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Introduction: 
X-ray diffraction (XRD) is an essential tool for phase identification and the characterization of crystal 
structure, impurity, strain, and texture. Conventional XRD yields only averaged results, and recent 
developments in micro- and nano-X-ray diffraction (µXRD) with highly focused X-ray beams has 
enabled diffraction mapping characterization [1]. However, the bottleneck in the workflow of µXRD 
experiments is the analysis of large XRD pattern dataset, most of the experiments using !XRD are 
limited to point analyses, while the instruments are capable of diffraction mapping characterization that 
outputs tens of thousands of XRD patterns. A typical structural characterization using XRD needs to 
extract structural descriptors from the obtained patterns; the standard structural descriptors are crystal 
symmetry, space group, and lattice parameters. We attempted to predict the crystal structure from XRD 
patterns using machine learning (Fig. 1). This machine learning-based automated crystal structure 
prediction will contribute to the realization of on-the-fly data analysis in materials science. 
 
Experimental: 
A dataset with 188,607 XRD patterns was prepared by simulating the patterns of all materials in the 
Inorganic Crystal Structure Database (ICSD) [2] using Pymatgen middleware [3]. The XRD calculation 
was performed using Cu K" radiation (wavelength = 1.5418 Å) with the 2# range set to 0°–90°. We 
used the 2# positions of the ten peaks in ascending order of 2#, and the number of diffraction peaks as 
the descriptor for the patterns. We used random forests [4] to classify the XRD patterns into crystal 
systems and space groups. The prediction accuracy was estimated using 10-fold cross-validation. 
 
Results and Discussion: 
The prediction accuracy of the classification of the XRD patterns into space groups (230 classes) was 
83.62%, which exceeded that achieved in a recent study using deep learning (81.14%) [5], although we 
used only ten 2# positions and the number of peaks as descriptors. The computational time for 
constructing the classification model using random forests was several minutes, and the classification of 
one XRD pattern took less than 1 ms. Further, we classified the XRD patterns based on crystal systems 
(seven classes) using random forests and achieved a prediction accuracy of 93.07% (Fig. 2). 
 
In this study, we demonstrated that the crystal structures could be estimated from the peak positions of 
the XRD patterns using machine learning. It was shown that the performance of ensemble learning such 
as random forests was comparable to that of deep learning, with the former having a lower 
computational cost and higher speed. We also successfully predicted the lattice constants using random 
forest regression, which will be discussed in detail in the near future. Using the proposed method, a 
machine learning model could be constructed according to a specific experimental setup (i.e., depending 
on the 2# range or X-ray wavelength). Thus, we streamlined the materials discovery workflow, and the 
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accelerated characterization of materials will be realized by combining high-throughput experiments 
through optimal measurements [6] and on-the-fly data analysis (as shown in this research) and 
knowledge acquisition from the data [7]. 
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Figure. 1.  Schematic figure of machine learning methodology for crystal structure prediction of X-
ray diffraction patterns. This methodology enables us the on-the-fly analysis of the obtained data, 
and spatially map a distribution of crystal structure combined with XRD. 

 
Figure. 2.  The accuracy of predicting crystal systems. The accuracy was evaluated with 10-fold 
cross-validation of the whole data. This performance is sufficient for the on-the-fly data analysis in 
high-throughput measurement such as XRD. It should be noted that 99.6 % classification accuracy 
in a cubic system was achieved. 
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