 2, we formulate
the problem and provide the salient details of the numerical methods used in our DNS; in
§ 3, we present our results on the influence of slip on the channel flow dynamics, describing
the features that highlight its effectiveness in reducing laminar flow separation. Finally, in
§ 4, conclusions are drawn with a discussion on possible future extensions.

2. Formulation

2.1. The model
Consider a two-dimensional incompressible fluid with kinematic viscosity ν∗, flowing in
a channel of half-width h∗. The direction normal to the channel walls is denoted by y∗,
and x∗ measures the distance along the channel. (Here an asterisk denotes dimensional
quantities.) The channel has a Gaussian-shaped bump located along the lower wall. If
the channel surfaces are taken to be both impermeable and no-slip then, under suitable
conditions on the bump height and the flow Reynolds number (defined below), the flow
will separate in the lee of the bump, with a distinct region of recirculating flow (Smith
1976). Our model will consider the case when the bump is represented by a slip surface,
aimed at providing a control mechanism for flow separation, depicted schematically in
figure 1(a).

On non-dimensionalising lengths by the channel half-width h∗, velocities by the
maximum velocity U∗

m, and pressure by ρ∗U∗2
m , where ρ∗ is the fluid density, the

incompressible Navier–Stokes equations in Cartesian coordinates (x, y) can be written as

∂u
∂t

+ (u · ∇) u = −∇p + 1
Re

∇2u, (2.1a)

∇ · u = 0, (2.1b)

for the non-dimensional velocity u = (u, v) and pressure p; here the Reynolds number is
defined as

Re = U∗
mh∗

ν∗ . (2.2)

Following the non-dimensionalisation, the wall-normal y-direction is defined on the
interval y ∈ [0, 2]. The lower wall, y = 0, is split into three regions Γ1, Γ2 and Γ3, with a
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Figure 1. (a) Diagram of channel flow with slip applied to a Gaussian-shaped bump. Not drawn to scale.
(b) Plot of the slip function Λ(x), given by (2.5), for effective slip lengths λ = 0.04, 0.08, 0.012, 0.16, 0.2.

Gaussian-shaped bump imposed along the middle region Γ2, centred at x = 0. Turning to
the question of the flow boundary conditions, we apply the no-slip condition

u = v = 0, (2.3)

to the upper wall and along the regions Γ1 and Γ3 of the lower wall. In the bump region,
Γ2, a linear Robin-type slip condition is coupled with the no penetration condition as

u − Λ(x)
∂u
∂n

= 0 and v = 0, (2.4a,b)

where n denotes the direction normal to the lower wall. We set

Λ(x) = λe−x2/2, (2.5)

to model slip along the length of the bump for an effective slip length λ. This choice for
the wall slip was chosen to avoid abrupt changes in the boundary conditions near the ends
of the bump region, Γ2. Thus, slip decreases smoothly to no-slip beyond the bump. A plot
of the slip function Λ(x) is shown in figure 1(b) for an effective slip length λ increased
from 0.04 to 0.2 monotonically in intervals of �λ = 0.04.

At the channel inlet, the velocity u is assumed to be fully developed plane-Poiseuille
flow

u = (u( y), 0) =
(

2y − y2, 0
)

, (2.6)

while at the channel outlet we impose the outflow boundary condition

∇u · n = 0 and p = 0, (2.7a,b)

where n is the unit normal vector.
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Figure 2. Diagram of the mesh in the region of the Gaussian-shaped bump. Mesh distributed uniformly and
non-uniformly along the respective x- and y-directions.

2.2. Numerical method
Direct numerical simulations of the channel flow were performed using Nektar++, an
open-source spectral/hp element method that exploits the solver IncNavierStokesSolver
(Cantwell et al. 2015). The Gaussian-shaped bump was imposed in region Γ2 of the lower
wall using a coordinate transformation

x = x̄,

y = f (x̄, ȳ),

}
(2.8a)

where the function f = f (x̄, ȳ) maps the computational coordinates onto the physical
Cartesian coordinates (Serson, Meneghini & Sherwin 2016). The mapping function

f (x̄, ȳ) = ȳ + Ae−x̄2/2

2
√

2π

tanh(2 − ȳ)
tanh(2)

, (2.8b)

establishes a Gaussian-shaped bump, of amplitude A, centred about x = 0. The
ȳ-dependent hyperbolic tangent function was included in the mapping to establish an
appropriate transformation of the mesh in the (x, y)-plane, as depicted in figure 2.
Additionally, the aspect ratio η = 1/A is introduced to characterise the non-dimensional
channel half-width h = 1 with respect to the bump amplitude A.

In addition to simplifying the solution of the governing equations, the mapping
transformation (2.8) simplifies the implementation of the slip condition (2.4); applying
the Robin-type slip condition to the computational coordinates (x̄, ȳ) removes the
need for computing wall-normal gradients along a curved surface. Consequently,
the non-dimensional Navier–Stokes equations (2.1) are modified accordingly, so that
Nektar++ numerically computes the base flow in the computational domain (x̄, ȳ), with
post-processing then required to present results in the physical Cartesian coordinate
geometry (x, y). Moreover, it was necessary to transform solutions into their Cartesian
representation with velocities ui computed via the repeated index summation convention,
as

ui = ∂xi

∂ x̄ j ū j, (2.9)

where ūi denotes the transformed velocity field (Serson 2017).
The computational domain Ω was decomposed as Ωx̄ × Ωȳ = [−4, 20] × [0, 2], with

the lower wall given by the streamwise intervals Γ1 = [−4, −3], Γ2 = [−3, 3] and
Γ3 = [3, 20]. A suitable mesh was generated using Gmsh (Geuzaine & Remacle 2009),
consisting of 4611 quadrilateral elements, and nodes Nx̄ = 160 and Nȳ = 30 along the

951 A31-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

86
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.863


S. Ceccacci, S.A.W. Calabretto, C. Thomas and J.P. Denier

respective computational streamwise x̄- and wall-normal ȳ-directions. Moreover, the mesh
was uniformly and non-uniformly distributed along the x̄- and ȳ-directions, respectively.
The latter distribution was implemented to fully resolve the flow dynamics near the channel
walls and in the bump region. The grid spacing along the streamwise x̄-direction was fixed
throughout the computational domain and was given in wall units as �x̄ = 0.15. Due to
the non-uniform distribution of points along the wall-normal ȳ-direction, a maximum grid
spacing of �ȳmax = 0.25 was implemented at the channel centre, while a minimum grid
spacing of �ȳmin ≈ 0.01 was utilised near the channel walls. A depiction of the mesh, in
the physical Cartesian coordinate system (x, y), is shown in figure 2.

The corresponding wall-normal grid spacing in non-dimensional wall distance y+ units
is given by

y+ = �y∗u∗
τw

ν∗ , (2.10a)

where the dimensional friction velocity and wall shear stress are defined as

u∗
τw

=
√

τ ∗
w

ρ∗ and τ ∗
w = μ∗ ∂u∗

∂y∗

∣∣∣∣
y∗=0

, (2.10b,c)

and μ∗ is the dynamic viscosity. Using the length and velocity scales, h∗ and U∗
m, the wall

distance is recast as

y+ = �ȳ

√
Re

∂u
∂y

∣∣∣∣
y=0

, (2.11)

with ∂u/∂y as given at the channel inlet. Thus, y+ ≈ 0.4 and y+ ≈ 0.6 for the Reynolds
numbers Re = 2000 and Re = 4000, respectively. A similar expression applies for the
streamwise grid spacing x+, with x+ = 8 and x+ = 10 for the two Reynolds numbers
modelled.

In the work described here, DNS was undertaken for a Gaussian-shaped bump with
a fixed aspect ratio η = 0.5, that is, A = 2 in (2.8). The amplitude A of the bump was
chosen to be large enough to form a well-defined separation bubble on the rear side
of the bump. Setting A = 2 was found to establish a significant region of separation in
the instance that no-slip was applied to the lower surface, and best demonstrates the
control benefits brought about by the application of slip. The slip parameter λ was then
varied from 0 (corresponding to no-slip) through to 0.2 at step intervals �λ = 0.02, for
Reynolds numbers Re = 2000 and Re = 4000. (Our choices of Reynolds numbers Re
were chosen to be below the classical critical Reynolds number for channel flow, thus
serving to control the development of any potential linear disturbances introduced due
to, for example, the numerical discretisation.) For all simulations presented, eighth-order
Lagrange polynomials were used to approximate the solution, while time integration was
performed using a third-order implicit–explicit scheme with a time step �t = 10−3. A
thorough convergence study was undertaken, which included varying the polynomial order
of the Lagrange polynomials, mesh size, channel length and time step �t. Parameter
settings were carefully chosen to ensure all results were grid independent (to within
graphical accuracy).

Channel flow over the bump was then simulated, from a stationary initial condition,
until a steady state was realised. Table 1 presents the minimum value of the streamwise
u-velocity, min(u), found in the separation bubble that forms on the rear side of the
bump, in the instance the Reynolds number Re = 4000 and slip length λ = 0. Results
are presented at non-dimensional time t = 200, for four mesh configurations. Test C00
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Test Ωx̄ Nx̄ Nȳ min(u)

C00 [−4, 20] 160 30 −0.091529
C01 [−4, 20] 320 30 −0.092264
C02 [−4, 20] 160 60 −0.094327
C03 [−4, 30] 160 30 −0.092179

Table 1. Minimum value of the streamwise u-velocity, min(u), obtained for Re = 4000, λ = 0 (no-slip), at
time t = 200, and three mesh configurations. Test C00 are the settings used throughout this investigation; in
test C01 the x-resolution is doubled; in test C02 the y-resolution is doubled; in test C03 a larger streamwise
computational domain is modelled.

corresponds to those mesh settings described above, and which were used throughout the
subsequent investigation. In tests C01 and C02, the mesh resolution was doubled along
the x- and y-directions, respectively, while a larger streamwise computational domain was
modelled in test C03. Doubling the mesh resolution along the x- and y-directions and
increasing the channel length were found to bring about very small differences in min(u),
with computations identical to at least two decimal places.

3. Results

To provide a reference point from which to explore the effect of slip on flow separation,
we first present results for the no-slip channel. Figure 3 depicts the evolution of the
streamwise u-velocity in the channel as the flow develops downstream (from left to right)
over the Gaussian-shaped bump. The Reynolds number Re = 2000 and slip length λ = 0,
that is, no-slip (2.3) was applied across the full length of the lower wall. Solutions are
plotted at four successive times, t = 20, t = 40, t = 60 and t = 100, with yellow contours
(near the channel centre) matched to u = 1 and blue contours (near the channel walls)
to u � 0. In order to highlight the recirculation region(s), we present a secondary plot
that highlights the regions, in red, for which u < 0. (The yellow–blue colour scheme
used to display contour levels in figure 3, and subsequent figures was restricted to the
interval u ∈ [0, 1] to best illustrate the development of the flow from one time instant
to the next. Variations in flow behaviour would be less discernible if each solution was
plotted on their respective full u-velocity range. Secondary plots are included to help
distinguish the regions of flow separation.) It is convenient to introduce xs and xr to
denote the streamwise locations for the onset of separation and reattachment of the flow,
respectively. As the flow advances downstream, the flow separates along the rear side of
the bump near the streamwise location xs ≈ 0.6 (as a consequence of a sufficiently large
adverse pressure gradient, induced by the channel constriction). The region of separation
extends downstream, with flow reattachment moving farther along the channel as time
increases, before eventually settling near xr ≈ 8. In addition to the separation bubble
behind the bump, unsteady pockets of recirculating flow are established along the upper
and lower walls that propagate downstream. Eventually, these unsteady separation pockets
pass beyond the computational domain of interest, and the flow (including the separation
bubble on the rear side of the bump) achieves a steady state. For Re = 2000, this steady
state was realised at non-dimensional time t = 100.

The time evolution of the streamwise u-velocity is plotted in figure 4 at three fixed
Cartesian locations (x, y) = (2.5, 0.2), (x, y) = (2.5, 1) and (x, y) = (2.5, 1.8). The first
of these three points is located within the separation bubble that forms on the rear
side of the bump, with the second and third points located about the channel centre
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Figure 3. Contour plots illustrating the evolution of the streamwise u-velocity as the flow propagates
downstream over the bump for a Reynolds number Re = 2000 and slip length λ = 0, i.e. no-slip. Solutions are
plotted at times: (a) t = 20; (b) t = 40; (c) t = 60; (d) t = 100. At each time shown, the second plot highlights
the regions of separation, in red, where u < 0.

and near the upper channel wall, respectively. Figure 4(a) illustrates the location of the
three points relative to the bump and region of flow separation. The evolution of the
flow, from a transient to steady state, can readily be seen in figures 4(b) and 4(c), for
the Reynolds numbers Re = 2000 and Re = 4000, respectively. In each instance, there
is a short transient period, in which the u-velocity field changes rapidly. However, after
approximately t = 40, the streamwise u-velocity appears to have reached a steady state
and is unchanged by further increments in time. As observed in the contour plots above,
a constant negative valued u-velocity is realised at the point located within the separation
bubble (blue solid line), while positive valued u-velocities are found at larger y-locations.
Additionally, the u-velocity is marginally greater than unity at the channel centre (dashed
red line), due to the formation of the separation bubble. Similar results are presented
in figure 4(c) for the Reynolds number Re = 4000. Here we note that a steady state is
not realised until non-dimensional time t ≈ 80. Moreover, as a consequence of the flow
developing downstream, longer time simulations were necessary (in both instances) to
achieve a steady state at larger streamwise x-locations.

The above analysis was extended to include slip (2.4) along the bump region, Γ2. The
main qualitative conclusion that can be drawn from our analysis is that slip can be used
to delay the onset of separation and reduce the intensity of the separation bubble that
forms along the rear side of the bump. This observation is demonstrated in figures 5
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Figure 4. Time evolution of the u-velocity at three fixed locations, marked by solid dots as shown in
(a) (x, y) = (2.5, 0.2) (solid lines), (x, y) = (2.5, 1) (dashed) and (x, y) = (2.5, 1.8) (chain), for a slip length
λ = 0, and the Reynolds number (b) Re = 2000, (c) Re = 4000.

and 6, which display contours of the streamwise velocity for two representative Reynolds
numbers, Re = 2000 and Re = 4000. In each instance, the slip length λ is increased from
zero to 0.2 monotonically down the figure in intervals of �λ = 0.04. All contour plots
for Re = 2000 are plotted at non-dimensional time t = 100, which was again sufficient
to achieve a steady state. For the larger Reynolds number, Re = 4000, it was necessary to
extend DNS computations to larger time, with a steady state eventually realised at t = 200.
Moreover, simulation results for the two Reynolds numbers are presented for the same slip
lengths, to facilitate comparison of the effect of slip on flow separation. As in figure 3,
yellow and blue contours are matched to the respective streamwise velocities u = 1 and
u � 0, while the secondary plots highlight the regions, in red, of recirculation (that is,
where u < 0).

As the slip length λ increases, the onset of separation along the rear side of the
bump is delayed, that is, the streamwise location xs moves downstream. Additionally,
the streamwise location xr at which the flow reattaches is generally found to move
upstream. (There are a few exceptions to this, for the Reynolds number Re = 4000 and
small slip lengths λ. This particular flow characteristic will be discussed in greater detail
below.) Thus, the length of the separation bubble, behind the bump, decreases as the slip
length λ increases. Moreover, the ‘thickness’ of the separation bubble diminishes as λ
increases. This behaviour is qualitatively equivalent for both Reynolds numbers Re under
consideration, although for a fixed slip length λ, flow reattachment is always found at
larger streamwise locations for Re = 4000, as one would anticipate on the basis of the
analysis of Smith (1976) for the full no-slip case. Eventually, the streamwise locations for
the onset of separation xs and reattachment xr coalesce and the flow no longer separates.
For those parameters considered in figures 5 and 6, separation does not occur for a slip
length λ = 0.2.

Velocity profiles of the streamwise u-velocity are plotted in figure 7 for three fixed
streamwise x-positions: the bump centre (x = 0); the recirculating region (x = 4); and
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( f )

x
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y

Figure 5. Contour plots of the streamwise u-velocity for the Reynolds number Re = 2000 and slip length
(a) λ = 0, (b) λ = 0.04, (c) λ = 0.08, (d) λ = 0.12, (e) λ = 0.16 and ( f ) λ = 0.2. Secondary plots highlight
the regions of separation, in red, where u < 0.

far downstream of the separation bubble (x = 19). Results are plotted for slip lengths
λ = 0 (solid line), λ = 0.08 (dashed) and λ = 0.16 (chain), with plots on the upper row
matched to the Reynolds number Re = 2000 and those on the lower row to Re = 4000. In
addition, each solution has been scaled to have a maximum value of unity; the emergence
of flow separation and the application of slip to the lower channel surface brings about
a small increase in the u-velocity maximum. In figures 7(a) and 7(d) (that correspond
to x = 0), the application of no-slip along the bump region can be seen to establish a
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(no-slip)

u
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1

x
–4 0 4 8 12 16

0
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y

(e)

(b)

(a)

(c)

(d )

( f )

Figure 6. Same as figure 5, but for the Reynolds number Re = 4000 and non-dimensional time t = 200.
(a) λ = 0, (b) λ = 0.04, (c) λ = 0.08, (d) λ = 0.12, (e) λ = 0.16 and (f ) λ = 0.2.

sharp change in the u-velocity field near the lower channel wall (solid lines), while slip
induces a non-zero velocity at the bump tip (dashed and chain lines). Moreover, the
bump has shifted the maximum u-velocity downwards towards the lower channel wall.
At the streamwise position x = 4, plotted in figures 7(b) and 7(e), the u-velocity at the
lower wall is zero in each instance; this particular location is found in region Γ3 that
is downstream of the slip region Γ2. From figures 7(b) and 7(e) the thickness of the
separation bubble that forms on the rear side of the bump can be estimated. For the
case without slip, the u-velocity is negative for y � 0.2 and y � 0.3, for the respective
Reynolds numbers Re = 2000 and Re = 4000. Hence, the region of separation thickens as
the Reynolds number increases. Furthermore, the application of slip to the bump region
reduces the thickness of the separation bubble. At the downstream location, x = 19, the
flow recovers behaviour consistent with the typical parabolic profile of fully developed
plane-Poiseuille flow, as can be seen in figures 7(c) and 7( f ). We note that there remains
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Figure 7. Streamwise u-velocity profiles (normalised on the local maximum) are plotted for slip lengths
λ = 0 (solid lines), λ = 0.08 (dashed) and λ = 0.16 (chain), for the Reynolds number (a–c) Re = 2000 and
(d–f ) Re = 4000, at the streamwise locations x = 0, x = 4 and x = 19, respectively. Results are plotted at
non-dimensional time t = 100 and t = 200 for Re = 2000 and Re = 4000, respectively.

a small downwards shift in the maximum velocity, especially in the case of no-slip. This
is a direct consequence of the flow requiring a greater streamwise domain to adjust to
the pocket of separated flow. Eventually, for large enough x, the flow will evolve to fully
developed plane-Poiseuille flow.

The effects of the slip length λ and Reynolds number Re on the size of the separation
bubble that forms along the rear side of the bump, are further illustrated in figure 8.
Streamlines of the steady flow are plotted for slip lengths λ = 0 (no-slip), λ = 0.06,
λ = 0.12 and λ = 0.18. Within each subplot, solutions are displayed for both Reynolds
numbers, Re = 2000 and Re = 4000. As noted above, the recirculation region is longer
and thicker for the larger Reynolds number. Additionally, the significant influence of slip is
evident in both cases, establishing both a delay in the onset of separation and a shortening
of the bubble’s length. However, for Re = 4000, a larger slip length λ is always necessary
to reduce the streamwise length of the recirculation region; separation is suppressed by
setting λ = 0.18 in the instance Re = 2000, while a small region of recirculation is found
in the streamwise interval 2 < x < 4 for Re = 4000. However, as shown in figure 6( f ),
this disappears for λ = 0.2.

The non-dimensional shear stress at the wall

τw = ∂u
∂y

∣∣∣∣
y=0

, (3.1)

is plotted in figure 9 for slip lengths λ = 0 (solid lines), λ = 0.1 (dashed) and λ = 0.2
(chain). Results in figure 9(a) are for a Reynolds number Re = 2000, while those in
figure 9(b) correspond to Re = 4000. For both Reynolds numbers under consideration,
the wall shear stress τw increases along the front side of the bump, before decreasing
sharply along the rear side. This behaviour is more pronounced for the larger Reynolds
number. When the slip length λ = 0 (the classical no-slip case), a negative valued τw is
realised that extends a significant streamwise length downstream until flow reattachment
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(a) (no-slip)
Re = 2000

Re = 4000

(b)

(c)

(d)

x
–4 0 5 10
0

1
y

Figure 8. Streamlines of the steady flow in the region of the bump, obtained at non-dimensional time t = 100
and t = 200 for the respective Reynolds numbers Re = 2000 and Re = 4000. The slip length (a) λ = 0, (b) λ =
0.06, (c) λ = 0.12 and (d) λ = 0.18.
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Figure 9. Wall shear stress, τw, for the Reynolds numbers (a) Re = 2000 at t = 100, (b) Re = 4000 at t = 200.
The slip length λ = 0 (solid lines), λ = 0.1 (dashed) and λ = 0.2 (chain). The insert plots depict the area of
the separated region Aτw , as given by (3.2), as a function of the slip length λ.

occurs (which is consistent with that presented above in figures 5–8). Downstream of the
reattachment location, the wall shear stress τw approaches a value of 2, which is consistent
with that expected of the fully undisturbed plane-Poiseuille flow in this region (2.6). The
application of slip to the bump surface significantly reduces both the increase and decrease
in the wall shear stress τw along the respective front and rear sides of the bump. Indeed,
when the slip length λ = 0.2, τw > 0 for all streamwise x-positions.
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Figure 10. Plots of the absolute value of the minimum of the streamwise u-velocity, ‖ min(u)‖, found within
the separation bubble on the rear side of the bump, as a function of the slip length λ. (a) Re = 2000 and
(b) Re = 4000.

The insert plots in figure 9(a) and 9 (b) illustrate how the area of the separated region

Aτw =
∣∣∣∣
∫ xr

xs

τw(x) dx
∣∣∣∣ , (3.2)

varies in relation to the slip length λ, for the Reynolds numbers Re = 2000 and Re =
4000. For the no-slip case (λ = 0), the area of the separated region Aτw ≈ 7 when Re =
2000, whereas for Re = 4000 the area Aτw ≈ 13. The area of the separated region Aτw is
approximately halved when the slip length λ = 0.08, while Aτw is equal to zero in both
cases (i.e. no separated flow), for λ = 0.2.

The intensity of the recirculation region, on the rear side of the bump, can be quantified
by computing the absolute value of the minimum of the streamwise u-velocity, ‖ min(u)‖.
In figure 10, ‖ min(u)‖ is plotted as a function of the slip length λ, for both Reynolds
numbers Re = 2000 and Re = 4000. In addition, results are shown at several points in
time, providing a further demonstration of the flow evolution, and confirmation that a
steady state is achieved for sufficiently large time. Convergence to a steady state is realised
by non-dimensional time t = 60 for Re = 2000 and t = 160 for Re = 4000, respectively.
Additionally, for suitably large time, ‖ min(u)‖ is found to decrease linearly with the slip
length λ, with no separation bubble forming behind the bump for λ � 0.18 and λ � 0.2 for
the respective Reynolds numbers Re = 2000 and Re = 4000. Furthermore, the intensity
of the separation bubble is greater for the larger Reynolds number, especially during the
initial stages of the numerical simulation.

In figure 11(a) we present plots of the position of the onset of separation, which can
readily be seen to shift along the right-hand side of the bump as slip increases. The onset
occurs earlier in space for λ = 0 and 0.04 when Re = 4000, almost at the same position
for both Reynolds numbers for λ = 0.08 and 0.12, and slightly earlier for λ = 0.16 at
Re = 4000.

To quantify the length of the separation bubble, we define Lx as the length of the
separation bubble measured along the x-axis, such that Lx = xr − xs. In figure 11(b), the
variation of Lx with the slip length λ is shown. The length of the separation bubble is larger
for the higher Reynolds number and, in both cases, Lx decreases to zero as slip increases,
with critical values of λ = 0.18 for Re = 2000 and λ = 0.2 for Re = 4000. Interestingly,
we also note from figure 11 that for the higher Reynolds number case, slip does not have
a monotonic effect upon the length of the separation bubble, only showing clear signs of
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Figure 11. Plots of (a) the position xs for the onset of separation and (b) the absolute value of the bubble
length Lx versus the slip length λ. Results are shown at t = 100 for Re = 2000 and t = 200 for Re = 4000.

a decrease when λ is above 0.06. We conjecture that this particular feature may be due to
the fact that, for a higher Reynolds number where the intensity of separation is enhanced,
a moderate slip length (that is, λ < 0.06) is not sufficient to counteract the reversed flow.
Thus, only for λ > 0.06 does the beneficial effect of slip become evident.

3.1. Skin-friction and pressure drag coefficients
Skin-friction and pressure at the wall are defined locally by the non-dimensional
coefficients

cf (x) = 2τ ∗
w(x)

ρ∗U∗2
m

and cp(x) = 2p∗(x)
ρ∗U∗2

m
, (3.3a,b)

(Banchetti, Luchini & Quadrio 2020). Using the length h∗, velocity U∗
m and pressure

ρ∗U2∗
m scales, the skin-friction and pressure coefficients are recast as

cf (x) = 2
Re

τw(x) and cp(x) = 2p(x), (3.4a,b)

where τw(x) denotes the non-dimensional shear stress at the wall given by (3.1).
Effectively, the skin-friction coefficient cf (x) is the wall-shear stress τw(x) plotted in
figure 9, scaled by the factor 2/Re.

In order to demonstrate the effect of slip on the pressure field over the bump, the pressure
distribution p is plotted in figure 12, for the Reynolds number Re = 2000 and slip lengths
λ = 0, λ = 0.08 and λ = 0.16. Pressure decreases as the flow passes from left to right over
the bump, with a local minimum found shortly after the bump tip due to the negative wall
curvature. For those slip cases shown, the local maximum found on the leeward side of the
bump decreases, while the local minimum located about the bump tip shows clear signs of
a reduced intensity; lighter blue contours.

The skin-friction and pressure contributions to the total drag are defined by Mollicone
et al. (2017) as

Cf = 1
Lx

∫
Ωx̄

cf (x) dx and Cp = − 1
Lx

∫
Ωx̄

cp(x)i · n dx, (3.5a,b)

where Lx denotes the streamwise length of the computational domain Ωx̄, i represents the
unit vector in the streamwise x-direction and n again denotes the unit normal vector that
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Figure 12. Contour plots of the pressure p in the (x, y)-plane, for the Reynolds number Re = 2000, and slip
lengths (a) λ = 0, (b) λ = 0.08 and (c) λ = 0.16. Thick dashed black lines indicate p = 0.

points into the fluid domain. In (3.5b), the scalar product i · n /= 0 along the bump surface
and zero elsewhere. Thus, the contribution of the pressure drag Cp to the total drag comes
only from the pressure acting on the bump wall.

The respective percentage reductions in the skin-friction drag Cf and pressure drag Cp
are computed using the formulae

RCf (%) = 100
(

1 − Cf ,λ

Cf ,0

)
and RCp(%) = 100

(
1 − Cp,λ

Cp,0

)
, (3.6a,b)

where Cf ,λ and Cp,λ represent the respective skin-friction and pressure components of drag
in the instance slip (with slip length λ) is applied to the bump surface. Skin-friction and
pressure drag components, Cf ,0 and Cp,0, then denote the reference case in which no-slip
(that is, λ = 0) is applied along the channel walls.

Total drag is defined as the sum of the skin-friction drag and pressure drag:

Dλ = Cf ,λ + Cp,λ. (3.7)

Therefore, the total percentage drag reduction is obtained via the formula

RD(%) = 100
(

1 − Dλ
D0

)
, (3.8)

where D0 = Cf ,0 + Cp,0.
The total percentage drag reduction is plotted in figure 13 as a function of the slip

length λ (yellow squares), together with the corresponding percentage reductions in the
skin-friction drag (blue circles) and pressure drag (red diamonds), for the Reynolds
numbers Re = 2000 and Re = 4000. A peak percentage reduction in the skin-friction drag
is achieved in both instances for a slip length λ ≈ 0.08, while the percentage reduction
in the pressure drag increases almost linearly with λ. Overall, the total percentage drag
reduction increases with an increasing slip length λ, with 27 % and 35 % total drag
reductions achieved in the instance the slip length λ = 0.2, for Re = 2000 and Re = 4000,
respectively.

3.2. Effect of slip applied across the entire lower wall
The question of why we have chosen to apply slip along a specific streamwise region rather
than across the full length of the lower surface is an obvious one. From the perspective of
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Figure 13. Skin-friction (blue circles), pressure (red diamonds) and total (yellow squares) percentage drag
reduction as a function of the slip length λ, for the Reynolds numbers (a) Re = 2000 and (b) Re = 4000.

industrial applications, such as surface coatings, the implications of covering an entire
surface versus a targeted area can have a substantial impact on economic costs. Therefore,
if it is possible to achieve the same laminar flow control benefits at a reduced expense, it
is generally advisable to do so. In the following, we compare the benefits of applying slip
across the entire lower wall, Γ , with that realised when slip is limited to the bump region,
Γ2.

Slip is applied across the full length of the lower wall, Γ , by recasting the coupled linear
Robin-type slip boundary condition and no-penetration condition (2.4) as

u − λ∂u
∂n

= 0 and v = 0, (3.9a,b)

where the slip length λ is constant and n again denotes the direction normal to the lower
wall. As before, all results are independent of the mesh used.

A quantitative analysis of the two approaches to slip application is reported in table 2.
Here the minimum value of the streamwise u-velocity within the separation bubble,
min(u), is tabulated, for Reynolds numbers Re = 2000 and 4000, at the respective times
t = 100 and t = 200, that is, those points in time that a steady state has been realised.
(Subscripts Γ and Γ2 represent the application of slip to the full lower surface and to the
bump region.) Moreover, calculations are presented for four slip lengths λ ∈ [0.05, 0.2].
In general, min(u) is reduced when slip is applied across the entire lower wall, that is,
the intensity of the separation bubble decreases. Additionally, flow separation is inhibited
(that is, min(u) = 0) at smaller values of the slip length λ when slip is applied across the
full length of the lower surface; λ = 0.15 is sufficient to stop the flow separating for both
Reynolds numbers under consideration, while marginally larger slip lengths are necessary
to suppress flow separation when slip is limited to the bump region.

In conclusion, applying slip across the full length of the lower wall inhibits the
emergence of flow separation at smaller slip lengths λ, but the qualitative effect of slip
on the flow separation dynamics is equivalent for both methods.

4. Concluding remarks

In this work, DNS have been performed to study the influence of a Robin-type slip
boundary condition on the dynamics of the two-dimensional wake occurring behind a
Gaussian-shaped bump in a channel. Specifically, it has been shown that surface slip:
(i) decreases the intensity of the separation, (ii) delays, and ultimately inhibits, the onset of
recirculation and in doing so (iii) reduces the dimensions of the separation bubble. There
are a number of ways in which this work could be extended. One could vary the aspect
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Re λ min(u)Γ2 min(u)Γ

2000 0.05 −0.046031 −0.048523
2000 0.1 −0.020588 −0.011663
2000 0.15 −0.003980 0
2000 0.2 0 0
4000 0.05 −0.061278 −0.070396
4000 0.1 −0.026210 −0.014825
4000 0.15 −0.006091 0
4000 0.2 0 0

Table 2. Minimum value of the streamwise u-velocity, min(u), obtained for Reynolds numbers Re = 2000 and
4000, at times t = 100 and 200, respectively. Subscripts Γ and Γ2 represent the application of slip to the entire
lower surface and to the bump region.

ratio η and conduct a systematic study to investigate the effect of the bump’s height in
relation to different Reynolds numbers and slip lengths. (A brief summary of the effect of
slip on other bump configurations is presented in the Appendix.) Alternatively, one could
vary the length of the slip region Γ2 along the lower wall and study the dynamics of the
flow as a function of the dimensions of the slip region. Another direction would be to
modify the type of application of slip on the bump. Slip is now applied in a Gaussian
fashion to allow a smooth transition between the slip and no-slip region. This approach
could be modified to determine a, possibly more efficient, way of introducing slip on a
curved surface. Furthermore, one could extend the problem in three-dimensions, either in
full three-dimensional (3-D) or quasi-3-D using a Fourier expansion in the span direction
(Karniadakis 1990), and investigate the effect of slip applied both in the streamwise and
spanwise directions on a fully 3-D bump.
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Appendix. Effect of slip on different bump configurations

The above analysis was performed on the two-dimensional flow that develops in a channel
over a bump of fixed aspect ratio η = 0.5 (that is, an amplitude A = 1/η = 2), for
the Reynolds numbers Re = 2000 and Re = 4000. This bump configuration and flow
conditions were chosen as they were sufficient to establish a well-defined separation
bubble on the rear side of the bump in the instance no-slip was applied to the channel
walls. Hence, these particular parameter values were suitable for demonstrating the control
benefits brought about by the application of slip to the bump surface. However, further
bump configurations were modelled that illustrate comparable control of flow separation
due to the application of slip. Table 3 presents the minimum value of the streamwise
u-velocity, min(u), obtained for several bump-flow configurations characterised by the
aspect ratio η, Reynolds number Re and slip length λ. The slip lengths labelled λ�
correspond to those parameters discussed at length in this paper, and were included here
for reference.
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Re = 2000 Re = 4000 Re = 5000

λ η min(u) λ η min(u) λ η min(u)

0� 0.5 −0.0670 0� 0.5 −0.0915 0 2 0
0.02� 0.5 −0.0599 0.02� 0.5 −0.0898 0 1 −0.0160
0.04� 0.5 −0.0512 0.04� 0.5 −0.0696 0.1 1 0
0.06� 0.5 −0.0409 0.06� 0.5 −0.0530 0 0.5 −0.1310
0.2� 0.5 0 0.08� 0.5 −0.0383 0.02 0.5 −0.1076
0.2 0.48 0 0.1� 0.5 −0.0303 0.04 0.5 −0.1007
0.2 0.47 0 0.2� 0.5 0 0.06 0.5 −0.0695

Table 3. Minimum value of the streamwise u-velocity, min(u), obtained for different bump-slip configurations
characterised by the slip length λ, aspect ratio η and Reynolds number Re. Here � indicates those results
presented in the main body of this paper.

Results presented in the first two columns of table 3 correspond to those Reynolds
number modelled throughout this study (that is, Re = 2000 and Re = 4000). Two
additional results are included in the first column that are matched to larger bumps, with
the aspect ratio η = 0.48 and η = 0.47, respectively. In both instances, flow separation is
inhibited by the application of slip with the slip length λ = 0.2 (i.e. the same as that found
for η = 0.5).

The right-hand column of table 3 presents results corresponding to the Reynolds number
Re = 5000. (Note that y+ ≈ 0.7 for Re = 5000.) When no-slip is applied to the same
bump geometry modelled throughout this paper (i.e. η = 0.5), the minimum value of the
streamwise u-velocity, min(u), is greater for Re = 5000 compared with those calculations
obtained for the two smaller valued Reynolds numbers. Nevertheless, slip is again found
to bring about favourable control benefits, with slip attenuating the intensity of the
recirculation region and min(u) decreasing as the slip length λ increases. For smaller bump
configurations, the flow does not separate under any circumstances (including no-slip)
when the aspect ratio η = 2, whereas for η = 1 flow separation is inhibited for a small slip
length λ = 0.1.
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