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Abstract

We give a method for constructing a Legendrian representative of a knot in S3

which realizes its maximal Thurston–Bennequin number under a certain condition.
The method utilizes Stein handle decompositions of D4, and the resulting Legendrian
representative is often very complicated (relative to the complexity of the topological
knot type). As an application, we construct infinitely many knots in S3 each of which
yields a reducible 3-manifold by a Legendrian surgery in the standard tight contact
structure. This disproves a conjecture of Lidman and Sivek.

1. Introduction

The maximal Thurston–Bennequin number, denoted by tb, of a knot in S3 is an important
invariant in low-dimensional topology. For example, a 4-manifold represented by a knot with
framing less than tb admits a Stein structure ([Eli90a], cf. [Gom98]), and such Stein 4-manifolds
have many applications to low-dimensional topology, e.g. exotic smooth structures, contact 3-
manifolds and 4-genera of knots (cf. [GS99, OS04]). Here recall that tb(K) of a knot K in S3 is
the maximal value of the Thurston–Bennequin number tb(K) of a Legendrian representative K
of K in the standard tight contact structure on S3. There are several invariants which give good
upper bounds for tb of knots (e.g. [AM97, LM98, FT97, OS03, Pla04, Pla06, Ras10, Shu07, Ng05,
Ng12]). By contrast, it is generally difficult to find a Legendrian representative of a knot realizing
an upper bound for tb when the crossing number of the knot is large. Hence, determining tb is
a difficult problem in general.

In this paper, we give a method for constructing a Legendrian representative of a knot in S3

which realizes its maximal Thurston–Bennequin number under a certain condition. The method
utilizes Stein handle decompositions of D4, and the resulting Legendrian representative (in the
front diagram of S3) is often very complicated (relative to the complexity of the topological
knot type). One can easily construct various examples of knots for which this method effectively
works, and it seems difficult to determine their tb by other methods.

As an application of our method, we discuss reducible Legendrian surgeries. A long-standing
open problem in Dehn surgery theory is to determine framed knots in S3 which produce reducible
3-manifolds. The cabling conjecture [GS86] asserts a complete characterization of such framed
knots, and there are many related studies (see [Gre15] and the references therein). Recently,
Lidman and Sivek [LS16] gave an interesting new approach to this problem from contact topology.
Here we recall basic facts. The Legendrian surgery along a Legendrian knot K in the standard
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tight contact structure on S3 is topologically the Dehn surgery along K with the contact −1
(i.e. tb(K) − 1) framing, and any integral Dehn surgery along a knot K in S3 with framing
less than tb(K) can be realized as a Legendrian surgery along a Legendrian representative of
K in the standard contact structure. Applying Eliashberg’s theorem [Eli90b] on splittings of
Stein 4-manifolds with reducible boundary 3-manifolds, Lidman and Sivek proved the following
theorem.

Theorem 1.1 (Lidman and Sivek [LS16]). For a knot K in S3 with tb(K) > 0, any Dehn surgery
along K with coefficient less than tb(K) is irreducible.

In other words, any Legendrian surgery along a knot K with tb(K) > 0 in the standard
contact structure on S3 yields an irreducible 3-manifold. Moreover, they conjectured that this
result holds without the assumption tb(K) > 0.

Conjecture 1.2 (Lidman and Sivek [LS16]). A knot in S3 never yields a reducible 3-manifold
by a Legendrian surgery in the standard tight contact structure.

This conjecture has the following supporting evidence. The cabling conjecture asserts that
a framed knot yielding a reducible 3-manifold is the (p, q)-cable of a knot with pq-framing, and
the standard cabling construction (cf. [Gol15, § 5]) only gives a Legendrian representative of the
cable knot with tb 6 pq.

Here we disprove this conjecture by applying the aforementioned method.

Theorem 1.3. There exist infinitely many knots in S3 each of which yields a reducible 3-
manifold by a Legendrian surgery in the standard tight contact structure. Furthermore, each
knot K can be chosen so that the surgery coefficient is arbitrarily less than tb(K).

In fact, we give a general method for constructing counterexamples. As an example, we will
discuss the (n,−1) cable Km,n of the ribbon knot Km in Figure 3 for n > 2 and m 6 −4n+ 3.
Although the standard cabling construction merely gives an estimate tb(Km,n) > −2n + 1 (see
Figure 5 for a representative realizing this estimate), our method determines the explicit value
tb(Km,n) = −1 (Proposition 4.2), implying the above theorem. Indeed, our method yields the
very complicated representative of Km,n in Figure 19 which realizes tb(Km,n). Here the notations
and tangles An and Bn in the diagram are given in Figures 1 and 18. We hope our method is
useful for finding a new phenomenon in contact and symplectic topology.

2. Stein handlebody and notation

In this section, we recall basic definitions and properties. We also introduce our notations, some
of which are different from the standard ones.

2.1 Stein handlebody
We briefly review basics of Stein handlebodies. For details, see [Gom98] and [GS99]. For basics
of contact topology and Legendrian knots, readers can consult [OS04]. Throughout this paper,
we assume that a handlebody is four dimensional, compact, connected and oriented.

Recall that a 1-handlebody (respectively 2-handlebody) is a handlebody which consists of 0-
and 1-handles (respectively 0-, 1- and 2-handles). We call a handlebody a Stein handlebody if it
is constructed from a 1-handlebody \nS

1×D3 (n > 0) by attaching 2-handles along a Legendrian
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Figure 1. Notations on Legendrian versions of twists (n > 1, r > 1).

link in the Stein fillable contact structure on the boundary #nS
1 × S2 such that the framing of

each Legendrian knot is −1 relative to the framing induced from the contact plane (i.e. contact

−1 framing). According to a result of Eliashberg [Eli90a] (cf. [Gom98]), any Stein handlebody

admits a Stein structure, extending the Stein structure on the 0-handle D4. We note that each

#nS
1 × S2 (n > 0) admits a unique Stein fillable contact structure up to isotopy [Eli92]. In the

rest of this paper, a Legendrian link in #nS
1×S2 (n > 0) means the one with respect to the Stein

fillable contact structure. By a result of Gompf [Gom98] (cf. [GS99]), one can draw a Legendrian

link in the boundary #nS
1 × S2 of a 1-handlebody using Gompf’s Legendrian link diagram in

standard form. In particular, we can draw a handlebody diagram of a Stein handlebody.

The Thurston–Bennequin number tb(K) of a Legendrian knot K in the boundary #nS
1×S2

of a 1-handlebody is defined to be the difference between the contact framing and the 0-framing.

Here recall that the 0-framing of a knot in S3 (i.e. the boundary of a 0-handle) is defined to be

the Seifert framing (i.e. the one induced from a Seifert surface), and recall that the 0-framing

of a knot in the boundary of a 1-handlebody is defined to be the Seifert framing induced from

the dotted circle notation of the 1-handlebody. Consequently, if a knot bounds a Seifert surface

in #nS
1 × S2, then the 0-framing coincides with the framing induced from the surface. Note

that a knot in #nS
1 × S2 bounds a surface if and only if the knot is null-homologous. For

details of Gompf’s standard form diagram and calculation of the Thurston–Bennequin number

in #nS
1 × S2, we refer to [Gom98] and [GS99]. For the definition of 0-framings, see [GS99].

Let K be a Legendrian knot in S3, and let g4(K) denote the 4-genus of K (i.e. the minimal

genus of a smoothly embedded surface in D4 which bounds K). One can estimate g4(K) as follows.

By attaching a 2-handle to D4 along K with framing tb(K)−1, we have a Stein 4-manifold. Since

any Stein 4-manifold can be embedded into a closed minimal complex surface of general type

with b+2 > 1 [LM97], applying the adjunction inequality [FS95, KM94, MST96, OS00] for this

1901

https://doi.org/10.1112/S0010437X1600748X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1600748X


K. Yasui

closed 4-manifold together with Gompf’s Chern class formula [Gom98], we obtain the following
adjunction inequality, where r(K) denotes the rotation number of K.

Theorem 2.1 [LM97, AM97, LM98]. tb(K) + |r(K)| 6 2g4(K)− 1.

Note that this holds even for the genus-zero case (cf. [GS99, OS04]), unlike the version for
general closed 4-manifolds.

2.2 Notations and definitions
Here we introduce our notations and definitions. Beware that some of our definitions are different
from the standard ones.

The 4-manifold represented by a framed knot in S3 means the 4-manifold obtained from
D4 by attaching a 2-handle along the framed knot. For a Legendrian knot diagram, left- and
right-handed twists are abbreviated as shown in Figure 1. For a knot K in the boundary of a
1-handlebody, a Legendrian knot K in the boundary is called a Legendrian representative of K
if K satisfies the conditions below.

– In the case where K is homologically trivial, K is smoothly isotopic to K.
– In the case where K is homologically non-trivial, K is smoothly isotopic to K without

sliding K ‘over’ any 1-handle. More explicitly, this condition is stated as follows. Consider
the dotted circle notation of the 1-handlebody. The condition is that K is isotopic to K by
an isotopy of S3 fixing the disks bounded by the dotted circles. Note that this condition
does not allow slidings over the dotted circles.

We use this narrow definition to define the maximal Thurston–Bennequin number for a
homologically non-trivial knot. The maximal Thurston–Bennequin number tb(K) of a knot K
in the boundary of a 1-handlebody is defined to be the maximal value of tb(K) of a Legendrian
representative K of K.

Lemma 2.2. For any knot K in the boundary of a 1-handlebody, tb(K) is a finite number.

Proof. In the case where K is null-homologous, this claim immediately follows from the
adjunction inequality for general Stein 4-manifolds. In the case where K is homologically
non-trivial, we can check this claim as follows. Consider a Legendrian representative K of K
in the boundary of a 1-handlebody. By altering the diagram of K as shown in Figure 2, we
obtain a Legendrian knot K′ in S3. Let K ′ denote the smooth knot type of K′. Due to our
narrow definition of a Legendrian representative, we easily see that K ′ is independent of the
choice of K. Furthermore, as seen from the diagram, tb(K′) = tb(K) + α for some constant α
which depends only on K. Since tb of a knot in S3 is finite, this fact shows that tb(K) is also
finite. 2

We remark that, if we change our narrow definition of a Legendrian representative to the
natural one, then there are many examples of homologically non-trivial knots with tb =∞.

3. The method

We give a method for constructing a Legendrian representative of a knot realizing its maximal
Thurston–Bennequin number. Before the method, we note that a knot K̃ in the boundary of the
sub 1-handlebody X1 of a 2-handlebody X represents a knot in the boundary ∂X, since we may
regard K̃ as a knot in ∂X after attaching 2-handles of X to X1.

Now let K be a knot in S3. The method proceeds as follows. We do not claim that this
procedure is always applicable.
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Legendrian
tangle

Legendrian
tangle

Figure 2. Alter a Legendrian knot K in #nS
1 × S2 to a Legendrian knot K′ in S3.

Step 1. Find a 2-handlebody X diffeomorphic to D4 such that K ⊂ ∂X(∼= S3) is represented by
a good knot K̃ in the boundary of the sub 1-handlebody X1 of X.

Here we say that a knot K̃ in ∂X1 is good if we can draw a Legendrian representative of K̃
in ∂X1 realizing tb(K̃). For example, torus knots are good knots in this sense. (We define torus
knots in #nS

1×S2 as cables of the unknot in #nS
1×S2, similarly to the S3 case. Note that an

unknot in #nS
1 × S2 is a knot bounding a disk.) Experimentally, the method is effective when

we choose a null-homologous knot as K̃.
Let L be the link in ∂X1 which consists of the attaching circles of the 2-handles of X.

Step 2. By ignoring the link L, first isotope K̃ to its Legendrian representative K̃ in ∂X1 which
realizes tb(K̃), and then keep track of the position of the link L in ∂X1 by this isotopy. Next,
fixing the position of the Legendrian knot K̃, isotope L to its Legendrian representative L so
that the framings of 2-handles of X coincide with the contact −1 framing of the Legendrian
representative L. Now X is a Stein handlebody. By attaching the 2-handles of X to X1 along
L, we regard K̃ as a Legendrian knot (denoted by K) in ∂X ∼= S3. Here the contact structure
on ∂X is the one induced from the Stein structure on X. Since S3 has a unique Stein fillable
contact structure up to isotopy, K gives a Legendrian representative of K in the standard tight
contact structure on S3.
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We remark a simple sufficient condition that the resulting Legendrian representative K
realizes tb(K): if K̃ bounds a surface of genus g in X1 satisfying 2g − 1 = tb(K̃), then
tb(K) = tb(K)(= tb(K̃)) due to the adjunction inequality. For example, this condition holds
if K̃ is a positive torus knot in ∂X1. Of course, one can also use other upper bounds of tb (cf. § 1)
to see whether K realizes tb(K).

Remark 3.1. (1) (Construction of various examples.) One can easily construct various examples
of knots for which this method produces Legendrian representatives realizing tb as follows.
Construct a 2-handlebody X diffeomorphic to D4, and put a null-homologous knot K̃ on the
boundary ∂X1 of the sub 1-handlebody of X satisfying tb(K̃) = 2gX1(K̃) − 1. Here gX1(K̃)
denotes the minimal genus of a smoothly embedded surface in X1 bounded by K̃. For example,
any positive torus knot in ∂X1 satisfies this condition of K̃. Now let K be a knot in ∂X ∼= S3

represented by K̃. This process corresponds to Step 1 of the method. If tb of the attaching
circle of each 2-handle in ∂X1 is sufficiently larger than the framing of the 2-handle, then
one can clearly apply Step 2. By the assumption on K̃, the resulting Legendrian knot gives
a Legendrian representative of K realizing tb(K). By using this construction, we can construct
many counterexamples to Conjecture 1.2. See the next section.

(2) (Variant of the method.) Although we required that we (can) draw a Legendrian

representative ofK̃ realizing tb(K̃) in ∂X1, the method without this condition is still effective
for finding a good lower bound of tb(K). See Subsection 4.5 for an example, which also gives
counterexamples to Conjecture 1.2.

Remark 3.2. Regarding the Legendrian representative K obtained by Step 2, beware that tb(K)
may not be the same value as tb(K̃). This is because the 0-framing of a knot in S3 and that of
a knot in the boundary of a 1-handlebody are defined differently. One can easily calculate tb(K)
from tb(K̃) by checking the difference of 0-framings induced from S3 and the boundary of the
1-handlebody X1. In particular, if K̃ is null-homologous in ∂X1, then tb(K) is equal to tb(K̃).

Since K is given as a Legendrian knot on the boundary of the Stein handlebody X, one might
wish to find a representative in the front diagram of S3.

Step 3 (Optional). Slide K over the 2-handles of X so that the resulting knot does not go over
any 1-handle and that it is Legendrian preserving tb(K). Then cancel all 1-handles of X with
2-handles. The resulting Legendrian knot gives a Legendrian representative of K in the front
diagram of S3 realizing tb(K).

This process often yields a very complicated Legendrian diagram. Note that this step is not
necessary for determining tb.

4. Example

We demonstrate the method using knots obtained in [Yas15], and we prove Theorem 1.3. Let
us recall that, for a knot K in S3, the (p, q)-cable Cp,q(K) of K is defined to be a knot in S3

which is a simple closed curve in the boundary ∂ν(K) of the tubular neighborhood ν(K) of K
representing the class p[K ′] + q[α] in H1(∂ν(K);Z). Here α is the positively oriented meridian
of K, and K ′ is the 0-framing of K induced from a Seifert surface of K.

For an integer m, let Km be the ribbon knot in Figure 3, where the box denotes the m− 1
right-handed full twists. For an integer n > 2, let Km,n be the (n,−1) cable of Km. These knots
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m – 1

Figure 3. Km.

–m left-handed
full twists

Figure 4. A Legendrian representative of Km with tb = −1 (m 6 −1).

were constructed in [Yas15], and their maximal Thurston–Bennequin numbers were determined
for m > 0 and n > 2 using rulings and a cabling formula. In this paper, we discuss tb(Km,n) for
m < 0 using the method introduced in § 3. We remark that the cabling formula of tb obtained
in [Yas15] does not work in this case.

4.1 Estimate of tb by standard construction

To see the effectiveness of our method, we here estimate tb(Km,n) by the standard cabling
construction of a Legendrian representative (cf. [Gol15, § 5]). Before discussing the (n,−1) cable
Km,n, we discuss its companion Km. Since Km bounds a disk in D4, the adjunction inequality
shows that tb(Km) 6 −1. On the other hand, for m 6 −1, we can easily check that Km is
isotopic to the Legendrian knot Km with tb = −1 shown in Figure 4. Therefore, this Legendrian
representative of Km realizes tb(Km) = −1.

We draw n copies of the front diagram of Km, each of which is slightly shifted to the vertical
direction. Inserting (n− 1)/n right-handed full twists to the resulting diagram appropriately,
we obtain the Legendrian representative of Km,n in Figure 5. Calculating the number of left
cusps and the writhe, one can easily check that tb of this representative is −2n + 1. Thus, the
standard construction merely shows that tb(Km,n) > −2n+1. It seems difficult to realize a larger
Thurston–Bennequin number by modifying this representative.

4.2 Step 1
Now we apply our method to Km,n. We give necessary definitions to proceed with Step 1 of the
method. For an integer m, let Z(m) be the 4-manifold shown in Figure 6. Since the 2-handle goes
over the 1-handle geometrically once after isotopy, Z(m) is diffeomorphic to D4. We identify the
boundary ∂Z(m) with S3 via this diffeomorphism. Let K̃m and K̃m,n be the unframed knots in
∂Z(m) = S3 given by Figures 7 and 8, respectively.

To apply Step 1, we show the lemma below.
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(–2m + 1)n
left cusps

n

Figure 5. A Legendrian representative of Km,n with tb = −2n+ 1 (m 6 −1).

m

Figure 6. The handlebody Z(m) which is diffeomorphic to D4.

m

Figure 7. (Colour online) The knot K̃m in ∂Z(m).

Lemma 4.1. For integers m,n with n > 2, the knots Km and Km,n are isotopic to the knots K̃m

and K̃m,n in ∂Z(m), respectively.

Proof. By Figure 9, we see that K̃m is isotopic to Km. Figures 7 and 8 and the definition of a

cable knot show that K̃m,n is the (n,−1) cable of K̃m. Hence, K̃m,n is isotopic to Km,n. 2

We regard K̃m,n as a knot in the boundary of the sub 1-handlebody Z
(m)
1 of Z(m). Then

K̃m,n is clearly an unknot in the boundary ∂Z
(m)
1 , and we know a Legendrian representative of

an unknot realizing tb. Therefore, we have finished Step 1.
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m

n

Figure 8. (Colour online) The knot K̃m,n in ∂Z(m).

m – 1

m m

m

isotopy

isotopy

cancel

Figure 9. (Colour online) Diagrams of the knot Km in S3.

4.3 Step 2

Next we apply Step 2. We note that, if the framing m of the 2-handle of Z(m) is a sufficiently large
negative number, then we can obviously achieve this step. We first isotope K̃m,n to its Legendrian

representative realizing tb in ∂Z
(m)
1 , and then we keep track of the 2-handle of Z(m) as shown

in Figure 10. By putting the 2-handle into a Legendrian position, we obtain the Legendrian

representative of K̃m,n in ∂Z
(m)
1 shown in Figure 11 for m 6 −4n+ 3. Note that Z(m) is now a

Stein handlebody and that tb(K̃m,n) = −1. The Legendrian representative of K̃m,n thus gives a

Legendrian representative of Km,n in the boundary ∂Z(m) of the Stein handlebody, since K̃m,n

represents Km,n in ∂Z(m).

Since K̃m,n bounds a disk in Z
(m)
1 , the adjunction inequality shows that tb(Km,n) 6 −1.

Therefore, the Legendrian representative of Km,n in Figure 11 realizes tb = −1. Note that this
value of tb is equal to the one induced from the front diagram of S3 (see Remark 3.2). This
completes Step 2, and the proposition below follows.

Proposition 4.2. tb(Km,n) = −1 for n > 2 and m 6 −4n+ 3.

Now we can easily prove Theorem 1.3.
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isotopyn
n

Figure 10. (Colour online) Local isotopy.

–4n + 3 – m
left cusps

n – 2

m

Figure 11. (Colour online) Legendrian representative of Km,n with tb = −1 in the Stein

handlebody diagram of Z(m) (m 6 −4n+ 3).

k

n

Figure 12. Xn,k.

–nk

n

Figure 13. Yn,k.

Proof of Theorem 1.3. For integers n and k, let Xn,k and Yn,k be the 4-manifolds in Figures 12
and 13, respectively. Note that ∂Xn,k is a homology 3-sphere, since Xn,k is contractible. By
[Yas15], the 4-manifold represented by Km,n with −n-framing is diffeomorphic to Yn,m+4n for n >
2. The −n-surgery along Km,n thus yields the 3-manifold ∂Yn,m+4n, which is clearly diffeomorphic
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isotopy

isotopy

isotopy

Figure 14. (Colour online) Isotopies fixing the end points.

A B

Figure 15. (Colour online) Definition of tangles A and B.

to the connected sum ∂Xn,m+4n#L(n, 1). Here L(n, 1) denotes the lens space given by−n-surgery
along the unknot, following the convention in contact topology. The knot Km,n thus yields a
reducible 3-manifold by −n-surgery for n > 2, since ∂Xn,m+4n is not diffeomorphic to S3 [Yas15].
Here recall that the r-surgery along the (p, q)-cable of a non-trivial knot in S3 yields a reducible
3-manifold if and only if r = pq [GL87, Theorem 3]. Thus, Km,n is not isotopic to Km,n′ if n 6= n′.
Therefore, by Proposition 4.2, the infinite family of knots {Km,n | n > 2, m 6 −4n+ 3} satisfies
the desired conditions. 2

Remark 4.3. We can construct many other counterexamples by using the construction in
Remark 3.1. Indeed, if we construct X and K̃ so that K̃ is the unknot and that K is the
(n,−1)-cable of a non-trivial knot in S3, then tb(K) = −1, and K yields a reducible 3-manifold
by −n-surgery, giving a counterexample to Conjecture 1.2.

4.4 Step 3

Finally we apply Step 3 to obtain a Legendrian representative of Km,n realizing tb in the front
diagram of S3. We first apply local isotopies in Figure 14 to the Stein handlebody diagram of
Z(m) and the knot Km,n. Note that these isotopies preserve tb of Km,n and the 2-handle. To
simplify the diagram, we use tangles A and B defined in Figure 15. The resulting diagram of
Km,n and Z(m) is shown in the first diagram of Figure 16. Now we can easily isotope the 2-handle
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–4n + 3 – m
left cusps

–4n + 3 – m
left cusps

n – 2

n – 2

m

m

AAA

AAA

B B B

B B B

isotopy

Figure 16. (Colour online) Legendrian representatives of Km,n in Stein handlebody diagrams

of Z(m) (n > 2 and m 6 −4n+ 3).

and Km,n so that the 2-handle goes over the 1-handle geometrically once and that tb of these
knots do not change. The resulting diagram is given in the second diagram of Figure 16 (this
isotopy can be easily seen by ignoring Km,n and tangles A and B).

Next we slide Km,n over the 2-handle so that Km,n does not go over the 1-handle (after
suitable isotopy) and that tb(Km,n) does not change. More specifically, we slide Km,n at the
right-most part of Figure 16 as shown in Figure 17, where the framings of the 2-handle are the
contact −1 framings. We can easily check that this operation preserves tb(Km,n) by counting
the numbers of positive crossings, negative crossings and left cusps. Clearly, we can isotope the
resulting Km,n preserving tb so that it does not go over the 1-handle. Now we can cancel (erase)
the canceling pair of 1- and 2-handles. The resulting diagram is given in Figure 19, where we use
the tangles An, Bn defined in Figure 18. Therefore, this diagram gives a Legendrian representative
of Km,n realizing tb = −1 in the front diagram of S3. We have thus completed Step 3.
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slides
2n

2n

Figure 17. (Colour online) Sliding of Km,n over the 2-handle.

2n

2n

2n

2n

Figure 18. (Colour online) Definition of tangles An and Bn.

2n 2n

4n – 3 + m

n – 2

Figure 19. (Colour online) Legendrian representative of Km,n realizing tb = −1 (n > 2 and
m 6 −4n+ 3).

4.5 Variant of the method

As we mentioned in Remark 3.1, our method is also effective for finding a good lower bound of tb

by minor modification. We demonstrate this using the knot Km,n with n > 2 and m 6 −2n− 1.

Recall that Km,n is isotopic to the unframed knot K̃m,n in the boundary of the handlebody

Z(m) shown in Figure 8. We regard K̃m,n as a knot in the boundary of the sub 1-handlebody Z
(m)
1
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–2n – 1 – m
left cusps

m

n – 2

Figure 20. (Colour online) Legendrian representative of Km,n with tb = −n + 1 in the Stein

handlebody diagram of Z(m) (n > 2 and m 6 −2n− 1).

of Z(m). Since K̃m,n is an unknot in ∂Z
(m)
1 , we can isotope K̃m,n to its Legendrian representative

with tb = −n+1. We then isotope the 2-handle of Z(m) to its Legendrian representative fixing the
representative of K̃m,n. The resulting diagram of K̃m,n and Z(m) is shown in Figure 20. Clearly,
this diagram gives a Stein handle decomposition of Z(m), and thus the Legendrian representative
of K̃m,n gives a Legendrian representative of Km,n with tb = −n+ 1 in the Stein fillable contact
structure on ∂Z(m) ∼= S3. Hence, the proposition below follows.

Proposition 4.4. tb(Km,n) > −n+ 1 for n > 2 and m 6 −2n− 1.

It seems difficult to obtain this estimate without using a handlebody diagram of D4. We
remark that we can also draw a Legendrian representative with tb = −n+1 in the front diagram
of S3, similarly to Step 3.

Remark 4.5. In [Yas15], we discussed the following problem. ‘Assume that a framed knot in
S3 represents a 4-manifold admitting a Stein structure. Is the framing less than the maximal
Thurston–Bennequin number of the knot?’ Since we proved in [Yas15] that the 4-manifold
represented by −n-framed Km,n admits a Stein structure for n > 2 and m 6 −2n − 1, it is
natural to ask if the framing −n is less than tb(Km,n). (We showed the existence of a Stein
structure by checking that this 4-manifold is diffeomorphic to the boundary connected sum of
two compact Stein 4-manifolds.) The above proposition tells that the framing is indeed less than
tb(Km,n), giving supporting evidence for the above problem.

Characterizing an unknot is a natural question in knot theory, and various characterizations
are known. Here we propose the following question as a potential characterization given by
maximal Thurston–Bennequin numbers. Recall that Cp,q(K) denotes the (p, q)-cable of a knot
K in S3.
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Question 4.6. If a knot K in S3 satisfies tb(Cp,−1(K)) = −1 for any positive integer p, is K the
unknot?

We remark that, for each positive integer N , Proposition 4.2 implies the existence of a
non-trivial knot K satisfying tb(Cp,−1(K)) = −1 for any positive integer p 6 N .
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