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ABSTRACT. T he fa ilure to detec t experimentally a glide direction in the ice crystal is satisfac torily explained 
by assuming that the crystal glides simultaneously in three symmetry-equivalent directions with a r esponse 
to the shear stress component in each d irection that is the same as that observed for the crystal as a whole 
or for polycrystalline aggregates-the typical non-linear, power- type flow law. A hexagonal crystal resp onding 
to stress by th is type of " non-linear crys ta l viscosity" behaves very di ffe ren tly from a tetragonal one. For 
a tetragonal crystal, the glide directions are well defmed in the response of the crystal if the power-flow-law 
exponent 11 exceeds n ,...., I ' 5, whereas for a hexagona l crys ta l a well-defined glide direction can be observed 
only if n > c. 5 . The response of a hexagonal crystal is entirely independen t of a-axis orienta tion if 11 = 3 
exactly. For 3 < n < c. 5 the true glide direction should b e weakly apparent, whereas for 1 < n < 3 the 
crystal should show a response weakly suggestive of preferred glide in a direction perpendicular to the true 
glide direction . In the observed range of n values for ice, 2 < n < 4, the expected response to simul taneous 
glide differs so slightly from the hitherto-postulated a-axis-independent, "non-crystallographic" glid e as to 
be practically undetectable experimentally. This circumsta nce makes it poss ible to identify ( 1120) as the 
glide direction, from structural considera tions alone, and to accommoda te the p lastic properties of the 
ice crystal into the m odern concepts of crystal plastici ty. It may be expected tha t hexagona l close packed 
and face-centred cubic metals a t high temperatures, in steady sta te creep , wi ll show translation gliding 
without well-defined glide directions. 

RESUME. Le fa it que I'on ne peut determiner experim en ta lement une direc tion de glissemen t d e la glace 
peut s'expliquer en supposant que le cr istal glisse simultanement dans trois d irections symetriquement 
equivalentes avec une reponse a la composante de la con tra inte de cisai llement dans chaque direction qui 
est la meme que ce q ue I'on observe pour I'ensemble d 'un crista l ou pour un aggrega t polycrista ll in- Ia loi 
d' ecoulement typique nonlineaire. Un cristal hexagonal se deformant sous contrain te par ce type de 
" viscosite cristallographique non linea ire" se comporte bien differemment qu'un cristal tetragonal. P our un 
cristal tetragonal, les directions de glissement sont bien d efinies pendan t sa deformation si I'exposan t n 
de la puissance d e la loi d 'ecou lem ent depasse n ,...., 1,5, a lors que pour un c ristal hexagonal une d irection 
de glissement bien definie ne peut s'observe que si n > c. 5. La defo rma tion d'un crista l hexagonal est 
en tii:rement indep endante de l'orientation de l'axe a si n = 3 exactemen t. Pour 3 < n < c. 5, la veritable 
direction de glissem ent n 'apparait q ue fa iblement, a lors q ue pour 1 < n < 3 le cristal mon trerait une 
deformation peu suggestive de glissement preferentiel da ns une d irection perpendicula ire a la vra ie direction 
de glissement. Pour la glace, dans l' intervaLle observe de 2 < n < 4, la deformation attendue de g lissement 
simultane differe si peu du glissement " non cristallographique", jusqu' ici suppose independant d e l'axe a, 
qu'elle n 'est p ractiquement pas decelable par l'experience. Ce fa it permet d'identifier ( 1120) comme une 
d irection de glissement, uniquement a partir de considera tions structura les, et d' adapter les proprietes 
p lastiques du crista l de glace aux conceptions modernes de la p lasticite crista llographique. O n peut s'a ttendre 
a ce que des m eta ux hexagonaux serres et des meta ux cubiq ues a faces cen trees montreront a de hautes 
temperatures et sous fluage stationnaire un glissement de tra nsla tion sans directions de glissement b ien definies. 

ZUSAMMENFASSUNG. Das Fehlen einer experimentell feststellba ren Gleitrichtung im Eiskrista ll wird b efried i­
gend erklar t durch die Annahme, dass der Kr istall simulta n in drei sym metrisch gleichwertigen R ichtungen 
gleitet, wobei die Gleitgeschwindigkeit in jeder dieser Richtungen unter der zugehorigen Scherspannungs­
komponcnte dem gleichen Fliessgesetz folgt, wie es auch fur den K ristall gesam thaft od er fur polykristall ines 
E is gilt- namlich dem typischen Potenzgesetz. Ein hexagonaler Kristall verha lt sich bei dieser Art "nicht­
!inearer Krista llviskosita t" ganz anders a ls ein tetragonaler. Beim tetragonal en Kristall sind bei der V er­
formung des Krista lls die Gleitrichtungen ausgepragt, wenn del' Exponen t 11 im F liessgese tz den "Ver t n""" 1,5 
uberschreitet ; beim hexagona len K r ista ll hingegen werden die Gleitrichtungen erst ausgep ragt, wenn n 
> c. 5. Das Gleiten e ines hexagona len Krista lles geht vollig una bhangig von cler Orientierung der a-Achsen 
vor sich, wenn genau n = 3. Im Bereich 3 < n < c. 5 soll te die wahre Gleitrich tung schwach zum Vorschein 
kommen ; innerha lb 1 < 11 < 3 soll te hingegen das V erha lten des K rista lls eine schwach b evorzugte 
Gleitbewegung a ndeuten, die senkrecht zu r wahren G leitri chtung steht. Innerhalb des beim Eiskristall 
beobachteten Bere iches 2 < n < 4 weicht der Vorgang des simultanen Gleitens so wenig von dem a b, was 
bisher als a-Achsen unabhangiges, " nicht-kristallographisches" G leiten a ngenommen wurde, dass die zwei 
Bewegungsformen kaum experimentell zu un terscheiden sind. Dieser Umstand gesta ttet es, a us r ein struk­
turellen Rucksichten ( 1120) als Gleitri ch tung zu erkla ren , u nd dadLlfeh d ie Plastizitatseigenseha ften des 
E iskristalles in E inkla ng mi t modernen Ansichten uber die Krista llplastizita t zu bringen. Es ist zu erwarten, 
dass bei hohen T empera turen hexagona le Metalle und a uch andere Krista lle u nter stetigem K riechen 
Gleitung ohne a usgepragte Gleitrich tung aufweisen werden . 

I NTRODUCTION 

The plastic prop erties of the ice crystal are now ra ther well understood . 1 Glen and P erutz 2 

and Steinemann 3 have shown that ice deforms plas tically only by translation gliding on the 
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basal plane (0001), confirming the original observations of McConnel 4 and Mugge. 5 The 
geometry of the deformation produced by this type of gliding has been studied in detail in 
bending experiments by Nakaya.6 The creep behavior and flow law of ice, both single crystals 
and in polycrystalline aggregates, has been extensively studied experimentally (Glen,7· 8 
Griggs and Coles,9 Steinemann,3, 10 Butkovich and Landauer "), and the creep law for ice in 
glacier flow has been the subject of numerous studies (reviewed by Meier 12). The influence 
of superimposed hydrostatic pressure on the flow of ice single Cfystals has been investigated 
by Rigsby.I3 Although Steinemann (Ref. 10, p . 31-32), in contrast to Butkovich and 
Landauer, II was unable to verify the applicability to different states of stress of the formulation 
of the flow law for polycrystalline ice given by Nye,I4 it is possible that a more general treat­
ment (Glen 15) may prove successful. The causes of certain disagreements among the results 
of the various investigators are not yet clear, and the relation between the plastic properties 
of the ice single crystal and that of polycrystalline aggregates is not yet understood in detail, 
but nevertheless the salient features of ice plasticity seem to be known and can be explained 
roughly in terms of dislocation models of the creep process (Weertman 16, 17, 18). 

The only outstanding exception to the similarity of ice plasticity and that of metals and 
other crystals 19,20 is in the matter of the glide direction, and this exception represents the only 
feature of ice plasticity (except perhaps also for the strain softening shown by ice I) that 
cannot up to now be accommodated within the modern concepts of crystal plasticity.20 
Unlike other plastic crystals, ice seems to show no preferential glide direction. The translation 
gliding on (000 I) apparently takes place simply in the direction of the shear-stress vector 
acting across (000 I ), without regard to the orientation of the a-axes in this plane. This fact 
was first noted by Mugge.5 Glen and Perutz 2 attempted to determine the glide direction 
directly by the standard method of tensile tests on single crystals. Steinemann 3 retried Mugge's 
method,5 in which the gliding rate is measured as a function of a-axis orientation in a single 
crystal sheared parallel to (0001) under fixed load in a Bausch shear apparatus. In none of 
these experiments was there any definite indication of a preferred glide direction, within the 
experimental uncertainties. 

It was pointed out by Glen and Perutz 2 that if the ice single crystal were to glide simul­
taneously in symmetry-equivalent directions in the (000 I) plane, and if the gliding in each 
direction were to take place at a rate proportional to the component of the stress vector in 
that direction, the resultant effect would be a motion in the direction of the shear stress 
vector acting across (000 1), as observed. But this linear response for the individu al glide 
directions would correspond to a linear flow law for the crystal as a whole, whereas a distinctly 
non-linear stress-rate-of-strain relation is observed. With a non-linear flow law for the indivi­
dual glide directions, one would expect the resultant motion to tend strongly in the direction 
of that glide direction which is most nearly aligned with the shear stress vector, and the more 
strongly so the larger the value of the exponent 12 in the characteristic power flow law.7- 12 

This is what is observed in metal and ionic crystals, which show typical non-linear plastic 
behavior and have well-defined glide directions. 

Consequently Glen and Perutz rejected the mechanism of simultaneous glide in symmetry­
equivalent glide directions, and concluded reluctantly that " ice near the melting point does 
not slip along definite crystallographic directions, possibly because many bonds a re broken." 

This conclusion seems, however, to be in contradiction with the high degree of lattice 
perfection and the absence of stacking faults parallel to the basal plane in ice single crystals, 
as shown by X-rays (Owston and Lonsdale 21), and with the strong control exerted by the 
a-axes on other properties of the crystal, such as growth 2 and Tyndall-figure formation ) 
Moreover, it cannot be reconciled with modern concepts of crystal plasticity,20 according to 
which crystal deformation is made possible by the motion of dislocations having specific 
Burgers vectors and having therefore necessarily well-defined glide directions, even in cases 
where the glide plane is not well defined (Ref. 20, p. 4; Ref. 2g, p. g). 
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In the present paper it is shown that, although simultaneous translation gliding with non­linear creep law leads in tetragonal crystals to the effects envisaged by Glen and Perutz, in hexagonal crystals quite different effects occur, which explain in a satisfactory way the apparent absence of a glide direction in the ice crystal. 

TETRAGONAL CRYSTALS 
To fix our ideas on the effects of simultaneous glide, and to show the difference in behavior of crystals of different symmetry, we consider first the case of a tetragonal crystal with glide plane (001) and with two perpendicular, symmetry-equivalent glide directions that we may take to be [100] and [010]. The situation during simultaneous glides is shown in Figure I. The shear stress vector T acts at an angle B to the a-axis. If the gliding motion Vi parallel to each of the glide directions (designated by i) takes place according to the characteristic power-law relation 

( I ) 

T 

v 
.-__________ ~~--J--L~_ a , 

Fig. I . Diagram illustrating simultaneous glide parallel to the basal plane (001 ) in a tetragonal crystal. Direction of the shear stress vector acting across (001 ) is shown by r, and the direction of the resultant gliding motion by v. The glide directions are a, and a2 

where T i is the component of the stress vector parallel to glide direction i, then the resultant gliding motion v (Fig. I) evidently takes place in the direction defined by an angle r/> given 
v' by ...: = tan r/> = tan" B. (2) V, 

The result of equation (2) is shown in Figure 2, where the azimuth ch of the gliding direction v is plotted as a function of the azimuth B of the applied stress T , for values n of I through 4. For n = I evidently r/> = B, so that no glide direction is apparent, but for n > I the motion strongly concentrates in the glide direction most nearly aligned with the applied stress. The deviation between directions of applied stress and response should be easily detectable experimentally even for n = 2, as should doubtless also he the variation in magnitude I v I of the gliding velocity as a function of stress orientation . 
HEXAGONAL CRYSTALS 

For crystals of hexagonal symmetry gliding on (000 1), Figure 3 applies, the glide directions being arbitrarily designated a" a2, and a3' In the case of dihexagonal symmetry six separate glide directions instead of only three are possible; this case could be treated by superimposing two diagrams like Figure 3, rotated by a specific amount with respect to one another. The dihexagonal case reduces to Figure 3 alone when the glide direction is either a primary or secondary a-axis, as is most likely in ice. 
For the purpose of calculating the resultant motion v from simultaneous glide on a" a2, 
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10 20 30 40 

e 
Fig. 2. Response of a tetragonal crystal to simultaneous glide. T he azimuth r/> qf the gliding motion is plotted (in degrees ) as a 

function of the azimuth 0 qf the applied shear stress for four values of the power-law exponent n. I t is seen that for n > 1 

the motion tends strongly in the glide direction, which lies at azimuth 0 ° 

y 

a3 
Fig. 3 . Diagram illustrating simultaneous glide parallel to the basal plane (0001 ) in a hexagonal crystal. The glide directions 

are a" az and a3' while the "secondary axes" aI' , az' and a3' are perpendicular to the directions a" az and a3 respectively. 
T is the directioll of the shear stress vector acting across ( 0001 ) and v is the direction of the resultant gliding motion. The 
x andy cartesian axes are parallel respectively to aI and a, ' . 

and a3 we introduce cartesian coordinates x,y as shown in Figure 3. Application of the gliding 
law ( I ), and resolution of the resultant velocities along the x and y axes gives 

k~n = cosnB+; Jcos
n

( ~-B) I Sgn{cos( ~-B) }+; Jcos
n

( ~+B) J sgn{cos (~+B)} , ( ) 
;~n = ~3 [ [ cosn( ~-B) [ sgn{cos (~-B)} -Jcos

n
( ~+ B) [ sgn{cos (~+B)}], 3 
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where "Sgn x" means "sign of x." If we restrict (J to the range -~ :s;; (J ~ ~, i.e. restrict T to 

lie between the a.' and a/ axes in Figure 3, then the "Sgn" functions and absolute value 
signs in equations (3) can be omitted. 

For the case n =, I, equations (3) reduce simply to 
Vx = -~ kT cos (J, Vy = ~- kT sin 8, (4) 

so that 8 = cp, and Ivl is constant independent of 8. Thus for linear "crystal viscosity" the 
hexagonal crystal is indistinguishable from the tetragonal. 

For n > I (we will not be interested in the case n < I ) this similarity disappears. The 
behavior of a hexagonal crystal for which n = 3 is particularly noteworthy. We have from 

equations (3) , for n = 3 and -i :s;; (J ~ i, 
~ = cos3 8+~(cos8+V3sin8)3+~(cos8 -V3sin8)3 
kT 3 16 16 

= ~cos38+~cos(Jsin1.8 = ~ cos (J, 

~ = V3[ (cos8+V3sin 8P-(cos (J - , 13 sin 8)3] 
kT 3 16 

(5) 

= ~3 (3V3cos1.8sin8+3V3sin38) = ~sin (J . 

Thus, remarkably, for n = 3 equations (3) reduce to the same result as for n = I , except for 
a proportionality factor. Hence for a hexagonal crystal deforming by simultaneous translation 
gliding with power-law flow relation having exponent n = 3, the gliding response takes place 
exactly in the direction of the applied shear stress (cp = 8) and the gliding ra te is independent 
of the a-axis orientation with respect to the applied stress. 

For the gliding behavior of hexagonal crystals it is useful to distinguish the flow law 
exponent ranges 1 < n < 3, 3 < n < no and n > no, where no is a characteristic but not 
well-defined value of n whose significance will appear later. The different type of behavior 
in the ranges 1 < n < 3 and 3 < n < no can be illustrated by considering the special cases 
n = 2 and n = 4. We examine first the gliding direction v as a function of direction of applied 

shear stress T. From equations (3) we find for n = 2 and -i ~ (J :s;; -i 
Vy _ A. _ 3 sin 2 (J 
- - tan 'I' - , 
Vx 4 + COS28 

and for n = 4 in the same interval of (J 
A. 6 sin 28 (2 - cos 2(J) 

tan 'P = -----=----'--,.---=----'---
8 cos4 (J + 9 

(6) 

From equations (6) and (7) we can calculate the angular d eviation 8 = (J - cp between the 
shear stress vector and the resultant gliding motion. The result is shown in Figure 4- It is 
seen that for n = 4 the deviation of the motion is toward the nearest glide direction (8 > 0), 
whereas for n = 2 the devia tion is away from the nearest glide direction (8 < 0), an unexpected 
result. This distinction is valid for the exponent ranges mentioned : 

For I < n < 3, 8 :s;; o. 
For 3 < n < no, 8 ~ o. 

This can be exhibited for example by evaluating the angular deviation 8 for small values of (J, 

from equations (3) : 

8 = (I -~)() 
2"+ 1 

(8) 
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S = (~- l) ('!!_e) +_2n (!!. _e )n. 
3 6 3(n+ 1) / 2 6 (9) 

(In equation (g) the non-linear term must be retained because it contributes significantly as 
/l -+ 1.) The (linear term) coefficients in (8) and (g) change sign at /l = 3. 

Another striking feature of the results shown in Figure 4 is the small size of the angular 
deviations. The largest deviation for /l = 2 is (-) 2' 1 0 . On the basis of equation (8), the 
deviation-curve departing furthest from S = 0 in the range I ~ n ::s;;; 3 is the curve for 

3 

2 

<5 n=3 
n = 1 

- 1 

- 2 n=2 

0 10 20 30 
e 

Fig. 4. Response of a hexagonal crystal to simultaneous glide on (0001). The deviation Ii = 0- 4> between the azimuth 0 of 
the applied shear stress and the azimuth '" of the resulting motion is plotted, in degrees, as afunction of 0 for four values 
of the power-law exponent n. Positive Ii represents deviation toward the nearest glide direction, negative Ii deviation away 
from it 

n = I ·84; this curve probably does not differ sensibly from the curve for n = 2. The curves 
decrease in height continuously from n = 2 to n = 3. The largest angular deviation for 
n = 4 is (+)2 'gO, and the deviations for curves with n in the range 3 ::s;;; n < 4 are of course 
smaller. By contrast the deviations in the tetragonal case are much larger; for example, for 
n = 4 deviations up to 240 occur. 

For n sufficiently large, the motion tends to align more and more with the glide directions 
in a hexagonal crystal as well as in a tetragonal one. The reason for distinguishing the exponent 
ranges 3 < n < no and n > no is to make this evident. We may choose no so that for n < no 
the gliding response is more nearly parallel to the shear stress vector than to the nearest glide 
direction, whereas for n > no the reverse is true. It is clear that the greatest restriction on the 
upper limit of the range 3 < /l < no is placed by considering small values of e (equation 8), 
because as e -+ 300 the deviation (3 -+ 0 no matter how large the value of n. We find no = 4.8 
by setting the numerical coefficient in equation (8) equal to t, and we may therefore take 
/lo f"ooJ 5 as the upper limit of the range over which a hexagonal crystal in steady creep does not 
display a well marked glide direction. For a tetragonal crystal the upper limit, by a similar 
argument, is at no "-' I . 5. 

I have not calculated profiles of velocity Ivl as function of e from equations (3), but the 
general effect of orientation on rate of gliding can be judged by comparing the response 
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THE GLIDE DIRECTION IN ICE 1103 
v (0°) parallel to the glide direction (8 = 0°) with the response v (30°) midway between 
neighboring glide directions (() = 30°). It is easily shown that 

Iv(oO) I _ 2"+1 
IV(30 0) I - 3t("+,)' 

(10 ) 

The ratio I v( 0°) /v (300) I from equation (10) is shown for a succession of n values in Table 1. 

n 
Iv (0°)1 
jv (30°) 1 

1'00 

2 

0'96 

TABLE I 

2'5 

0'98 
3 3'5 4 5 

1'00 1'22 

It is seen that for n in the range I < n < 3, the response parallel to the glide direction is 
actually less than the response between the glide directions . Instead of being the direction of 
maximum response, the glide direction turns out in this case, surprisingly, to be the direction 
of minimum response. Only for n > 3 is the glide direction the direction of maximum response. 
Throughout the whole range I :::;;; n :::;;; 4, the variation in gliding rate as a function of a-axis 
orientation under a given shear stress is rather slight. 

ICE 

Most observations of ice deformation in steady-state creep have been rationalized with a 
bulk flow law of the form 

y = kT". (11) 
For polycrystalline aggregates T and y refer respectively to shear stress and shear strain-rate 
in simple shear, whereas for single crystals they refer to shear stress and shear strain-rate 
across the (000 1) plane. Flow law studies of ice single crystals are less numerous and less 
conclusive than equivalent studies of polycrystalline ice, probably because of the greater 
difficulties of preparing and handling single crystals, and because of the greater variation in 
properties from specimen to specimen and during the course of deformation of a given 
specimen. Steinemann 3. 10 found values of n ranging from 2 . 3 to 3' 9 in "secondary flow" and 
the value I . 5 for " tertiary flow" of single crystals is a Bausch shear apparatus at - 2' 3° C. 
The compression experiments of Griggs and Coles 9 on single crystal cylinders showed 
progressively accelerating creep without a final steady state, which Glen I interprets as 
indicating that the duration of the experiments was too short for the final steady state creep 
to set in. Griggs and Coles results cannot be compared directly with the steady-state law (I I), 
but at any given time they indicate a stress-dependence of the flow rate corresponding to an n 
value of 2 '0. For single crystals in "easy glide," Butkovich and L andauer II found a flow law 
of the type ( I I ) with n = 2' 5; since the total strain in their experiments was less than 10 per 
cent, presumably their results r epresent "secondary flow."3 Recent experiments of my own 
on torsion of hollow single-crystal ice cylinders deformed several hundred per cent a t - 2 'gO C. 
indicate the value n = 2' 5. 

For polycrystalline ice the values found by Steinemann (R ef. la, p. 25) range mostly from 
2 ' 0 to 4.' o. The value found by Glen 8 is 3' J 7 or 4' 2, depending on how the transient creep 
is taken into account. The numerous flow data ofButkovich and Landauer II on polycrystalline 
ice of several different kinds are fit best by a flow law of type (I I ) with n = 2 ' 96. Higashi's 
experiments 22 on collapse of hollow polycrystalline ice cylinders suggested a stress-dependent 
n value varying in the range n r-..J 2 to n '" 4. It is not known exactly to what extent the flow 
law for the polycrystalline aggregate reflects the flow law of the single crystal, or to what 
extent it is influenced by inter-grain relationships. Steinemann 3 expects that the exponent 
values should be comparable for single crystals and polycrystals, even though the k values 
will differ, whereas Butkovich and Landauer II think that the rate-limiting process in poly­
crystalline ice deformation is not the basal gliding of the individual ice crystals. Nevertheless, 
the overall similarity of results of the two types of experiment is good. The experiments of 
Brill 23 and Jellinek and Brill,24 showing a quite different type of rheology, were carried out 
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for strains much smaller than those involved in the other creep experiments considered here. 
The creep laws derived theoretically by Weertman 16, 17, 18 have n values of 4 '0, 4' 5,3'0 and 
2' 5, depending on the rate-limiting mechanism in the creep process. 

In view of the range 2 < n < 4 of exponent values observed in the non-linear flow law of 
ice, the general considerations given above for hexagonal crystals provide a natural explana­
tion for the failure to detect experimentally a glide direction in the ice crystal. In tensile tests 
of the type carried out by Glen and Perutz,2 one can expect to observe a deviation of at most 
only about 2°, depending upon the pertinent n value under the conditions of the experiment, 
between the shear stress vector and the direction of the gliding motion. Of the four tensile 
tests for which data are given (Ref. 2, Fig. 13), three show small deviations (0° to 4°) toward 
[10 10], whereas the fourth seems to indicate gliding only in the direction [r 120], and indicates 
a large deviation ("'-'15°) between shear stress vector and gliding motion; the reason for the 
discrepancy with the other three tests is not known. For Steinemann's method the expected 
maximum variation in gliding rate as a function of a-axis orientation is less than 4 per cent 
over most of the likely range ofn values. The IQ percent variation in flow rate actually observed 
in one of Steinemann's experiments 3 was considered by him to lie within the experimental 
uncertainties. Nakaya (Ref. 6, p. 43) has hinted at differences in creep curves as a function of 
a-axis orientation in certain beam-bending experiments, but no details have yet been published. 

Even without regard to experimental uncertainties, there is a fundamental difficulty in 
determining the glide direction in ice, because the response of the crystal has opposite sense 
according as the flow law exponent n lies in the range I < n < 3 or in 3 < n < no. An 
observed small deviation between applied shear stress and gliding motion can be interpreted 
either as indicating a particular glide direction, with n > 3, or as indicating a glide direction 
rotated 30° with respect to the first, with n < 3. Steinemann's observation in one experiment 
(Ref. 3, Fig. 8) of a 10 per cent greater creep rate parallel to [I 120] than parallel to [IQ 10] 
could, if it were experimentally significant as believed by Glen,' be interpreted as [I 120] glide 
if n > 3 at the time of the experiments or as [1010] glide if n < 3. The experiments were 
carried out on a crystal in "tertiary flow," for which Steinemann reports n = r . 5, hence 
they indicate if anything a glide direction [1010], rather than [1120] as thought by Glen.! If 
the flow law is not known under the conditions of an experiment in search of the glide direc­
tion, as in the experiments of Glen and Perutz, the result may be ambiguous and cannot be 
readily interpreted; variations in flow law from crystal to crystal may explain the inconsistent 
results reported. 

In principle, the glide direction could be distinguished, and thus n and the glide direction 
determined simultaneously, by the asymmetry of the angular-deviation curves in Figure 4 . 
Thus for n = 2 the maximum value of I 81 occurs at () = 16 ·6°, and for n = 4 the maximum 
occurs also at a () value greater than IS°. However, the asymmetry of the curves is so slight 
that it is quite unlikely to be detectable experimentally. 

The glide direction in ice can, however, be identified a priori as < I r 20) from structural 
considerations alone, without resort to experiment. In accordance with the modern concept of 
crystal plasticity, it can be assumed that the ice crystal deforms by the motion of dislocations 
lying in the (000 I) plane and having Burgers vectors (Ref. 20, p . IS) parallel to this plane. 
The shortest lattice vector in this plane is the a-axis translation, and this vector will therefore 
be the Burgers vector of the most stable dislocations of the type considered; a dislocation with 
a Burgers vector corresponding to any other lattice vector in this plane will dissociate (Ref. 20, 
p. 70) spontaneously into separate dislocations having Burgers vectors of the type a(r 120). * 
For example the energy of ad is location (Ref. 20, p . 37) with Burgers vector V3a[IQlo], the 
second shortest possible Burgers vector, is 50 per cent greater than the combined energy of 

* The notation here means Ha vector of length equal to the a-axial length and in one of the <1120> (a-axis) 
directions in the lattice"; it does not agree exactly with the corresponding notation customarily used for isometric 
crystals (R ef. 20, p. (6), because of the awkward features of assigning indices to lattice lines in a hexagonal net. 

https://doi.org/10.3189/S0022143000017500 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000017500


THE GLIDE DIRECTION IN ICE 1105 

the two dislocations with Burgers vectors respectively a[2IIol and a[II20] into which the 
original dislocation can dissociate. Moreover, dislocations with Burgers vector a<II20) 
may be expected to have the highest possible mobility. This might be attributed in part to 
the fact that the "puckered sheets" of water molecules in layers parallel to (000 I) have well­
defined "grooves" in the direction (1120), as pointed out by Glen and Perutz.2 A similar 
feature was considered important by Buerger 25 in the NaCI structure. But in the ice structure 
the "grooves" do not "interlock" from layer to layer, and it therefore seems unlikely that 
they exert an important influence on dislocation mobility. The inter-molecular forces that 
operate during slip of one (000 I) layer in ice over another cannot be accurately evaluated, 
and the clear-cut restrictions placed by charge distribution in ionic crystals do not apply to 
ice. In terms of bonding there is thus no clear basis for distinguishing the mobility of disloca­
tions having Burgers vectors a<I I 20) or a< 10 10), or any other. The limitation on mobility is 
therefore probably placed by the geometry of the motion itself, which strongly favors the 
dislocation with the shortest Burgers vector for a given interplanar spacing of the glide planes 
(Ref. 20, pp. 62- 64). There may be other unforseen limitations placed by the nature of the 
non-linear creep process (for example by the "dislocation climb" mechanism considered by 
Weertman 16) , but in our present state of knowledge all evident factors point to a< I 120) as the 
likely Burgers vector and therefore glide direction in (0001 ) translation-gliding of ice. The 
same conclusion was reached by Glen and Perutz 2 on the basis of a less detailed argument. 

The a priori identification of < I 120) as the glide direction in ice would be most questionable 
were it not for the fact that simultaneous glide with non-linear flow law accounts for the failure 
to observe a glide direction experimentally. It thus appears that dislocation motion, governed 
by non-linear response to stress (Weertman 16, 17, 18), and resulting in simultaneous glide in 
the three glide directions < I 120), provides a satisfactory description of the basic features of 
ice single-crystal plasticity. 

It would, of course, be desirable to have accurate enough experimental evidence to search 
for the expected features of simultaneous non-linear glide, as a test of the theory here given, 
but it would be difficult to obtain the experimental accuracy necessary to detect the small 
expected deviations from the type of behavior that hitherto has been considered evidence for 
non-crystallographic gliding without preferred glide direction. 

OTHER CRYSTALS 
The hexagonal close-packed metals zinc and magnesium, which at room temperature 

have typical plastic behavior with gliding elements T (000I)t<II20), at high temperature 
show (in polycrystalline aggregates) non-linear quasi-viscous creep that can be represented 
approximately with a power-law stress dependence. Creep data for magnesium (Roberts 26) 
correspond to n values ranging from about 3 at 170° C. to about I ·5 at 3 I 0° C. The data for 
zinc obtained by Cottrell and Aytekin 27 at temperatures below 120° C. correspond to an n 
value greater than 7, but lower values might be found at higher temperatures, as suggested 
by the magnesium data. It may therefore be expected that at high temperatures single crystals 
of these metals will show gliding behavior similar to that of ice, with lack of a well-defined 
glide direction. The same can also be expected for face-centered-cubic metals, because the 
glide directions (110) have hexagonal symmetry in each of the {I I I} glide planes. For 
aluminium at temperatures above about 300°, a power-law creep with n values ranging from 
3.0 to 4·5 has been observed, as reported in the summary by Weertman. 16 

I am not aware of any attempt to determine the gliding elements of any of these metals 
during steady-state creep at high temperature, which would provide a test of the above 
prediction. A confirmation of it would not only reinforce the above considerations for ice, but 
would indicate that for true creep processes, which doubtless predominate over plasticity 
(sensu stricto) in rock deformation as it occurs in nature, Schmid's law of maximum resolved 
shear stress 19, 20 is not valid. In this case laboratory studies of rock and single crystal plasticity, 
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in which the law has been verified (see for example R ef. 28), would be applicable only with 
appropriate modification to the deformation process in na ture. 
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