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Abstract

Let ζK(s) denote the Dedekind zeta-function associated to a number field K. We give an effective upper
bound for the height of the first nontrivial zero other than 1/2 of ζK(s) under the generalised Riemann
hypothesis. This is a refinement of the earlier bound obtained by Sami [‘Majoration du premier zéro de la
fonction zêta de Dedekind’, Acta Arith. 99(1) (2000), 61–65].
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1. Introduction

Let K/Q be a number field. The Dedekind zeta-function associated with K is defined
on Re(s) > 1 by

ζK(s) :=
∑
a

1
Nas

.

Here, a runs over all nonzero integral ideals of K. This function has an analytic
continuation to C except for a simple pole at s = 1. The zeros of ζK(s) in the critical
strip 0 < Re(s) < 1 are called the nontrivial zeros. One of the central problems in
analytic number theory is to study the order and magnitude of these nontrivial zeros.
The generalised Riemann hypothesis (GRH) says that all the nontrivial zeros of ζK(s)
lie on the vertical line Re(s) = 1

2 . Under GRH, one can consider the height of a zero,
that is, its distance from the point s = 1

2 . Define

τ(K) := min{t > 0 : ζK(1/2 + it) = 0},

the lowest height of a nontrivial zero of ζK(s) other than 1
2 . It is possible that ζK( 1

2 ) = 0,
as shown by Armitage [1] in 1971. However, it is believed that as we vary over number
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fields, ζK( 1
2 ) vanishes very rarely. Indeed, Soundararajan [13] showed that for a large

proportion (87.5%) of quadratic number fields, ζK( 1
2 ) � 0.

One of the natural questions is to obtain upper and lower bounds on τ(K). The
importance of studying τ(K) is evident from its connection to the discriminant of the
number field, as highlighted in the survey paper by Odlyzko [9]. The low-lying zeros of
ζK(s) also have consequences for Lehmer’s conjecture on heights of algebraic numbers
(see [4]). In 1979, Hoffstein [5] showed that for number fields K with sufficiently large
degree,

τ(K) ≤ 0.87.

For a number field K, denote by nK the degree [K : Q] and by dK the discriminant
disc(K/Q). Let αK be the log root discriminant of K defined by

αK :=
log |dK |

nK
.

In 1985, Neugebauer [8] showed the existence of a nontrivial zero of ζK(s) in the
rectangle

R = {σ + it | 1/2 ≤ σ ≤ 1, |t − T | ≤ 10},
for every T ≥ 50. Later in 1988, Neugebauer [7] derived an explicit upper bound,
namely either ζK(1/2) = 0 or

τ(K) ≤ min
{
60,

64π2

log
( 1

4 log(82 + 27αK)
)}. (1.1)

Tollis [14] conjectured that

τ(K) � 1
log |dK |

, (1.2)

where the implied constant is absolute. Although this remains open, Sami [12] showed
that under GRH,

τ(K) �nK

1
log log (|dK |)

.

Thus, the lowest zero of the Dedekind zeta function converges to 1
2 as we vary over

number fields with a fixed degree. In [6], an ineffective upper bound of a similar nature
has been obtained for newforms of weight k on Γ0(N).

Let τ0 := τ(Q) (= 14.1347 . . .) be the lowest zero of the Riemann zeta-function
ζ(s). Recall the famous Dedekind conjecture, which states that ζK(s)/ζ(s) is entire.
Therefore, one expects ζK(1/2 + iτ0) = 0 for all number fields K. Explicit upper
bounds for the height of the lowest zero (under GRH) for automorphic L-functions
were studied in [3], and Bllaca [2] examined the L-functions in the Selberg class. The
goal of this paper is to give a simple and effective version of Sami’s upper bound [12]
on the first zero of the Dedekind zeta function under GRH. We obtain the following
effective upper bound for the lowest zero of ζK(s).
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THEOREM 1.1. Let K be a number field such that the log root discriminant
αK > 6.6958 and ζK(1/2) � 0. Then, under GRH, either τ(K) ≥ τ0 or

τ(K) ≤ π
√

2 log(αK−1.2874
5.4084 )

.

REMARK 1.2. One can improve this bound using Hoffstein’s result [5, page 194],
which states that τ(K) ≤ 0.87 for all number fields with sufficiently large degree.
Indeed, the method of our proof shows that for number fields K with sufficiently large
degree, if αK > 6.4435, then under GRH,

τ(K) ≤ π
√

2 log(αK−1.2874
5.1561 )

.

Further, it follows from Hoffstein’s result that τ(K) ≤ 0.37 except for finitely many
number fields with αK ≤ 6.6958. Therefore,

τ(K) ≤ min

⎧⎪⎪⎨⎪⎪⎩0.37,
π

√
2 log(αK−1.2874

5.1561 )

⎫⎪⎪⎬⎪⎪⎭
for all but finitely many number fields.

Assuming GRH, Sami’s bound was improved by Carneiro et al. [3, Theorem 7],
where they showed that as αK → ∞,

τ(K) ≤ π

2 logαK
+ O
( log logαK

(logαK)2

)
. (1.3)

Note that Theorem 1.1 yields

τ(K) ≤ π
√

2 logαK

+ O
( 1
(logαK)2

)
.

So, Theorem 1.1 is weaker than (1.3) asymptotically. However, it holds for all number
fields K with αK ≥ 6.6958 without any error term.

Next, we address the case where ζK(s) vanishes at s = 1/2.

THEOREM 1.3. Suppose K is a number field with αK > 12.1048 and ζK(1/2) = 0. Let

A :=
π2

34.4
log log |dK |
αK

(αK − 1.2874) and B := 2 log
(
αK − 1.2874

10.8168

)
.

Then, under GRH, either τ(K) ≥ τ0 or

τ(K) ≤
√

2π
min{A, B} .

From Tollis’s conjecture (1.2), it is clear that over any family of number fields {Ki},
the height of the lowest zero τ(K) tends to 0. However, in Theorems 1.1 and 1.3 (also
in [12]), we show this for families of number fields {Ki}, where the root discriminant
tends to infinity. This property is also discussed in [15, Proposition 5.2]. Also note
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that the bound in Theorem 1.3 is weaker than that in Theorem 1.1. This is perhaps
indicative of the ‘zero repulsion’ effect due to the existing zero at 1

2 .

2. Preliminaries

In this section, we state and prove some results which will be useful in the proof of
the main theorems. We first recall Weil’s explicit formula. Let F be a real-valued even
function such that:

(i) F is continuously differentiable on R except at a finite number of points ai where
F(x) and its derivative F′(x) have only discontinuities of the first kind for which
F satisfies the mean condition, that is,

F(ai) = 1
2 (F(ai + 0) + F(ai − 0));

(ii) there exists b > 0 such that F(x) and F′(x) are O(e−(1/2+b)|x|) as x→ ∞.

Then, the Mellin transform of F, given by

Φ(s) :=
∫ ∞
−∞

F(x)e(s−1/2)x dx,

is holomorphic in any strip −a ≤ σ ≤ 1 + a, where 0 < a < b, a < 1. The following
explicit formula is due to Weil [10] (formulated by Poitou).

THEOREM 2.1 (Weil). Let F satisfy conditions (i) and (ii) above with F(0) = 1. Then,
the sum

∑
Φ(ρ) taken over the nontrivial zeros ρ = β + iγ of ζK(s) with |γ| < T has a

limit when T tends to infinity given by the formula∑
ρ

Φ(ρ) = Φ(0) + Φ(1) − 2
∑
p

∞∑
m=1

log(N(p))
N(p)m/2 F(m log(N(p))) + log(|dK |)

− nK[log(2π) + γ + 2 log(2)] − r1J(F) + nKI(F), (2.1)

where

J(F) =
∫ ∞

0

F(x)
2 cosh(x/2)

dx, I(F) =
∫ ∞

0

1 − F(x)
2 sinh(x/2)

dx

and γ = 0.57721566 . . . denotes the Euler–Mascheroni constant. Here, p runs over all
the prime ideals of K, N(p) denotes the ideal norm of p and r1 denotes the number of
real embeddings of K.

Observe that

Φ(0) + Φ(1) = 4
∫ ∞

0
F(x) cosh(x/2) dx.

For a function F ∈ L1(R), the Fourier transform of F is given by

F̂(t) :=
∫ ∞
−∞

F(x)e2πitx dx.
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Under GRH, we have Φ(ρ) = F̂(t), where ρ = 1/2 + it. Set FT (x) := F(x/T), then
F̂T (u) = TF̂(Tu). We now recall the following lemma proved in [12].

LEMMA 2.2 (Sami). Let F be a compactly supported even function defined on R by

F(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(1 − |x|) cos(πx) +
3
π

sin(π|x|) if 0 ≤ |x| ≤ 1,

0 otherwise.

Then, F satisfies the growth conditions of the explicit formula and

F̂(u) = 2
(
2 − u2

π2

)[ 2π
π2 − u2 cos(u/2)

]2
.

We also need the following straightforward lemma (proved by contradiction).

LEMMA 2.3. Let a, b, c be three positive real constants satisfying c > 2b. If T > 0 and
aT + beT/2 ≥ c, then

T ≥ min
( c
2a

, 2 log
( c
2b

))
.

3. Proof of the main theorems

The proof of our theorems follows a similar method to [12]. We start with the
following lemma.

LEMMA 3.1. Let FT (x) = F(x/T) as in the explicit formula (2.1). Then,

∑
p

∞∑
m=1

log(N(p))
N(p)m/2 FT (m log(N(p))) ≤ 1.2571 nK(2 eT/2 − 1),

where p runs over all prime ideals of K.

PROOF. Let p be a rational prime. Since
∑

p|p log N(p) ≤ nK log p,∑
p|p

log N(p)
N(p)m/2 ≤ nK

log p

pm/2 .

From the definition of F(x), it follows that |F(x)| ≤ 1.21. Hence, the above inequality
gives ∑

p,m

log N(p)
N(p)m/2 FT (m log N(p)) =

∑
m,p

∑
p|p

log N(p)
N(p)m/2 FT (m log N(p))

≤ 1.21 nK

∑
m log p≤T

log p

pm/2

= 1.21 nK

∑
n≤eT

Λ(n)
√

n
, (3.1)
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where Λ is the von Mangoldt function. Now, recall the Chebyshev function,

Ψ(x) :=
∑
n≤x

Λ(n).

Applying partial summation and using the bound Ψ(x) ≤ 1.0389 x by Rosser and
Schoenfeld [11],

∑
n≤eT

Λ(n)
√

n
=
Ψ(eT )
eT/2 +

1
2

∫ eT

1

Ψ(t)
t3/2 dt ≤ 1.0389 (2eT/2 − 1). (3.2)

From (3.1) and (3.2), the lemma follows. �

Let T =
√

2π/τ(K) and let F(x) be the function defined in Lemma 2.2. Applying
Theorem 2.1 to FT (x) = F(x/T),∑

ρ

Φ(ρ) = ΦT (0) + ΦT (1) − 2
∑
p,m

log(N(p))
N(p)m/2 FT (m log(N(p)))

+ log |dK | − nK[log(2π) + γ + 2 log(2)] − r1J(FT ) + nKI(FT ). (3.3)

Since τ(K) ≤ τ0, we have T ≥ 0.314. For such T, the remaining terms on the right-hand
side of (3.3) can be bounded by

J(FT ) =
∫ T

0

F(x/T)
2 cosh(x/2)

dx ≤ 0.276 eT/2, (3.4)

I(FT ) =
∫ T

0

1 − F(x/T)
2 sinh(x/2)

dx ≥ −0.1034 eT/2. (3.5)

We are now ready to prove our theorems.

PROOF OF THEOREM 1.1. Since ζK(1/2) � 0, (3.3) gives

log |dK | + ΦT (0) + ΦT (1) ≤ 2
∑
p,m

log(N(p))
N(p)m/2 FT (m log(N(p)))

+ nK[log(2π) + γ + 2 log(2)] + r1J (FT ) − nKI(FT ).

From Lemma 2.2 along with (3.4) and (3.5),

log |dK | ≤ 5.4084 nKeT/2 + 1.2874 nK .

Thus, αK − 1.2874 ≤ 5.4084 eT/2 and, for αK > 6.6958,

T ≥ 2 log
(
αK − 1.2874

5.4084

)
.

Since T =
√

2π/τ(K), the theorem follows. �
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PROOF OF THEOREM 1.3. Here, ζK( 1
2 ) = 0 and therefore (3.3) gives

log |dK | + ΦT (0) + ΦT (1) ≤ 2
∑
p,m

log(N(p))
N(p)m/2 FT (m log(N(p)))+

+ nK[log(2π) + γ + 2 log(2)] + r1J(FT ) − nKI(FT ) +
16
π2 rT ,

where r is the order of ζK(s) at 1/2. As before, using Lemma 2.2 along with (3.4)
and (3.5),

log |dK | ≤ 5.4084 nKeT/2 + 1.2874 nK +
16
π2 rT .

From [12, Proposition 1], we can bound the order of the zero of ζK(s) at s = 1/2 by

r ≤ log |dK |
log log |dK |

+
nK

2 log log |dK |
.

Thus,

αK − 1.2874 ≤ 5.4084 eT/2 +

(17.2
π2

αK

log log |dK |

)
T .

Using Lemma 2.3 with

a =
(17.2
π2

αK

log log |dK |

)
, b = 5.4084, c = αK − 1.2874,

we conclude that

τ(K) ≤
√

2π
min{A, B} ,

where A, B are as in the statement of the theorem. This completes the proof. �

4. Computational data and concluding remarks

Let K = Q(β) be a number field and mβ(x) be the minimal polynomial of β. Using
SageMath, we can compare the lowest zero and the bounds obtained using Theorem 1.1
(see Table 1).

However, we can also compare Theorem 1.1 with Neugebaur’s bound in (1.1).
Although the bound in (1.1) is unconditional, it applies only for the cases where αK is
very large (> 1064849), whereas Theorem 1.1 applies for all K with αK ≥ 6.6958.
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TABLE 1. Comparing the bound in Theorem 1.1 with the height of the first zero.

mβ(x) αK τ(K) Bound in Theorem 1.1

x2 + 510510 7.26472993307674 0.195366057287247 22.2098243056698
x2 + 9699690 8.73694942265996 0.250485767971509 6.93766313396318
x2 + 223092870 10.3046965306245 0.282126995483731 4.34561699877460
x2 + 6469693230 11.9883444456178 0.223870166465309 3.25543786648311
x2 + 200560490130 13.7053380478603 0.0869456767128933 2.67260773966497
x3 + 30030 7.97191372931969 0.249553262973507 10.4864035098435
x4 + 30030 9.11875848185292 0.0668359001429184 6.00093283699129
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