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1. Introduction

Let H denote the class of analytic functions in the unit disk D := {z ∈ C : |z| < 1}.
Here H is a locally convex topological vector space endowed with the topology of
uniform convergence over compact subsets of D. Let A denote the class of functions
f ∈ H such that f (0) = 0 and f ′(0) = 1. Let S denote the subclass ofA consisting of
functions which are univalent (that is, one-to-one) in D. If f ∈ A, then it has the series
representation

f (z) = z +
∞∑

n=2

anzn, z ∈ D. (1.1)

For q, n ∈ N, the Hankel determinant Hq,n( f ) of the Taylor coefficients of the
function f ∈ A of the form (1.1) is

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

. . .
...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
.
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2 V. Allu and A. Shaji [2]

Hankel determinants of various orders have been studied in many contexts (see for
instance [5]). The Fekete–Szegö functional is the second Hankel determinant H2,1( f ).
Fekete–Szegö obtained estimates for |a3 − μa2

2| with μ real (see [10, Theorem 3.8]).
Let g be the inverse function of f ∈ S defined in a neighbourhood of the origin with

the Taylor series expansion

g(w) = f −1(w) = w +
∞∑

n=2

Anwn, (1.2)

where we may choose |w| < 1/4 from Koebe’s 1/4-theorem. Using variational
methods, Löwner [16] obtained the sharp estimate

|An| ≤ Kn for each n ∈ N,

where Kn = (2n)! /(n! (n + 1)! ) and K(w) = w + K2w2 + K3w3 + · · · is the inverse
of the Koebe function. Let f (z) = z +

∑∞
n=2 anzn be a function in class S. Since

f ( f −1)(w) = w, it follows from (1.2) that

A2 = −a2,

A3 = −a3 + 2a2
2,

A4 = −a4 + 5a2a3 − 5a3
2.

The logarithmic coefficients γn of f ∈ S are defined by

F f (z) := log
f (z)
z
= 2

∞∑
n=1

γnzn, z ∈ D. (1.3)

Few exact upper bounds for γn have been established. The significance of this problem
in the context of the Bieberbach conjecture was pointed out by Milin [17]. Milin’s
conjecture that for f ∈ S and n ≥ 2,

n∑
m=1

m∑
k=1

(
k|γk |2 −

1
k

)
≤ 0,

led De Branges, by proving this conjecture, to the proof of the Bieberbach conjecture
[9]. For the Koebe function k(z) = z/(1 − z)2, the logarithmic coefficients are γn = 1/n.
Since the Koebe function k plays the role of extremal function for most of the extremal
problems in the class S, it might be expected that |γn| ≤ 1/n holds for functions in S.
However, this is not true in general, even in order of magnitude. Indeed, there exists
a bounded function f in the class S with logarithmic coefficients γn � O(n−0.83) (see
[10, Theorem 8.4]). By differentiating (1.3) and equating coefficients,

γ1 =
1
2 a2,

γ2 =
1
2 (a3 − 1

2 a2
2), (1.4)

γ3 =
1
2 (a4 − a2a3 +

1
3 a3

2).
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[3] Second Hankel determinant of logarithmic inverse coefficients 3

If f ∈ S, it is easy to see that |γ1| ≤ 1, because |a2| ≤ 2. Using the Fekete–Szegö
inequality [10, Theorem 3.8] for functions in S in (1.3), we obtain the sharp estimate

|γ2| ≤ 1
2 (1 + 2e−2) = 0.635 . . . .

For n ≥ 3, the problem seems much harder and no significant bound for |γn| when
f ∈ S appears to be known. In 2017, Ali and Allu [1] obtained initial logarithmic
coefficient bounds for close-to-convex functions. For recent results on several
subclasses of close-to-convex functions, see [2, 6, 21].

The notion of logarithmic inverse coefficients, that is, logarithmic coefficients of
the inverse of f, was proposed by Ponnusamy et al. [20]. The logarithmic inverse
coefficients Γn, n ∈ N, of f are defined by the equation

F f −1 (w) := log
f −1(w)

w
= 2

∞∑
n=1

Γnwn, |w| < 1/4.

In [20], Ponnusamy et al. found sharp upper bounds for the logarithmic inverse
coefficients for the class S, namely

|Γn| ≤
1

2n

(2n
n

)
, n ∈ N,

with equality only for the Koebe function or one of its rotations. Ponnusamy et al. [20]
also obtained sharp bounds for the initial logarithmic inverse coefficients for some of
the important geometric subclasses of S.

Recently, Kowalczyk and Lecko [12] proposed the study of the Hankel determinant
whose entries are logarithmic coefficients of f ∈ S, given by

Hq,n(F f /2) =

∣∣∣∣∣∣∣∣∣∣∣∣

γn γn+1 · · · γn+q−1
γn+1 γn+2 · · · γn+q

...
...

. . .
...

γn+q−1 γn+q · · · γn+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Kowalczyk and Lecko [12] obtained a sharp bound for the second Hankel determinant
H2,1(F f /2) for starlike and convex functions. Sharp bounds for H2,1(F f /2) for various
subclasses of S are considered in [3, 4, 11, 13, 18]).

In this paper, we consider the second Hankel determinant for logarithmic inverse
coefficients. From (1.4), for f ∈ S given by (1.1), the second Hankel determinant of
F f −1/2 is given by

H2,1(F f −1/2) = Γ1Γ3 − Γ2
2 =

1
4 (A2A4 − A2

3 +
1
4 A4

2)

= 1
48 (13a4

2 − 12a2
2a3 − 12a2

3 + 12a2a4). (1.5)

We note that |H2,1(F f −1/2)| is invariant under rotation, since for fθ(z) := e−iθ f (eiθz),
θ ∈ R and f ∈ S,

H2,1(F f −1
θ
/2) =

e4iθ

48
(13a4

2 − 12a2
2a3 − 12a2

3 + 12a2a4) = e4iθH2,1(F f −1/2).
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The main aim of this paper is to find a sharp upper bound for |H2,1(F f −1/2)| when
f belongs to the class of convex or starlike functions. A domain Ω ⊆ C is said to be
starlike with respect to a point z0 ∈ Ω if the line segment joining z0 to any point in Ω
lies entirely in Ω. If z0 is the origin, then we say that Ω is a starlike domain. A function
f ∈ A is said to be starlike if f (D) is a starlike domain. We denote by S∗ the class of
starlike functions f in S. It is well known that a function f ∈ A is in S∗ if and only if

Re
(z f ′(z)

f (z)

)
> 0 for z ∈ D. (1.6)

Further, a domain Ω ⊆ C is called convex if the line segment joining any two points of
Ω lies entirely in Ω. A function f ∈ A is called convex if f (D) is a convex domain. We
denote by C the class of convex functions in S. A function f ∈ A is in C if and only if

Re
(
1 +

z f ′′(z)
f ′(z)

)
> 0 for z ∈ D. (1.7)

2. Preliminary results

In this section, we present the key lemmas which will be used to prove the main
results of this paper. Let P denote the class of all analytic functions p having positive
real part in D, with the form

p(z) = 1 + c1z + c2z2 + c3z3 + · · · . (2.1)

A member of P is called a Carathéodory function. It is known that |cn| ≤ 2, n ≥ 1, for
p ∈ P. By using (1.6) and (1.7), functions in the classes S∗ and C can be represented
in terms of functions in the Carathéodory class P.

Parametric representations of the coefficients are often useful. In Lemma 2.1, (2.2)
is due to Carathéodory [10]. Equation (2.3) can be found in [19]. In 1982, Libera and
Zlotkiewicz [14, 15] derived (2.4) with the assumption that c1 ≥ 0. Later, Cho et al. [7]
derived (2.4) in the general case and gave the explicit form of the extremal function.

LEMMA 2.1. If p ∈ P is of the form (2.1), then

c1 = 2p1, (2.2)

c2 = 2p2
1 + 2(1 − p2

1)p2 (2.3)

and

c3 = 2p3
1 + 4
(
1 − p2

1
)
p1 p2 − 2

(
1 − p2

1
)
p1 p2

2 + 2
(
1 − p2

1
)(

1 − |p2|2
)
p3 (2.4)

for some p1, p2, p3 ∈ D := {z ∈ C : |z| ≤ 1}.
For p1 ∈ T := {z ∈ C : |z| = 1}, there is a unique function p ∈ P with c1 as in (2.2),

namely

p(z) =
1 + p1z
1 − p1z

, z ∈ D.
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[5] Second Hankel determinant of logarithmic inverse coefficients 5

For p1 ∈ D and p2 ∈ T, there is a unique function p ∈ P with c1 and c2 as in (2.2)
and (2.3), namely

p(z) =
1 + (p1 + p1 p2)z + p2z2

1 − (p1 − p1 p2)z − p2z2 . (2.5)

For p1, p2 ∈ D and p3 ∈ T, there is unique function p ∈ P with c1, c2 and c3 as in
(2.2)–(2.4), namely

p(z) =
1 + (p2 p3 + p1 p2 + p1)z + (p1 p3 + p1 p2 p3 + p2)z2 + p3z3

1 + (p2 p3 + p1 p2 − p1)z + (p1 p3 − p1 p2 p3 − p2)z2 − p3z3 , z ∈ D.

Next we recall the following well-known result due to Choi et al. [8].

LEMMA 2.2. Let A, B, C be real numbers and

Y(A, B, C) := max
z∈D

(|A + Bz + Cz2| + 1 − |z|2).

(i) If AC ≥ 0, then

Y(A, B, C) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|A| + |B| + |C|, |B| ≥ 2(1 − |C|),

1 + |A| + B2

4(1 − |C|) , |B| < 2(1 − |C|).

(ii) If AC < 0, then

Y(A, B, C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − |A| + B2

4(1 − |C|) , −4AC(C−2 − 1) ≤ B2 ∧ |B| < 2(1 − |C|),

1 + |A| + B2

4(1 + |C|) , B2 < min{4(1 + |C|)2,−4AC(C−2 − 1)},

R(A, B, C), otherwise,

where

R(A, B, C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
|A| + |B| + |C|, |C|(|B| + 4|A|) ≤ |AB|,
−|A| + |B| + |C|, |AB| ≤ |C|(|B| − 4|A|),

(|A| + |C|)
√

1 − B2

4AC
, otherwise.

3. Main results

Now we will prove the first main result of this paper. We obtain the following sharp
bound for H2,1(F f −1/2) for functions in the class C.

THEOREM 3.1. For f ∈ C given by (1.1),

|H2,1(F f −1/2)| ≤ 1
33 . (3.1)

The inequality is sharp.
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PROOF. Let f ∈ C be of the form (1.1). Then by (1.7),

1 +
z f ′′(z)
f ′(z)

= p(z) (3.2)

for some p ∈ P of the form (2.1). Since the class C is invariant under rotation and the
function is also rotationally invariant, we can assume that c1 ∈ [0, 2]. Comparing the
coefficients on both sides of (3.2) yields

a2 =
1
2 c1,

a3 =
1
6 (c2 + c2

1),

a4 =
1
24 (2c3 + 3c1c2 + c3

1).

Hence, by (1.5),

H2,1(F f −1/2) = 1
2304 (11c4

1 − 20c2
1c2 − 16c2

2 + 24c1c3).

By (2.2)–(2.4), after simplification,

H2,1(F f −1/2) =
p4

1

48
− 1

24
(1 − p2

1)p2
1 p2 −

1
72

(1 − p2
1)(2 + p2

1)p2
2

+
1
24

(1 − p2
1)(1 − |p2

1|)p1 p3. (3.3)

We consider three cases according to the value of p1.

Case 1: p1 = 1. By (3.3),

|H2,1(F f −1/2)| = 1
48 .

Case 2: p1 = 0. By (3.3),

|H2,1(F f −1/2)| = 1
36 |p

2
2| ≤ 1

36 .

Case 3: p1 ∈ (0, 1). Since |p3| ≤ 1, applying the triangle inequality in (3.3) gives

|H2,1(F f −1/2)| = 1
24

p1(1 − p2
1)
(∣∣∣∣∣ p3

1

2(1 − p2
1)
− p1 p2 −

2 + p2
1

3p1
p2

2

∣∣∣∣∣ + 1 − |p2
2|
)

≤ 1
24

p1(1 − p2
1)(|A + Bp2 + Cp2

2| + 1 − |p2
2|), (3.4)

where

A :=
p3

1

2(1 − p2
1)

, B := −p1, C := −
2 + p2

1

3p1
.

Since AC < 0, we can apply Lemma 2.2(ii). The argument now divides into five parts.

3(a). For p1 ∈ (0, 1),

−4AC
( 1
C2 − 1

)
− B2 = −

p2
1(14 + p2

1)

3(2 + p2
1)
≤ 0.
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[7] Second Hankel determinant of logarithmic inverse coefficients 7

The inequality |B| < 2(1 − |C|) is equivalent to p1(4 − 6p1 + 5p2
1) < 0 which is not true

for p1 ∈ (0, 1).

3(b). It is easy to check that

min
{
4(1 + |C|)2,−4AC

( 1
C2 − 1

)}
= −4AC

( 1
C2 − 1

)
,

and from 3(a),

−4AC
( 1
C2 − 1

)
≤ B2.

Therefore, the inequality B2 < min{4(1 + |C|)2,−4AC(1/C2 − 1)} does not hold for
0 < p1 < 1.

3(c). The inequality |C|(|B|+ 4|A|)− |AB| ≤ 0 is equivalent to 4+ 6p2
1 − p4

1 ≤ 0, which is
false for p1 ∈ (0, 1).

3(d). The inequality

|AB| − |C|(|B| − 4|A|) =
9p4

1 + 10p2
1 − 4

1 − p2
1

≤ 0

is equivalent to 9p4
1 + 10p2

1 − 4 ≤ 0, which is true for

0 < p1 ≤ p′1 =
1
3

√√
61 − 5 ≈ 0.5588.

It follows from Lemma 2.2 and (3.4) that

|H2,1(F f −1/2)| ≤ 1
24 p1(1 − p2

1)(−|A| + |B| + |C|) = 1
144 (4 + 4p2

1 − 11p4
1) = h(p1),

where h(x) = 4 + 4x2 − 11x4. By a simple calculation, the maximum of the function
h(x) for 0 < x ≤ p′1 occurs at the point x0 =

√
2/11. We conclude that

|H2,1(F f −1/2)| ≤ h
(√

2
11

)
= 1

33 .

3(e). For p′1 < p1 < 1, we use the last case of Lemma 2.2 together with (3.4) to obtain

|H2,1(F f −1/2)| ≤ 1
24

p1(1 − p2
1)(|C| + |A|)

√
1 − B2

4AC

=
1

144
(p4

1 − 2p2
1 + 4)

√
7 − p2

1

4 + 2p2
1

= k(p1),

where

k(x) =
1

144
(x4 − 2x2 + 4)

√
7 − x2

4 + 2x2 .
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We want to find the maximum of k(x) over the interval p′1 < x < 1. Observe that

k′(x) =
x

144

√
7 − x2

4 + 2x2

(92 − 54x2 − 15x4 + 4x6

(−7 + x2)(2 + x2)

)
= 0

if and only if 92 − 54x2 − 15x4 + 4x6 = 0. However, all the real roots of this equation
lie outside the interval p′1 < x < 1 and k′(x) < 0 for p′1 < x < 1. So k is decreasing and
hence k(x) ≤ k(p′1) for p′1 < x < 1. We conclude that, for p′1 < x < 1,

|H2,1(F f −1/2)| ≤ k(p′1) ≈ 0.0290035.

The desired inequality (3.1) follows from Cases 1–3. By tracking back in the proof,
we see that equality in (3.1) holds when

p1 =

√
2
11 , p3 = 1,

and

|A + Bp2 + Cp2
2| + 1 − |p2

2| = −|A| + |B| + |C|, (3.5)

where

A = 1
9

√
2
11 , B = −

√
2
11 , C = 4

√
2
11 .

Indeed, we can easily verify that one of the solutions of (3.5) is p2 = 1. In view of
Lemma 2.2, we conclude that equality holds for the function f ∈ A given by (1.7),
corresponding to the function p ∈ P of the form (2.5) with p1 =

√
2/11, p2 = 1 and

p3 = 1, that is,

p(z) =
1 + 2

√
2/11z + z2

1 − z2 .

This complete the proof. �

Next, we obtain the sharp bound for H2,1(F f −1/2) for functions in the class S∗.

THEOREM 3.2. For f ∈ S∗ given by (1.1),

|H2,1(F f −1/2)| ≤ 13
12 . (3.6)

The inequality is sharp.

PROOF. Let f ∈ S∗ be of the form (1.1). By (1.6),

z f ′(z)
f (z)

= p(z) (3.7)

for some p ∈ P of the form (2.1). By comparing the coefficients on both sides of (3.7),

a2 = c1,

a3 =
1
2 (c2 + c2

1),

a4 =
1
6 (2c3 + 3c1c2 + c3

1).
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Hence, by (1.5),

H2,1(F f −1/2) = 1
48
(
6c4

1 − 6c2
1c2 − 3c2

2 + 4c1c3
)
.

From (2.2)–(2.4), by straightforward computation,

H2,1(F f −1/2) = 13
12 p4

1 − 5
2 (1 − p2

1)p2 − 1
12 (1 − p2

1)(3 + p2
1)p2

2

+ 1
3 (1 − p2

1)(1 − |p2
1|)p1 p3. (3.8)

Now we consider three cases according to the value of p1.

Case 1: p1 = 1. By (3.8),

|H2,1(F f −1/2)| = 13
12 .

Case 2: p1 = 0. By (3.8),

|H2,1(F f −1/2)| = 1
4 |p

2
2| ≤ 1

4 .

Case 3: p1 ∈ (0, 1). Applying the triangle inequality in (3.8) and using the fact that
|p3| ≤ 1,

|H2,1(F f −1/2)| = 1
3

p1(1 − p2
1)
(∣∣∣∣∣ 13p3

1

4(1 − p2
1)
− 5

2
p1 p2 −

3 + p2
1

4p1
p2

2

∣∣∣∣∣ + 1 − |p2
2|
)

≤ 1
24

p1(1 − p2
1)(|A + Bp2 + Cp2

2| + 1 − |p2
2|),

where

A :=
13p3

1

4(1 − p2
1)

, B := −5
2

p1, C := −
3 + p2

1

4p1
.

Since AC < 0, we can apply Lemma 2.2(ii).

3(a). For p1 ∈ (0, 1),

−4AC
( 1
C2 − 1

)
− B2 = −

3p2
1(16 + p2

1)

(3 + p2
1)

≤ 0.

The inequality |B| < 2(1 − |C|) is equivalent to 3 − 4p1 + 2p2
1 < 0 which is not true for

p1 ∈ (0, 1).

3(b). It is easy to see that

min
{
4(1 + |C|)2,−4AC

( 1
C2 − 1

)}
= −4AC

( 1
C2 − 1

)
,
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and from 3(a),

−4AC
( 1
C2 − 1

)
≤ B2.

Therefore, the inequality B2 < min{4(1 + |C|)2,−4AC(1/C2 − 1)} does not hold for
0 < p1 < 1.

3(c). The inequality |C|(|B| + 4|A|) − |AB| ≤ 0 is equivalent to the inequality 44p4
1 −

68p2
1 − 16 − p4

1 ≥ 0, which is false for p1 ∈ (0, 1).

3(d). The inequality

|AB| − |C|(|B| − 4|A|) =
96p4

1 + 88p2
1 − 15

1 − p12 ≤ 0

is equivalent to 96p4
1 + 88p2

1 − 15 ≤ 0, which is true for

0 < p1 ≤ p′′1 =
1
2

√√
211 − 11

6
≈ 0.38328.

From (3.7) and Lemma 2.2,

|H2,1(F f −1/2)| ≤ 1
3 p1(1 − p2

1)(−|A| + |B| + |C|) = 1
12 (3 + 8p2

1 − 24p4
1) = h(p1), (3.9)

where h(x) = 3 + 8x2 − 24x4. Since h′(x) > 0 in 0 < x ≤ p′′1 , we have h(x) ≤ h(p′′1 ) for
0 < x ≤ p′′1 . Therefore,

|H2,1(F f −1/2)| ≤ 1
48 (−58 + 5

√
211) ≈ 0.304775.

3(e). Furthermore, for p′′1 < p1 < 1, from (3.8) and Lemma 2.2,

|H2,1(F f −1/2)| ≤ 1
24

p1(1 − p2
1)(|C| + |A|)

√
1 − B2

4AC

=
1
6

(12p4
1 − 2p2

1 + 3)

√
16 − 3p2

1

39 + 13p2
1

= k(p1),

where

k(x) =
1
6

√
16 − 3x2

39 + 13x2 (12x4 − 2x2 + 3).

As k′(x) = 0 has no solution in (p′′1 , 1) and k′(x) > 0, the maximum occurs at x = 1 and
we conclude that

|H2,1(F f −1/2)| ≤ k(1) = 13
12 for p′′1 < x < 1.

The desired inequality (3.6) follows from Cases 1–3. For the equality, consider the
Koebe function

k(z) =
z

(1 − z)2 .
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Clearly, k ∈ S∗ and it is easy to show that

|H2,1(Fk−1/2)| = 13
12 .

This completes the proof. �
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