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Direct numerical simulations of turbulent channel flow subjected to spanwise wall
oscillations in the form of streamwise travelling waves (STW) were performed in an
effort to elucidate the mechanism responsible for the observed drag reduction. We
imposed large amplitudes to identify the proper effects of STW, while keeping the angular
frequency and wavenumber fixed at a particular values. We primarily focus on the vorticity
transport mechanism, to better understand the influence of STW actuation on the near-wall
turbulence. We identify key terms appearing in the turbulent enstrophy transport equations
that are directly linked to the STW actuation. The analysis reveals that the primary
effect of the STW forcing is to attenuate the spanwise turbulent enstrophy at the wall,
which is linked to the fluctuating wall shear stress. The suppression of the wall-normal
turbulent enstrophy is deemed to be subordinate. To strengthen this point, we performed
numerical experiments, where the streamwise fluctuating velocity, and consequently the
spanwise vorticity, is artificially suppressed next to the wall. The anisotropic invariant
maps show striking resemblance for large amplitude STW actuation and artificially forced
cases. Detailed analysis of various structural features is provided, which includes the
response of the near-wall streaks and shear layers of spanwise fluctuating velocity field.
The quasistreamwise vortices, which play a key role in the regeneration mechanism, are
shown to be pushed away from the wall, resulting in their weakened signature at the wall.

Key words: drag reduction, turbulence control

1. Introduction

Drag reduction in turbulent flows is a crucial and dynamic field of research that
holds substantial practical importance in various industrial sectors. Turbulent flows,
characterized by irregular, chaotic fluid motion, often result in elevated levels of
frictional resistance, which ultimately translates into increased drag. This leads to elevated
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energy consumption, causing significant economic and environmental repercussions. As
such, mitigating drag in turbulent flows is a vital endeavour for industries, including
transportation, aviation and energy production. Until now, various novel techniques
have been explored, including the application of various additives, surface coatings
and fluid control mechanisms, to optimize and fluid flow and enhance efficiency while
simultaneously reducing costs and emissions. Among these, spanwise wall oscillations
techniques prove to be one of the most promising approaches towards reducing the
skin-friction drag and, undoubtedly, still receives a considerable attention from the drag
control community.

Despite the continuous efforts in investigating the various captivating features of
spanwise wall oscillations techniques, the mechanism responsible for the observed drag
reduction (DR) is still far from being fully understood. The primary focus of most of the
earlier investigations, for example of Quadrio & Ricco (2003), Gatti & Quadrio (2013),
Hurst, Yang & Chung (2014), Gatti & Quadrio (2016) and Marusic et al. (2021), has
been to explore the parametric space to find the optimal set of parameters that leads
to DR at different Reynolds numbers (Re) and/or to develop scaling laws that predict
DR for different actuation scenarios. Studies that primarily target on elucidating the
mechanism behind the observed DR are quite rare. The reader is directed to Ricco, Skotes
& Leschziner (2021) for a recent review on different wall oscillations techniques.

In the present study we focus on the spanwise wall oscillations in the form of streamwise
travelling waves (STW) governed by

Wwall = A sin(κx − ωt), (1.1)

where A is the amplitude, ω = 2π/T is the angular frequency and κ = 2π/λ is the
wavenumber (T and λ represent the time period and wavelength of the travelling wave,
respectively). This type of wall-forcing was first studied numerically by Quadrio, Ricco
& Viotti (2009). Throughout the paper x, y and z represent the streamwise, wall-normal
and spanwise directions, respectively, and t is time. The corresponding instantaneous
velocities in the streamwise, wall-normal and spanwise directions are U, V and W,
respectively. Throughout this paper, the terms ‘actuation’, ‘forcing’ and ‘control’ are used
interchangeably.

The above forcing results in a streamwise modulated spanwise boundary layer, known
as the generalized Stokes layer (GSL) (Quadrio & Ricco 2011). The GSL interacts with
the background turbulence to produce either drag reduction or drag increase, depending on
the control parameters A, ω and κ . Under the assumption that the thickness of the GSL is
much smaller than the channel half-height, Quadrio & Ricco (2011) derived an analytical
expression that was found to agree well with the turbulent space-averaged spanwise flow
and possess good predictive capabilities for DR margin at low Re. From here on, we will
simply be referring to the GSL as the Stokes layer. Most of the scaling laws introduced so
far fail at large Re. One such good example that clarifies this issue is the recent pathway
introduced by Marusic et al. (2021) where they impose STW at small frequency coupled to
the large scales that leads to approximately 13 % DR margin at friction Reynolds number
Reτ = 12 800, while the correlations of Gatti & Quadrio (2016) predict almost little to
no DR margin. Predicting DR margins at Re of practical relevance is still an ongoing
challenge.

Even though the precise reason behind the turbulence suppression is still unclear,
nevertheless, considerable advances have been made towards unravelling the key
interactions occurring in the turbulent flow field controlled by spanwise wall oscillations.
Most of the early investigations support the idea that the generated Stokes layer perturbs
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the near-wall turbulence by distorting and shifting the position of the near-wall low-speed
streaks relative to the quasistreamwise vortices (QSVs), thus resulting in the suppression of
turbulence intensity and drag reduction (Jung, Mangiavacchi & Akhavan 1992; Akhavan,
Jung & Mangiavacchi 1993; Laadhari, Skandaji & Morel 1994). Choi, DeBisschop &
Clayton (1998) argued that the action of the Stokes layer generated by the wall motion
is to tilt the vorticity vector in the spanwise direction, thus generating a mean negative
spanwise vorticity in the viscous sublayer, and hence reduced drag. This view is in line
with the study of Dhanak & Si (1999), who used the model proposed by Orlandi &
Jiménez (1994), and studied the effect of wall oscillations on the near-wall QSVs. They
showed that the effect of wall oscillation is to promote the interaction of the near-wall
coherent structures with the wall, leading to their rapid annihilation. The wall oscillation
distorts the near-wall low-speed streaks owing to mixing of the momentum associated with
the low-speed ejection regions and that associated with the high-speed ‘sweep’ regions,
resulting in a reduction in the rate of momentum convection normal to the wall. This in
turn has a direct impact on the Reynolds stress and the skin friction.

Touber & Leschziner (2012) analysed the Reynolds stress budgets in the flows controlled
by the homogeneous wall oscillations (HWO). They concluded that the primary cause of
the suppression of the near-wall turbulence is the reduction in the wall-normal component
of the Reynolds stress tensor. They showed that at the optimum forcing period the
organization of the low-speed streaks is severely disrupted owing to the rapid change
in the Stokes strain, resulting in their suppression, and hence a significant reduction in
skin-friction.

Motivating the connection between the global enstrophy and the turbulent kinetic energy
dissipation, Ricco et al. (2012) and Ge & Jin (2017) studied the transient response of the
global turbulent enstrophy in a turbulent channel flow subjected to HWO. They found that
after a sudden implementation of spanwise oscillations, the turbulent enstrophy shows a
transient increase, which directly enhances the turbulent dissipation. As a consequence,
the turbulent activity is suppressed by the transient increase of the turbulent enstrophy in
the initial phase, which drifts the flow towards the low-drag state.

Agostini, Touber & Leschziner (2014, 2015), however, adopted a different approach
where they intentionally impose HWO at suboptimal period to allow the flow field
to oscillate about a mean low-drag state. They showed that the drag reduction phases
extend over a longer proportion of the cycle than the subsequent drag increase phases,
and hence display a hysteresis. Agostini et al. (2015) observed a strong increase in
the spanwise turbulent enstrophy during the drag reduction phase, and identified the
Stokes-strain-driven production terms related to vortex tilting and stretching in the regions
of high skewness being responsible for the observed effect. They showed that the spanwise
tilting of wall-normal turbulent vorticity (that are primarily linked to the near-wall streaks)
provoke a strong increase in the skewness near the wall, resulting in reduction in the shear
stress. However, a closer look at their plots reveals that the spanwise turbulent enstrophy
is annihilated at the drag reduction phases next to the wall – an observation very similar to
what we will show in the present study in the case of STW actuation.

Experimental studies on the subject are quite rare owing to the complexity in imposing
wall oscillations. Most of the experimental studies were either conducted in a pipe flow
configuration or developing boundary layer flow over a flat plate. The results coming from
the experimental studies of Laadhari et al. (1994), Trujillo, Bogard & Ball (1997), Choi
et al. (1998), Ricco (2004), Auteri et al. (2010) and Kempaiah et al. (2020) show good
agreement with the numerical investigations presented above. The recent experimental
study by Marusic et al. (2021) promises net DR even at large Re.
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From the review of the state-of-the-art, it is fair to state that a clear and unambiguous
explanation of the drag reduction mechanism is still lacking. Most of the advances towards
understanding the underlying physical mechanism mentioned above stem from the HWO
forcing. In the context of STW, not much has been reported, except for the recent study
by Umair, Tardu & Doche (2022) who adopted a similar approach to Touber & Leschziner
(2012) and studied the full Reynolds stresses budgets in the flows controlled using STW.
In this paper, delving deeper in to the mechanism, we investigate the vorticity transport in
a turbulent channel flow with STW actuation. The primary focus is kept on the physical
modifications in the near-wall turbulent flow field instigated by the STW actuation. We
cover a broad regime of drag reduction margin ranging from approximately 20 %–60 %,
with a particular emphasis on the large amplitude STW that yield significantly large drag
reduction margins. The idea is to identify the key terms arising in the transport equations
of the spanwise, streamwise and wall-normal turbulent enstrophy that significantly alter
the near-wall turbulence. By means of a few numerical experiments, we show a striking
resemblance in the trajectory of the anisotropy invariants of the large amplitude STW and
artificial suppression of turbulent activity. Furthermore, we show the influence of STW
on the near-wall quasistreamwise vortical structures, and estimate the DR margin using
their drift. Finally, we explain the appearance of organized regular patterns of spanwise
fluctuating velocity field observed by Umair et al. (2022).

This paper is organized as follows. The computational details and control parameters
are described in § 2. The effect of STW control on the transport of turbulent enstrophy
is discussed in § 3. In § 4, a detailed discussion on the anisotropy invariant maps of
the controlled flow field is provided, and the results from the numerical experiments of
artificial suppression of turbulent activity are described. Next, a detailed discussion on the
modification of the near-wall flow structures is provided in § 5. Finally, the main findings
of this paper are summarized in § 6.

2. Numerical details

In the present study, the DNS data of Umair et al. (2022) is used to study the vorticity
transport mechanism in a turbulent channel flow subjected to STW. All the simulations
were performed at a constant flow rate condition. The schematic diagram in figure 1 shows
the domain in the form of a channel with the imposed control. The Reynolds number
Re(= hUc/ν) was fixed at 4200, where h is the channel half-height, Uc is the centreline
velocity of the plane Poiseuille flow and ν is the kinematic viscosity of the fluid. It
corresponds to a friction Reynolds number Reτ = huτ /ν = 180 for the uncontrolled case
(uτ being the friction velocity). The amplitude (A) of the STW was varied from 0.15Uc
to 1.25Uc, while ω and κ were kept fixed at 0.16 and 1.66 in outer units based on h
and Uc, respectively. This results in a DR margin of approximately 60 % for the largest
amplitude case A1.25. The corresponding DR(= −�Cf /Cf 0) margins and the actual
(local) friction Reynolds numbers (Reτ ) for all the cases are listed in table 1. Here, Cf is
the skin-friction coefficient for the controlled flow and Cf 0 is the skin-friction coefficient
for the uncontrolled flow. The skin-friction coefficient is defined as Cf = 2τw/ρU2

b , where
τw is the wall shear-stress averaged over homogeneous directions x and z, ρ is the density
of the fluid and Ub(= 2Uc/3) is the bulk flow velocity. The periodic boundary condition
was employed in the streamwise and spanwise directions. The size of the computational
domain was selected to accommodate at least six wavelengths, and is 6πh × 2h × 3πh
long in the streamwise, wall-normal and spanwise directions, respectively. The nodes are
uniformly distributed in the streamwise and spanwise directions, while it is stretched in
the wall-normal direction using a hyperbolic tangent distribution. The corresponding grid
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Figure 1. Schematic diagram of the rectangular channel of size Lx × Ly × Lz = 6πh × 2h × 3πh in the
streamwise, wall-normal and spanwise directions, respectively, subjected to spanwise wall oscillations in
the form of STW. The diagram also shows the instantaneous visualizations of the near-wall streaks of
streamwise fluctuating velocity field (u), marked with blue (u < 0) and red (u > 0) contours. The near-wall
quasistreamwise vortical structures (QSVs) (identified using λ2 = −0.02) that are responsible for the
generation of skin-friction are shown in grey colour, with their centres – identified using the eduction scheme
of Jeong et al. (1997) – marked in green. The diagram also shows the waveform used for the actuation and the
corresponding phase-averaged profiles of the spanwise velocity 〈W〉 for the A0.50 case. The phase-averaged
profiles collapse well with the laminar solution (represented by dots) derived by Quadrio & Ricco (2011).

resolutions are 8.5, 5 and 0.5–5.5 in wall units based on Reτ of the uncontrolled flow.
The solutions were advanced in time with time steps of 0.04 and 0.008 wall units for the
uncontrolled and controlled cases, respectively.

The statistical quantities for the uncontrolled flow were obtained using 50 full
three-dimensional (3-D) snapshots of velocity and pressure fields, covering a time window
of 37 000 wall units, separated by 770 wall units. The statistical quantities for the
controlled cases were obtained by employing the classical triple decomposition of Hussain
& Reynolds (1970), where an instantaneous quantity, for example, U is decomposed
into a time-invariant mean component (U), a periodic fluctuating component (Ũ) and
a purely stochastic component (u). This decomposition can be expressed as U = U +
Ũ + u = 〈U〉 + u, where 〈·〉 represents the phase-averaged quantity. The phase-averaged
quantities were obtained by averaging the corresponding instantaneous quantity over the
phase ξ = x − ct of the travelling wave, where c = ω/κ is the wave speed. The initial
20 cycles were discarded to elapse the initial transients, to ensure that the data collected
to perform statistical calculations does not lie in the transient phases where the control
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Case Uncontrolled HWO A0.15 A0.30 A0.50 A0.75 A0.95 A1.25

A/Uc — 0.51 0.50 0.30 0.50 0.75 0.95 1.25
A/uτ0 — 12.0 3.5 7.0 11.7 17.5 22.2 29.2
A/uτ — 14.9 4.0 9.0 16.1 25.3 32.7 44.3
DR(%) — 36 26 42 48 52 54 58
Reτ 179.8 144.2 156.9 139.0 130.7 124.5 121.9 118.4
Marker

Table 1. The details of the control parameters, the corresponding DR margins and the actual (local) friction
Reynolds number for the controlled cases. The values of angular frequency (ω) and wavenumber (κ) of
STW were kept fixed at 0.16 and 1.66 in outer units based on the channel half-height (h) and the centreline
velocity (Uc) of the plane Poiseuille flow, respectively.

drives the flow towards the drag reduced state. The data was collected for at least 40
cycles, corresponding to a time window of 12 000 wall units. This resulted in a computing
time of approximately 90 000 core hours alone for the STW cases, distributed across
128 processors on the computational clusters of GRICAD, University of Grenoble-Alpes.
We carefully compared the phase-averaged profile of the spanwise velocity 〈W〉 with the
laminar solution of Quadrio & Ricco (2011) for all the control cases listed in table 1, and
found that we are in the GSL regime. For instance, it is seen at the top of figure 1 that the
phase-averaged spanwise velocity profiles 〈W〉 (represented by lines) collapse well with
the laminar solution of Quadrio & Ricco (2011) (represented by dots) for the A0.50 case.

The simulations for the artificially forced cases (presented in § 4) were started from
an initial turbulent flow field at Reτ = 180, and the flow was left to develop for at least
3000 wall units before collecting the data to compute statistics to avoid biases in the
statistical calculations related to the transient interval. Statistical data for these cases were
obtained by averaging 25 full 3-D snapshots of instantaneous velocities and pressure fields,
covering a time window of approximately 5000 wall units separated by approximately 200
wall units. Further details about the numerical schemes and the description of the code
MULTIFAST used to perform the calculations are provided in Bauer, Tardu & Doche
(2015) and Umair et al. (2022).

Note that throughout the paper, we consistently used the local scaling parameters based
on the actual Reτ of the respective case, for reasons detailed in Umair et al. (2022).
Wherever necessary, a subscript ‘0’ was put on the quantities to highlight the use of
reference scaling based on the Reτ of the uncontrolled reference flow.

3. Turbulent enstrophy transport

3.1. Spanwise enstrophy transport
Figure 2 shows the response of turbulent enstrophy for all the cases listed in table 1. In
canonical wall-bounded turbulent flows, the spanwise turbulent vorticity ωz is dominant
next to the wall. It is approximately equivalent to the uniform streamwise fluctuating
stress τ ′ up to y = 3, i.e. ωz ≈ −∂u/∂y. In the large amplitude STW cases, ωz is entirely
annihilated up to y = 8, with a negligible turbulent activity at the wall (i.e. τ ′ ≈ 0), and
its peak is pushed towards the high buffer layer at y = 20. This can be attributed to the
strong damping of the near-wall streaks of streamwise fluctuating velocity. This is one of
the outstanding effects of STW control compared with the HWO control – the profile of
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Figure 2. Mean profiles of turbulent enstrophy in each direction for uncontrolled and controlled cases:
(a) streamwise ωxωx; (b) wall-normal ωyωy; and (c) spanwise ωzωz. Note that all the profiles are scaled with
the local friction velocities of the drag reduced flows. Refer to table 1 for markers corresponding to different
cases.
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Figure 3. Budget of spanwise turbulent enstrophy transport for (a) HWO and (b) A1.25 cases. The budget for
the reference (uncontrolled) canonical case is also included in (a) in grey broken lines for comparison. The
mean advection term Aωzωz is negligible, and hence not displayed in the figures to avoid cluttering.

which collapses rather with the small amplitude STW case A0.30 (figure 2c). In the HWO
case ωzωz is damped in the viscous sublayer with a maximum at approximately y = 10.

The production term for the mean spanwise turbulent enstrophy ωzωz reads

Pωzωz = 2Ω̃x

〈
ωz

∂w
∂x

〉
︸ ︷︷ ︸

P1
ωzωz

+ 2Ω̃y

〈
ωz

∂w
∂y

〉
︸ ︷︷ ︸

P2
ωzωz

+ 2Ω̃z

〈
ωz

∂w
∂z

〉
︸ ︷︷ ︸

P3
ωzωz

+ 2Ωzωz
∂w
∂z︸ ︷︷ ︸

P4
ωzωz

+ 2ωxωz
∂w
∂x︸ ︷︷ ︸

P5
ωzωz

+ 2ωyωz
∂w
∂y︸ ︷︷ ︸

P6
ωzωz

+ 2ωzωz
∂w
∂z︸ ︷︷ ︸

P7
ωzωz

+ 2〈ωxωz〉∂W̃
∂x︸ ︷︷ ︸

P8
ωzωz

+ 2〈ωyωz〉∂W̃
∂y︸ ︷︷ ︸

P9
ωzωz

. (3.1)

The complete transport equation for each component can be found in Appendix A. The
terms with ‘∼’ are purely a consequence of the periodic forcing in the form of spanwise
wall oscillations. In the canonical turbulent channel flows, the mean production term Pωzωz
peaks at approximately y = 4 within the viscous sublayer, and is roughly in equilibrium
with the dissipation, as shown by the profiles in broken lines in figure 3(a). The viscous and
turbulent diffusion terms are negligible except next to the wall at which they equilibrate
mutually as expected. In the controlled cases, however, all the transport terms are shifted
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Figure 4. Dissipation term (εωzωz ) for the spanwise turbulent enstrophy. Refer to table 1 for markers
corresponding to different cases.

away from the viscous sublayer. In the HWO and low amplitude STW (A < 0.50) cases,
the total mean production term peaks at approximately y = 9, and it is even further shifted
towards the middle of the buffer layer at y ≈ 20 for the large amplitude STW cases
(figure 3b). A similar attenuation and shift can also be observed in the dissipation εωzωz
(figure 4).

In the canonical turbulent channel flows, the main contribution to the total production
of ωz comes from P4

ωzωz
which emanates from the stretching of the spanwise vorticity

interacting with the mean shear Ωz. It peaks at roughly y = 5 in the viscous sublayer
(figure 5c). For the large amplitude STW cases, it is almost annihilated up to y = 10 and
there is a shift in its peak of approximately 10 wall units. There is a difference in its
maximum of approximately 20 % for the A1.25 case compared with the HWO case.

The Stokes straining production terms P1
ωzωz

and P2
ωzωz

act to destroy the production
of ωz (figure 5a,b). The former originates from the twisting of Ω̃x by the local ∂w/∂x
gradient, while the latter due to the tilting of Ω̃y by the local ∂w/∂y gradient. In the
case of HWO, P1

ωzωz
is almost negligible and P2

ωzωz
is obviously absent (as ∂W̃/∂x = 0),

suggesting that both of these terms are a result of particular effects of STW.
There is another Stokes straining term, denoted by P9

ωzωz
, that is significant in both the

HWO and STW cases. It results from the tilting of ωy by the Stokes strain ∂W̃/∂y, and is
large next to the edge of the viscous sublayer (figure 5e). The terms P1

ωzωz
and P9

ωzωz
can

be combined to give

P1∗
ωzωz

= P1
ωzωz

+ P9
ωzωz

= 2
∂W̃
∂y

〈
ωz

∂u
∂z

〉
. (3.2)

The resulting term P1∗
ωzωz

now has a different physical meaning. As 〈ωz∂u/∂z〉 represents

twisting of ωx in its transport equation, P1∗
ωzωz

therefore represents the Stokes straining of
〈ωz∂u/∂z〉 by the deterministic streamwise vorticity Ω̃x. Figure 5( f ) clearly shows that
P1∗

ωzωz
is strongly attenuated in the STW cases of large amplitudes (A > 0.5), and its peak

is further shifted away towards the buffer layer compared with HWO. The shift in P1∗
ωzωz

is
as large as twice the thickness of the viscous sublayer for A1.25 case with respect to the
HWO case.
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Figure 5. Production terms (a) P1
ωzωz

, (b) P2
ωzωz

, (c) P4
ωzωz

, (d) P6
ωzωz

, (e) P9
ωzωz

and ( f ) P1∗
ωzωz

. Refer to table 1
for markers corresponding to different cases.

A closer look at figure 6 reveals another peculiar behaviour of the ωzωz production
mechanism next to the wall. The production terms P2

ωzωz
and P6

ωzωz
cancel each other

in the viscous sublayer and low buffer layer up to y = 10. Figure 6(c) shows how well
their phase averages coincide in a somewhat unexpected way at y = 2. It is important to
note that there is no direct link between P2

ωzωz
and P6

ωzωz
. The former results from Stokes

straining, while the latter comes from the local tilting term 〈ωy∂w/∂y〉. Next to the wall,
P6

ωzωz
reduces to the triple correlation ωxωyωz, and can hardly be connected to P2

ωzωz
. The

deterministic ∂〈W〉/∂x reaches very large values at large imposed amplitudes next to the
wall, and correlates almost perfectly with 〈ωz∂w/∂y〉 (figure 6d).

To summarize, figure 6 recapitulates the major production terms of the ωzωz transport
equations, and figure 7 summarizes its main characteristics. There are finally two terms,
namely, P4

ωzωz
which is the major term in the uncontrolled flow and P1∗

ωzωz
which is

specific to HWO and STW. All these production terms are the consequences of different
mechanisms. Basically, the proper (direct) effect of STW is to reduce the intensity of the
total production by Stokes straining, consequently its peak is shifted away from the wall
to the buffer layer by approximately 10 wall units for large amplitude STW with respect to
the HWO case.
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Figure 6. Phase wise variations of (a) 〈P2
ωzωz

〉, (b) 〈P6
ωzωz

〉 at different wall-normal locations, (c) 〈P2
ωzωz

〉 and
〈P6

ωzωz
〉 and (d) 〈∂W/∂x〉 and 〈ωz∂w/∂y〉 for A0.95 case at y = 2, respectively. The values of 〈ωz∂w/∂y〉 are

multiplied by a factor of 25.

P9
ωzωz

 = 2〈ωyωz〉(∂W/∂y)

P4
ωzωz

 = –2〈ωz∂w/∂z〉(dU�/dy)

(Strongly attenuated by STW)

+

(Strongly damps P9
ωzωz

)

=

(Peak shifted to the middle of the buffer layer)

Main production term in the uncontrolled flow

STWs
Attenuated by 50 % and

shift of maximum of about

�y = 10 with respect of HWO

P1
ωzωz

 = 2〈ωz∂w/∂x〉(∂W/∂y)

P1∗     = 2〈ωz∂u/∂z〉(∂W/∂y)ωzωz

Figure 7. Summary of main characteristics of the effect of control on the spanwise turbulent enstrophy
production process.

3.2. Streamwise enstrophy transport
The production term for the streamwise turbulent enstrophy is given as

Pωxωx = 2Ω̃x

〈
ωx

∂u
∂x

〉
︸ ︷︷ ︸

P1
ωxωx

+ 2Ω̃y

〈
ωx

∂u
∂y

〉
︸ ︷︷ ︸

P2
ωxωx

+ 2Ω̃z

〈
ωx

∂u
∂z

〉
︸ ︷︷ ︸

P3
ωxωx

− 2ωx
∂w
∂x

dU
dy︸ ︷︷ ︸

P4
ωxωx

+ 2ωxωx
∂u
∂x︸ ︷︷ ︸

P5
ωxωx

+ 2ωxωy
∂u
∂y︸ ︷︷ ︸

P6
ωxωx

+ 2ωxωz
∂u
∂z︸ ︷︷ ︸

P7
ωxωx

+ 2〈ωxωx〉∂Ũ
∂x︸ ︷︷ ︸

P8
ωxωx

+ 2〈ωxωy〉∂Ũ
∂y︸ ︷︷ ︸

P9
ωxωx

. (3.3)
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Figure 8. Production terms (a) P1
ωxωx

and (b) P4
ωxωx

. Refer to table 1 for markers corresponding to different
cases.

A careful analysis reveals that most of the terms in (3.3) are either negligible or cancel
each other. Thus, the total production term Pωxωx effectively reduces to

Pωxωx ≈ 2Ω̃x

〈
ωx

∂u
∂x

〉
︸ ︷︷ ︸

P1
ωxωx

−2ωx
∂w
∂x

dU
dy︸ ︷︷ ︸

P4
ωxωx

. (3.4)

The production term P1
ωxωx

represents the interaction of the Stokes shear ∂W̃/∂y with the
stretching of the streamwise vorticity 〈ωx∂u/∂x〉. This term is a direct consequence of
forcing, and hence is absent in the canonical case. It increases with the amplitude of the
STW, reaching large values for the A1.25 case, and peaks within the viscous sublayer at
y = 5 (figure 8a). Whereas in the case of HWO, it is negligible compared with the large
amplitude STW cases.

The response of the streamwise turbulent enstrophy ωxωx to the STW forcing is shown
in figure 2(a). The local minimum and maximum in the profiles of ωxωx are attributed to
the streamwise vortices in the near-wall region (Kim, Moin & Moser 1987). The local
minimum increases with the amplitude of the STW, under the effect of Stokes shear
∂W̃/∂y induced production P1

ωxωx
which weakens the signature of the QSVs near the wall

under large amplitude STW. Note that there is also a significant undermining of ωxωx
variation in the viscous sublayer for STW cases of A > 0.50. For the A1.25 case, there is
only a slight variation of ωxωx between the local minimum and the wall, whereas in the
case of uncontrolled flow there is an approximately 400 % increase at the same range of
wall-normal distance. This is related to the lack of velocity-pressure gradient correlation
in the spanwise velocity transport equation in the near-wall region (Umair et al. 2022).

For all the cases, the main production of ωxωx comes from the tilting of ωy by the
mean shear dU/dy (figure 8b). This term, denoted by P4

ωxωx
in (3.3), peaks roughly at

y = 10–12.5 for all the cases. Note that the profile of P4
ωxωx

in HWO case collapse almost
perfectly with the STW case A0.30. This strengthens again the observation made by Umair
et al. (2022) that the direct effects of STW mainly appear at A > 0.30.

The turbulent transport (or turbulent diffusion) term in the uncontrolled flow is Tωxωx =
−dωxωxv/dy, and is globally negligible compared with the other terms appearing in the
transport equation of ωxωx. However, two additional transport terms emerge directly from
the imposed unsteadiness in the STW cases. They are, respectively, given as T1

ωxωx
=

−2〈ωxu〉∂Ω̃x/∂x and T2
ωxωx

= −2〈ωxv〉∂Ω̃x/∂y (Appendix A). Figure 9(b) shows that

967 A9-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

47
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.478


M. Umair and S. Tardu

10−1 100 101 102

y
10−1 100 101 102

y

0

0.5

1.0

0

0.5

1.0

(×10−2) (b)(a)

Figure 9. Turbulent transport (or turbulent diffusion) terms (a) T1
ωxωx

and (b) T2
ωxωx

. Refer to table 1 for
markers corresponding to different cases.
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Figure 10. Budget of streamwise turbulent enstrophy transport for (a) HWO and (b) A1.25 cases. The budget
for the reference (uncontrolled) canonical case is also included in (a) in grey broken lines for comparison. The
mean advection term Aωxωx is negligible, and hence not displayed in the figures to avoid cluttering.

T2
ωxωx

attains large values in the large amplitude STW cases. Recall that the turbulent
transport terms correspond to the spatial redistribution of ωx. These nonlinear terms
neither create nor destroy enstrophy, but act to simply redistribute it in space. A movie is
attached showing that the production and transport are closely associated next to the wall
at approximately y = 10. The important point here is that the turbulent transport reaches
large values comparable to the production (figure 10b). The direct consequence is the setup
of excessive dissipation, which is almost twice the production near y = 10. As mentioned
before, the turbulent transport term is negligible for the uncontrolled case (represented by
broken lines in figure 10a). In the HWO case, it is relatively smaller, and it is restricted to
y < 10 (figure 10a).

To partially resume, ωxωx attains large values close to the wall compared with the
uncontrolled case. For large amplitude STW, the near-wall variation from the location
of local minima and the wall is almost flattened as a consequence of the lack of a
velocity-pressure gradient term in the transport equation of spanwise turbulent intensity
ww. The streamwise vorticity layers in the STW cases with large amplitudes are
simultaneously produced and transported in space by the turbulent diffusion, but at the
same time dissipate quickly and hence do not contribute actively to the formation of the
near-wall QSVs.

3.3. Wall-normal enstrophy transport
The peculiar behaviour of the ∂w/∂x and ∂u/∂z shear layers, constituting ωy at large
amplitude STW, will be discussed in § 5.3 in detail. The maximum of ωyωy is at y ≈ 10
in the uncontrolled flow, and is shifted towards y ≈ 20 in the large amplitude STW
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Figure 11. The main transport terms appearing in the transport equation of wall-normal turbulent enstrophy
ωyωy: (a) the production term P4

ωyωy
; (b) the turbulent diffusion term T3

ωyωy
; and (c) the dissipation term εωyωy .

Refer to table 1 for markers corresponding to different cases.

cases (figure 2b). Globally, all the transport terms in the transport equation of ωyωy are
weakened and shifted towards the middle of the buffer layer. This is clearly seen in the
dissipation (εωyωy) profiles shown in figure 11(c). It shows also the suppression of ωy
activity in the viscous sublayer with εωyωy ≈ 0 at the wall.

Most of the terms appearing in the production term of the wall-normal enstrophy
(Appendix A) either vanish or are negligible. Among the first three terms involving the
Stokes strain, the only term which differs from zero is P1

ωyωy
, but it is also found to be

negligible (not shown). Hence, the major production of ωyωy for the controlled cases still
comes from the tilting of the wall-normal turbulent vorticity ωy by the mean shear, i.e. the
term P4

ωyωy
, as in the case of the uncontrolled flow. The maximum of the production term

P4
ωyωy

is shifted towards y ≈ 20 in the large amplitude STW cases (figure 11a), which
explains the shift in the maximum of ωyωy in figure 2(b). The Stokes straining turbulent
transport terms T1

ωyωy
= −2〈ωyu〉∂Ω̃y/∂x and T2

ωyωy
= −2〈ωyv〉∂Ω̃y/∂y are both nearly

zero (not shown). The third turbulent transport term T3
ωyωy

= −2 dωyωyv/dy has some
importance at y < 20 in the uncontrolled flow, but becomes insignificant in the STW cases
(figure 11b).

4. Reynolds shear stress invariants and similarity with the suppression of the
near-wall turbulent activity

Umair et al. (2022) showed that both the streamwise and wall-normal turbulent intensities
are strongly damped in the large amplitude STW cases, and that the response of the
spanwise turbulent intensity is quite peculiar. In § 3 we highlighted the role of production
terms appearing directly as a consequence of STW in the spanwise turbulent enstrophy
transport in suppressing ωzωz close to the wall when the imposed amplitude is large
enough. Hence, the capital role of the large amplitude STW is to suppress the spanwise
vorticity (and therefore streamwise velocity fluctuations) in the near-wall region. To assert
this point, we conduct a few numerical experiments where the near-wall streamwise,
wall-normal and spanwise velocity fluctuations, u, v, w, respectively, were explicitly
damped up to a given wall-normal distance δ. The main idea is to see which cases
collapse to the large amplitude STW cases on the anisotropy invariant maps. The effect
of suppressing the turbulent activity in the viscous sublayer on the near-wall turbulence
regeneration mechanism and drag reduction has already been investigated by Lee & Kim
(2002).
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Figure 12. (a) Initial response of the skin friction coefficient Cf (normalized by the skin-friction coefficient
of the reference uncontrolled flow Cf 0) and (b) mean velocity profiles for the uncontrolled reference case and
the artificially forced cases, respectively.

The generic algorithm used for the artificially forced cases is similar to Jiménez &
Pinelli (1999), and can be written as

ζ( y, t + dt) = [ζ( y, t) + dt R( y)]F( y), (4.1)

where ζ is either u, v or w, R is the appropriate right-hand side, and F is the filter function
given as

F( y) = 0.5{1 + tanh[α( y − δ)]}, (4.2)

such that F( y) � 1 for y � δ. Here, the parameter α controls the steepness of the filter
function. For all the numerical experiments, the values of α and δ were kept fixed at 0.25
and 10, respectively, to suppress the fluctuations in the viscous sublayer and low buffer
layer effectively up to y ≈ 8. This was done deliberately to avoid strong damping of the
fluctuations near the wall.

The initial response of the skin-friction coefficient and the resulting mean velocity
profile are shown in figure 12. In agreement with Lee & Kim (2002), some moderate 30 %
of drag reduction was achieved by suppressing u up to y ≈ 8, while suppressing w up to
the same wall-normal distance resulted in a significantly larger drag reduction margin of
approximately 60 %. The near-wall mean velocity profile (figure 12b) agrees reasonably
well with that of the typical drag reduction scenarios, exhibiting a linear behaviour in the
viscous sublayer and an upward shift in the region beyond.

Figure 13(a) shows response of the turbulent enstrophy profiles resulting from u (or
ωz) suppression in the low buffer layer. Near the wall, ωz can be approximated as
ωz ≈ −∂u/∂y, and can be rewritten as u ≈ −yωz( y = 0). Therefore, suppressing u is
effectively similar to suppressing ωz near the wall. This is indeed clear by looking at
the profile of ωzωz in figure 13(a), where ωzωz is completely suppressed up to y ≈ 8.
A striking correspondence in the near-wall profile of ωzωz can be seen with those of the
STW controlled cases of A ≥ 0.75 shown in figure 2(c), suggesting that the major effect
of the STW is similar to the artificial suppression of the near-wall streaks up to the low
buffer layer. Note that unlike STW control, artificial suppression of u close to the wall also
leads to the annihilation of ωyωy up to y ≈ 8, as in the case of canonical turbulent channel
flows ωy is dominated by ∂u/∂z. In contrast, Umair et al. (2022) have shown that in the
large amplitude STW controlled cases, triangular wavy patterns of ∂w/∂x shear layers
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Figure 13. Mean profiles of turbulent enstrophy for (a) streamwise fluctuating field (u), (b) wall-normal
fluctuating field (v) and (c) spanwise fluctuating field (w) suppression case, respectively. Note that all the
profiles are scaled with the local friction velocities of the forced cases. The dashed lines represent the profiles
for the uncontrolled flow.

start to emerge. The contribution of ∂w/∂x to ωy thus becomes increasingly significant,
reaching approximately 10 times that of ∂u/∂z very close to the wall (not shown). This is
one of the strong signatures of large amplitude STW that are essentially absent in both the
HWO control and the canonical turbulent channel flows, and hence point towards strong
structural alterations in the near-wall turbulence. These aspects will be discussed in more
detail in the subsequent sections. Note that the removal of the spanwise vorticity in the
viscous and low buffer layers do not modify the intensity and the peak location of the
streamwise vorticity (figure 13a). However, the response of the ωxωx intensity (figure 2a)
under large amplitude STW is entirely different. The maximum of ωxωx increases with
the imposed amplitude, and there is curiously a negative drift of the streamwise vorticity
layers. This is a consequence of the specific response of the near-wall turbulence to the
large amplitude STW.

We now return to the next main point of our concern, namely the anisotropy invariants.
The wall-bounded turbulent flows are characterized by the presence of organized motions,
which reflects a high degree of turbulence anisotropy in the near-wall region. The
anisotropy invariant map (AIM) introduced by Lumley & Newman (1977) provides a
convenient way to visualize the anisotropy of the turbulent velocity fluctuations through
the Reynolds stress anisotropy tensor

aij = uiuj

uiui
− 1

3
δij, (4.3)

where, uiui is twice the turbulent kinetic energy, and δij represents the Kronecker delta
(Pope 2000; Busse & Sandham 2012). A plot of the second and third scalar invariants of
the tensor aij, defined as II = aijaji, and III = aijajkaki (Frohnapfel et al. 2007), constitutes
the well celebrated Lumley triangle or AIM within which all the realizable turbulent states
must lie. The II invariant characterizes the degree of anisotropy, while the III invariant
identifies its type. The left-hand and right-hand curve corresponds to the axisymmetric
disc-like (straining) and axisymmetric rod-like (expansion) states, and are defined by
II = ±3/2(4|III|/3)2/3. The two-component (2C) state is defined by the straight line II =
2/9 + 2III. The three corners of the Lumley triangle or AIM correspond to three different
limiting states. The left-hand corner corresponds to the isotropic two-component state, the
corner on the right-hand side corresponds to the one-component (1C) axisymmetric state,
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Figure 14. Invariant maps for (a,c,e) forced cases and (b,d, f ) controlled cases.

while the bottom most corner of the triangle at II = III = 0 corresponds to the isotropic
turbulence state.

In the canonical turbulent channel flows, the trajectory of II and III invariants, shown in
figure 14 with broken grey lines, lie close to the 2C state next to the wall, as vv is much
weaker in comparison with uu and ww. Away from the wall, in the viscous sublayer, the
anisotropy increases reaching a maximum at y ≈ 8 with uu larger than vv and ww, pushing
the trajectory towards the rod-like axisymmetric expansion state, in agreement with Moser,
Kim & Mansour (1999). Farther away from this region with increasing distance from the
wall, the turbulence becomes more and more isotropic, ultimately acquiring the isotropic
state at the centreline.

Figure 14(a) shows the AIM for the case where ωz (or u) is artificially suppressed. The
AIMs of STW cases of large amplitudes (A > 0.5) are surprisingly similar. Figure 14( f )
shows, for instance, the AIM for A0.75 case. Similar results are obtained for A0.95 and
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A1.25 cases, hence not shown. The AIM trajectories are closely similar in both the large
amplitude STW cases and ωz (or u) suppressed case. In both cases, the trajectories are
pushed rapidly from 2C state near the wall towards the disk-like axisymmetric contraction
state in the buffer layer. This is mainly due to the annihilation of the near-wall streamwise
turbulent intensity (uu), which is the largest component in canonical turbulent channel
flows. It is important to mention that this terminology is strictly related to the shape
of the Reynolds stress tensor, which in no way should be confused with the shapes of
the turbulent eddies. This point is clarified in detail by Simonsen & Krogstad (2005).
The stress tensor has two equal positive and one negative eigenvalue in the disk-like
axisymmetric state, which is opposite to the rod-like axisymmetric state. The AIM
trajectory approaches the isotropic state transiting through the disk-like axisymmetry from
a reduced anisotropy state and catches the trajectory of the canonical turbulent channel
flow at y > 30.

Umair et al. (2022) have shown that the structural modification brought to the wall
turbulence by HWO and STW are similar up to A < 0.50, and the effects specific to STW
appear when the imposed amplitude is increased beyond A > 0.50. The AIM analysis
provides a nice additional proof, strengthening their arguments. Figure 14(b,d) shows the
AIMs of STW case A0.50 and HWO, respectively. Both AIMs are quite similar, but differ
from the A0.75 case. The trajectory changes rapidly from 2C state at the wall to the 2C
axisymmetric state, but then stay relatively away from the isotropic state without touching
the disk-like axisymmetric curve.

Frohnapfel et al. (2007) considered the drag reduced flow from an anisotropy invariants
point of view. Their analyses include the effects of additives, riblets, strong acceleration of
boundary layers, and some forced boundary conditions. In their forced cases, they modify
the boundary conditions to force near-wall turbulence to tend towards an axisymmetric
state by imposing the spanwise fluctuating velocity to follow the wall-normal fluctuations.
They obtain a DR of approximately 32 %, and conclude that the anisotropy of the
turbulence increases towards the 1C limit in the near-wall region. Curiously, a closer
look at their figure 9(b) reveals that their forcing also results in a significant suppression
of the spanwise fluctuations. Artificial suppression of the wall-normal and spanwise
fluctuating velocity field in the viscous and low buffer layers lead indeed to a scenario
similar to their suggestion. This is clearly seen in figure 14(e) that shows the AIM
when w is suppressed up to y ≈ 8, resulting in DR margin of approximately 60 % in
agreement with Lee & Kim (2002). However, in the HWO and STW cases the trend in
the AIM trajectory is entirely opposite, with a tendency towards isotropy, especially in
STW of amplitude A > 0.50. This shows that DR doesn’t necessarily lead to increased
anisotropy.

5. Effect on near-wall structures

5.1. Drifts of the near-wall QSVs
Quasistreamwise vortices are a prominent feature of the near-wall turbulent flow
field. The QSVs have been recognized to play a significant role in the regeneration
cycle of near-wall turbulence (Hamilton, Kim & Waleffe 1995). They facilitate
the exchange of momentum and energy in the near-wall region, and contribute
significantly to the generation of Reynolds shear-stress by inducing ejection and sweep
events.

Earlier studies have reported a drastic suppression of the near-wall quasistreamwise
vortices due to the spanwise wall oscillations control. Yakeno, Hasegawa & Kasagi (2014)
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studied the effect of homogeneous spanwise wall oscillations on the structural
modifications of QSVs and report that the wall-normal location of the peak population
density of QSVs is not affected by the presence of control. Extending their analysis to
the STW control, Gallorini, Quadrio & Gatti (2022) also report little to no shift in the
position of QSVs. However, their analysis includes only one STW case that produces a
DR margin of approximately 36 %. Umair et al. (2022), on the other hand, point out that
the QSVs reach their full maturity well above y = 20 for the large amplitude STW. This
point, indeed, needs to be clarified whether there is a shift in the position of the near-wall
QSVs because of the imposed control.

To clarify this point, we examine the effect of STW actuation on the near-wall QSVs,
focusing on detecting the drift (�ds) in QSVs because of the control, if any. We employ
the classical eduction scheme proposed by Jeong et al. (1997) to detect the near-wall
QSVs. First, we detect the vortex cores where the value of λ2 ≤ −0.02 directly from
the 3-D instantaneous velocity fields, where λ2 being the second-largest eigenvalue of
the symmetric and antisymmetric parts of the velocity gradient tensor. Then we identify
and count only the structures that have streamwise extent greater than or equal to 150
wall units with inclination and titling angles in the range −30◦ to +30◦, respectively. The
centre of each individual structure is obtained by locating the point where λ2 attains its
local minimum value within the structure. For all the cases studied here, we analysed an
ensemble of at least 50 independent full 3-D instantaneous fields separated by roughly one
full-through time unit (20h/Uc). Since the criteria we chose to select the relevant QSVs
is quite strict, as a consequence only few structures qualify to be considered as relevant
candidates. For example, in the uncontrolled case, only approximately 90 structures met
the imposed criteria in one snapshot of the instantaneous 3-D field. Figure 15 shows the
λ2 structures for a few of the cases studied here, and figure 16 shows their respective
wall-normal distribution of the number of vortices, normalized by the maximum number
of vortices.

For the canonical turbulent channel flow, the majority of the mature QSVs are located at
y ≈ 24, which is in agreement with Jeong et al. (1997). For the STW cases, however,
we observe a systematic drift of QSVs away from the wall (figure 16). The drift is
approximately six wall units for the A0.50 case, and 10 wall units for the A1.25 case. This
is in disagreement with Gallorini et al. (2022). These authors consider a single DR case
with control parameters different from us. The closest case we have to them in terms of
DR is A0.30 for which we observe a drift of approximately 4.5 wall units, while they report
little to no drift. This discrepancy is plausibly coming from the criteria used to select the
vortices. There are two points to consider: first, a ‘vortex’ has to be a ‘developed compact
object’ of sufficient length to exist and be dynamically significant (mature). In the present
work, we exclude vortices with streamwise extents shorter than 150 wall units in the same
way as in Jeong et al. (1997), whereas Gallorini et al. (2022) use rather a lower threshold
length of 50 wall units, which means in their case a significant number of the detected
vortices are immature low buffer layer structures. That indeed results in a twice smaller
tilt angle of the structures they detect compared with Jeong et al. (1997). Second, in their
controlled case they ‘opted to discard the same percentage of candidate vortices considered
in the reference case, to avoid the assumption that control does not affect the length of
QSV’, but forcing may affect the related probability density functions, and rejecting the
same percentage as in the reference case may induce some bias. Whereas, in the present
work, the criteria used to select the mature vortices is unique and consistent for all the
cases. The capacity of near-wall QSVs to regenerate new structures is proportional to their
intensity and inversely proportional to the square of their distances (ds) from the wall,
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Figure 15. Quasistreamwise vortical structures identified using λ2 = −0.02 along with the instantaneous
field of streamwise velocity fluctuations u (red, u > 0; blue, u < 0) on a wall-parallel plane at y = 15 for
(a) uncontrolled, (b) HWO, (c) A0.50 and (d) A1.25 case, respectively. The centres of the active QSVs educed
using the criteria mentioned in § 5.1 are marked with yellow dots. The schematic diagram on the top shows
the drift (�ds) in the QSVs with respect to the canonical uncontrolled case. (HSS: high-speed streaks; LSS:
low-speed streaks.)

as discussed in the following subsection. In the drag reduction scenarios, one would expect
an increase in ds, as observed in the present study. It may, however, happen that ds remains
unaffected, but the intensity of the structures or their population density decreases.

In the subsection below, we estimate the drift directly from the instantaneous
visualizations of the near-wall velocity streaks, and show that the drifts estimated from
these two independent methods are in close agreement. Moreover, we show that the drift
we observe combined with the rest of the results give us a reasonable estimate of the DR
margin, thus increasing the quality of these results.

5.2. Near-wall streaks
The drift �ds of the active streamwise ωx vorticity layers decreases the drag according to
the conceptual model of Jiménez (1994) and also discussed in some detail in Tardu (1995).
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Figure 16. The distribution of QSVs for the uncontrolled, HWO, A0.50 and A1.25 cases, respectively. The
colours and markers in the plot correspond to those presented in figure 2.

By active ωx layers, we mean those layers from which the Reynolds shear stress producing
QSVs emerge. Given the complexity of the wall response to the large amplitude STW
discussed before, it is difficult to directly determine the drift. One somewhat qualitative,
yet objective, way is to investigate the near-wall streaks in order to estimate the drift. The
near-wall streaks in the canonical turbulent wall flows are the footprints of the QSVs,
and are at best detected by the ∂u/∂z shear layers near the wall (Tardu 2022). The ∂u/∂z
shear layers are the thin wall-normal turbulent vorticity ωy layers separating the low- and
high-speed streaks. Figure 17 shows a snapshot of ∂u/∂z in the uncontrolled, HWO and
STW A1.25 case, respectively. The near-wall long streaks in the canonical flow are already
detectable at the edge of the viscous sublayer with a streak spacing of approximately 80
wall units, in agreement with previously published results (Tardu 2014). The footprints of
QSVs are weak at y = 5 under HWO, and they are clearly discernible only at y ≈ 12, with
slightly larger spacing of approximately 100 wall units.

On comparing figure 17(o,k), we see that in the case of large amplitude STW (A1.25), we
have to go even farther in the buffer layer, towards y ≈ 20, to detect the near-wall streaks
of reasonable coherence. Let us suppose that the drift �ds in coherent ∂u/∂z layers can be
related to the drift �ds of the active streamwise vorticity layers from which Reynolds shear
stress producing eddies emanate. Then figure 17 suggests that �ds ≈ 7 in the HWO case,
because the distribution of ∂u/∂z shear layers at y ≈ 12 under HWO becomes comparable
to that of the uncontrolled flow at y = 5. Similarly, comparing figure 17(l,a) suggests that
�ds ≈ 10 for STW A1.25 case. These observations are in agreement with the previous
discussion based on figure 16.

The flow is turbulent in all the controlled cases here, even though the laminar limit is
closely approached for the A1.25 case. Thus, we have on purpose chosen to use the local
wall units to scale the turbulent quantities, the main aim being here is to determine the
proper structural modifications. All the quantities scaled by the local inner variables can
easily be transformed to the quantities scaled with respect to those based on the friction
velocity of the uncontrolled case. Figure 18(a) shows the wall-normal distribution of the
streamwise turbulent enstrophy ωxωx0 and its main production term, P4

ωxωx0
in figure 18(b),

both scaled with the wall units based on the friction velocity of the uncontrolled flow. It is
seen that ωxωx0 decreases systematically in the controlled cases, while the peak location
y0 is not significantly altered and is at approximately 20 wall units.
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Figure 17. Instantaneous fields of ∂u/∂z shear layers at y = 5, 10, 12, 15 and 20 for the uncontrolled, HWO
and A1.25 case, respectively. The blue colour represents the region where ∂u/∂z < 0, while the red colour
represents the region where ∂u/∂z > 0. The contours are in the range −0.2 to +0.2.

Orlandi & Jiménez (1994) relates the location ds and intensity of the QSVs to the wall
shear by

τ ∗
w ∝

(
Γ ∗

νd∗2
s

)1/2

, (5.1)

in dimensional units. In this relation Γ ∗ = πR∗2ω∗
x is the mean circulation of the QSVs, d∗

s
is the distance to the wall and R is their radius. The qualifier ‘∗’ here represents quantities
in physical dimensional units. This approximate relationship is obtained through a physical
argument based on the stagnation flow induced by the QSVs. It gives only a qualitative
description of the effect of QSVs on the wall shear, but has the merit to relate intensity
and the stand-off distance of the coherent eddies on τw. According to (5.1), the rate of
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Figure 18. Wall-normal distribution of the (a) streamwise turbulent enstrophy ωxωx0, and (b) its main
production term P4

ωxωx0
, scaled with the wall units based on the friction velocity of the uncontrolled flow.

Refer to table 1 for markers corresponding to different cases.

change of �τw0 can be related to

�τw0

τw0
= 1

2
�Γ0

Γ0
− �ds0

ds0
, (5.2)

when adequately scaled with the wall units based on the friction velocity of the
uncontrolled flow.

One of the observations emerging from figure 17 and the λ2 structures, shown before
in figure 15, is that the radius of the QSVs (scaled in local wall units), in a rough sense,
remains unaffected in all the controlled cases. Using R = constant and ωxωx0 profiles
(figure 18a), we estimated 42 % of DR for A0.50 case from (5.2), which is in close
agreement with the value reported in table 1. However, (5.2) gives 80 % of drag reduction
at the largest imposed amplitude A1.25 case, which is approximately 30 % overestimated.
In any case, the �Γ0/Γ0 term is found to contribute only 20 % to the DR. Consequently,
the drift �ds0/ds0 plays a critical role in the drag reduction mechanism investigated here.

Duggleby, Ball & Paul (2007) examined the effect of spanwise wall oscillations
on the dynamics of the near-wall turbulent structures in a turbulent pipe flow using
Karhunen–Loève decomposition. They argued that the main effect of the Stokes layer
generated by spanwise wall oscillations is to push the structures away from the wall into the
region of higher mean velocity by creating a zone where turbulent structures cannot form.
As a consequence, the structures are advected faster with less time to interact with the
roll modes to transfer energy, resulting in their shorter lifetime, and hence damping of the
Reynolds shear stress generating bursting events. Our finding strengthens the arguments
presented by them and is in full concordance with their interpretation that although drag
reduction results in the decorrelation of the near-wall streaks and the QSVs, but it is the
lifting of the turbulent structures away from the wall by the Stokes layer induced by the
spanwise wall oscillations that results in drag reduction.

5.3. Shear layers of spanwise fluctuating velocity field
The spanwise fluctuating velocity field plays a prominent role in the near-wall turbulence.
Even though they do not implicitly contribute to the production of turbulent kinetic
energy, they are, however, linked to the Reynolds shear stress producing events, and
hence intrinsically linked to the characteristics of the near-wall coherent structures (Tardu
2016). The connection between the spanwise fluctuating velocity field and the intense
Reynolds shear stress generating events become clear if one considers the classical
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hairpin and horseshoe vortex paradigm. The spanwise fluctuating velocity field is nearly
zero between the legs of the hairpin vortices, where the intense sweep or ejection
events occur. As mentioned previously, the main production of the turbulent streamwise
enstrophy comes from the tilting of the wall-normal vorticity by the mean shear, which
reduces to −2ωx(∂w/∂x)(dU/dy). Hence, the ∂w/∂x shear layers play a crucial role
in the generation of ωx prior to their roll up into QSVs (Brooke & Hanratty 1993;
Tardu 2008, 2014, 2016). Hence, as we saw earlier, the suppression of the spanwise velocity
fluctuations in the viscous sublayer results in significantly larger drag reduction compared
with the suppression of the streamwise or wall-normal velocity fluctuations.

In the canonical turbulent channel flow, the ∂w/∂x shear layers are spotty and slightly
stretched in the spanwise direction, as shown in figure 19(a). Using the multiscale
approach, Tardu (2022) showed that some of the ∂w/∂x shear layers may appear as
spanwise streaks. As seen in figure 19(e), the tilting of these shear layers into identifiable
elongated ωx layers already set up at y = 10. The morphology of ∂w/∂x shear layers
under the large amplitude STW is strikingly different. The ∂w/∂x > 0 and ∂w/∂x < 0 are
organized into Λ-shaped Christmas-tree-like structures resulting from a direct effect of
STW (figure 19d). The titled ωx layers are consequently also Λ-shaped, and they are being
elongated into streamwise structures (figure 19h). It is necessary to go farther away from
the wall towards y ≈ 30 to identify the elongated streamwise vorticity layers (figure 20a,b).
It is also roughly at this position that the contours of ωx∂w/∂x, related to the major
production term P4

ωxωx
, appear as long coherent streaky-like structures (figure 20c). The

ωx layers at y = 10 for A0.50 case are organized more clearly into streamwise elongated
structures compared with the A1.25 case. They achieve their conventional morphology at
y = 20, earlier than the A1.25 case.

The flow under STW control at large amplitudes develops its own structures in the low
buffer layer. In the case of HWO, the ∂w/∂x shear layers are inclined in the streamwise
direction, but do not exhibit Λ-shaped structures that are specific to the STW control. The
origin of these structures is tricky to understand. The ∂w/∂x patterns next to the wall, in
the large amplitude STW case, are too regular to be considered as induced by the random
turbulence phenomenon. They are indeed related to the large ∂W̃/∂x modulation occurring
at the wall. Consider the instantaneous transport equation for the streamwise gradient of
the instantaneous spanwise velocity field (∂W/∂x) given as

D
Dt

∂W
∂x

= ∂W
∂x

∂V
∂y

− ∂V
∂x

∂W
∂y

− ∂2P
∂x∂z

+ ν∇2 ∂W
∂x

. (5.3)

The complete analysis of (D/Dt)(∂w/∂x)(∂w/∂x), which contains 10 terms on the
right-hand side (not shown), is complex, especially, because of the local pressure term
appearing on the right-hand side of (5.3), and hence, is out of scope of the present
investigation. After applying triple decomposition, several other terms appear on the
right-hand side of (5.3), among which the term (∂W̃/∂x)(∂v/∂y), which represents the
stretching of the Stokes shear ∂W̃/∂x by the local ∂v/∂y, is negligible at y > 5, but reaches
large values near the wall at y ≈ 0. Figure 21(a,b) compares the (∂W̃/∂x)(∂v/∂y) contours
with those of ∂w/∂x layers at y = 2.5, respectively. A striking similarity emerges from
these two figures. The Stokes shear ∂W̃/∂x induces Λ-shaped ∂w/∂x next to the wall. The
latter are further stretched, intensified and extended to the viscous sublayer. One quick
way to estimate the quantitative importance of (∂W̃/∂x)(∂v/∂y) is to compare its r.m.s.
value with the r.m.s. of ∂w/∂x. A similar procedure has been conducted, for instance, by
Brooke & Hanratty (1993) in the local transport equation Dωx/Dt. Figure 21(d) shows
that the r.m.s. value of (∂W̃/∂x)(∂v/∂y) is as large as 30 % of the r.m.s. of ∂w/∂x at
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Figure 19. Instantaneous field of ∂w/∂x shear layers and ωx layers at y = 10 for the uncontrolled, HWO,
A0.50 and A1.25 case, respectively.
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Figure 20. Instantaneous field of (a) ∂w/∂x shear layers, (b) ωx layers and (c) ωx∂w/∂x layers at y = 30 for
A1.25 case.
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Figure 21. Instantaneous field of (a) (∂W̃/∂x)(∂v/∂y) shear layers, (b) ∂w/∂x layers, (c) their cross-correlation
coefficient at y = 2.5 and (d) the wall-normal distribution of the ratio of their root-mean-square (r.m.s.) values
for A1.25 case.

y ≈ 1, and progressively disappears towards the edge of the viscous sublayer. Figure 21(c)
shows the normalized cross-correlation coefficient C between (∂W̃/∂x)(∂v/∂y) and
∂w/∂x at y = 2.5. We observe specific cross-correlation patterns that are somewhat
similar to the patterns observed in the autocorrelations of (∂W̃/∂x)(∂v/∂y) and ∂w/∂x
(not shown). The cross-correlations reach values as large as 0.2, which is far from being
negligible.

From the visualizations presented in figure 15, it is clear that the classical topological
features of the QSVs are only depicted at y > 20 for large amplitude STW. Consequently,
the peculiar Λ-shaped ∂w/∂x shear layers do not roll up into QSVs. Therefore, there is a
drift of the active ωx layers that lead to Reynolds shear-stress producing eddies at large
amplitude STW.

6. Conclusions

In this study, we examined the effect of spanwise wall oscillations in the form of STW
on the vorticity transport mechanism in a turbulent channel flow at Reynolds number
Reτ = 180. The frequency and wavelength of the imposed travelling wave were kept
fixed, and only the amplitude was varied to examine the direct effect arising because
of travelling-wave-like wall oscillations. At the largest amplitude studied here, the flow
almost reached the relaminarization limit. Such a significant level of drag reduction cannot
be achieved in case of HWO.

The wall-normal and spanwise turbulent enstrophy also show a significant reduction in
their intensity, the latter almost vanishes in the viscous sublayer for large amplitudes STW.
The contribution of the ∂w/∂x with respect to ∂u/∂z becomes increasingly important next
to the wall for large amplitude STW. However, the attenuation of the wall-normal turbulent
enstrophy is of subordinate importance compared with the spanwise turbulent enstrophy.
This is also evident from the numerical experiments conducted in § 4, which demonstrates
that suppressing the spanwise vorticity near the wall results also in a significant attenuation
of ωy. The streamwise turbulent enstrophy shows a moderate increase in its intensity, and
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its near-wall variation is almost flattened as a consequence of a lack of a velocity-pressure
gradient term in the transport equation of spanwise turbulent intensity, as explained in
Umair et al. (2022).

The main production term for the spanwise turbulent enstrophy is shifted in the middle
of the buffer layer in large amplitude STW cases. The phasewise plots of the production
terms, originating due to forcing, reveal that there is a destruction of the spanwise vorticity
by the direct straining through ∂W̃/∂x, especially next to the wall. This particular effect is
obviously absent in the case of HWO. Globally, STW of large amplitudes attenuates the
production by Stokes straining effects and pushes the profiles towards the buffer layer.

For the streamwise turbulent enstrophy, the main production still originates from the
tilting of the wall-normal vorticity by the mean shear, as in the case of uncontrolled flow.
The location of the peak remains roughly at the same wall-normal location between y =
10–12.5 for all the cases. Two additional turbulent diffusion terms emerge in the transport
equation of the streamwise turbulent enstrophy that are directly related to the forcing.
The second term attains large values comparable to the total production term in the
large amplitude STW cases. However, these terms do not essentially create or destroy the
enstrophy, but act to redistribute it in space. This is clearly evident in the movie attached as
a supplementary material available at https://doi.org/10.1017/jfm.2023.478. Consequently,
the level of dissipation gets enhanced to almost twice of the production at roughly y = 10.
Hence, the streamwise vorticity layers in the large amplitude STW cases are produced and
transported in the space simultaneously, but also get dissipated quickly. As a consequence,
these near-wall streamwise vorticity layers do not actively contribute in the regeneration
mechanism of near-wall QSVs.

The artificial suppression of the near-wall streamwise fluctuating velocity field results
in a significantly large drag reduction margin. A striking correspondence in the near-wall
profile of the spanwise turbulent enstrophy can be seen with those of the STW controlled
cases of large amplitudes, suggesting that the major effect of the STW is similar to the
artificial suppression of the near-wall streaks up to the low buffer layer. This is clearly
represented in the AIMs which show a striking resemblance to the large amplitude STW
cases. In both cases, the trajectories are pushed rapidly from the 2C state near the wall
towards the disk-like axisymmetric contraction state in the buffer layer.

The near-wall QSVs show a systematic drift away from the wall. It was calculated using
two procedures: by identifying the location where QSVs are mostly populated, and also by
looking at the instantaneous visualizations of the near-wall streaks. Both procedures give
roughly the same drift. The observed drift combined with the rest of the results gives a
reasonable estimate of the DR margin.

The spanwise fluctuating velocity field which plays a prominent role in the near-wall
turbulence shows interesting features. The flow is nearly transitional at the largest imposed
amplitude STW, wherein the buffer layer develops its own structures induced by the Stokes
straining ∂W̃/∂x and thus becomes entirely uncoupled with the rest of the flow. The ∂w/∂x
shear layers, which are spotty and slightly stretched in the spanwise direction in the case of
uncontrolled flow, begin to form coherent Λ-shaped patterns. However, these structures are
too regular to be considered induced by the random turbulence phenomenon. The analysis
of the instantaneous transport equation of ∂W/∂x shear layers show that these patterns are
directly connected to the Stokes strain ∂W̃/∂x. These shear layers, however, do not play
any active role in the generation of near-wall QSVs. Such a scenario is rarely observed in
wall-bounded turbulence.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.478.
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Appendix A. Transport equations of mean turbulent enstrophy field

The transport equation for the mean streamwise turbulent enstrophy ωxωx is given as

∂ωxωx

∂t
= Pωxωx + Aωxωx + Tωxωx + εωxωx + Dωxωx,

where

Pωxωx = 2Ω̃x

〈
ωx

∂u
∂x

〉
︸ ︷︷ ︸

P1
ωxωx

+ 2Ω̃y

〈
ωx

∂u
∂y

〉
︸ ︷︷ ︸

P2
ωxωx

+ 2Ω̃z

〈
ωx

∂u
∂z

〉
︸ ︷︷ ︸

P3
ωxωx

− 2
dU
dy

ωx
∂w
∂x︸ ︷︷ ︸

P4
ωxωx

+ 2ωxωx
∂u
∂x︸ ︷︷ ︸

P5
ωxωx

+ 2ωxωy
∂u
∂y︸ ︷︷ ︸

P6
ωxωx

+ 2ωxωz
∂u
∂z︸ ︷︷ ︸

P7
ωxωx

+ 2〈ωxωx〉∂Ũ
∂x︸ ︷︷ ︸

P8
ωxωx

+ 2〈ωxωy〉∂Ũ
∂y︸ ︷︷ ︸

P9
ωxωx

,

Aωxωx = − Ũ
∂〈ωxωx〉

∂x︸ ︷︷ ︸
A1

ωxωx

− Ṽ
∂〈ωxωx〉

∂y︸ ︷︷ ︸
A2

ωxωx

,

Tωxωx = − 2〈ωxu〉∂Ω̃x

∂x︸ ︷︷ ︸
T1

ωxωx

− 2〈ωxv〉∂Ω̃x

∂y︸ ︷︷ ︸
T2

ωxωx

− dωxωxv

dy︸ ︷︷ ︸
T3

ωxωx

,

εωxωx = −2

(
∂ωx

∂x
∂ωx

∂x
+ ∂ωx

∂y
∂ωx

∂y
+ ∂ωx

∂z
∂ωx

∂z

)
and

Dωxωx = d2ωxωx

dy2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)
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The transport equation for the mean wall-normal turbulent enstrophy ωyωy is given as

∂ωyωy

∂t
= Pωyωy + Aωyωy + Tωyωy + εωyωy + Dωyωy = 0,

where

Pωyωy = 2Ω̃x

〈
ωy

∂v

∂x

〉
︸ ︷︷ ︸

P1
ωyωy

+ 2Ω̃y

〈
ωy

∂v

∂y

〉
︸ ︷︷ ︸

P2
ωyωy

+ 2Ω̃z

〈
ωy

∂v

∂z

〉
︸ ︷︷ ︸

P3
ωyωy

+ 2Ωzωy
∂v

∂z︸ ︷︷ ︸
P4

ωyωy

+ 2ωxωy
∂v

∂x︸ ︷︷ ︸
P5

ωyωy

+ 2ωyωy
∂v

∂y︸ ︷︷ ︸
P6

ωyωy

+ 2ωzωy
∂v

∂z︸ ︷︷ ︸
P7

ωyωy

+ 2〈ωxωy〉∂Ṽ
∂x︸ ︷︷ ︸

P8
ωyωy

+ 2〈ωyωy〉∂Ṽ
∂y︸ ︷︷ ︸

P9
ωyωy

,

Aωyωy = − Ũ
∂〈ωyωy〉

∂x︸ ︷︷ ︸
A1

ωyωy

− Ṽ
∂〈ωyωy〉

∂y︸ ︷︷ ︸
A2

ωyωy

,

Tωyωy = −2〈ωyu〉∂Ω̃y

∂x︸ ︷︷ ︸
T1

ωyωy

− 2〈ωyv〉∂Ω̃y

∂y︸ ︷︷ ︸
T2

ωyωy

− dωyωyv

dy︸ ︷︷ ︸
T3

ωyωy

,

εωyωy = −2

(
∂ωy

∂x
∂ωy

∂x
+ ∂ωy

∂y
∂ωy

∂y
+ ∂ωy

∂z
∂ωy

∂z

)
and

Dωyωy = d2ωyωy

dy2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Finally, the transport equation for the mean spanwise turbulent enstrophy ωzωz is given
as

∂ωzωz

∂t
= Pωzωz + Aωzωz + Tωzωz + εωzωz + Dωzωz = 0,

where

Pωzωz = 2Ω̃x

〈
ωz

∂w
∂x

〉
︸ ︷︷ ︸

P1
ωzωz

+ 2Ω̃y

〈
ωz

∂w
∂y

〉
︸ ︷︷ ︸

P2
ωzωz

+ 2Ω̃z

〈
ωz

∂w
∂z

〉
︸ ︷︷ ︸

P3
ωzωz

+ 2Ωzωz
∂w
∂z︸ ︷︷ ︸

P4
ωzωz

+ 2ωxωz
∂w
∂x︸ ︷︷ ︸

P5
ωzωz

+ 2ωyωz
∂w
∂y︸ ︷︷ ︸

P6
ωzωz

+ 2ωzωz
∂w
∂z︸ ︷︷ ︸

P7
ωzωz

+ 2〈ωxωz〉∂W̃
∂x︸ ︷︷ ︸

P8
ωzωz

+ 2〈ωyωz〉∂W̃
∂y︸ ︷︷ ︸

P9
ωzωz

,

Aωzωz = − Ũ
∂〈ωzωz〉

∂x︸ ︷︷ ︸
A1

ωzωz

− Ṽ
∂〈ωzωz〉

∂y︸ ︷︷ ︸
A2

ωzωz

,

Tωzωz = −2〈ωzu〉∂Ω̃z

∂x︸ ︷︷ ︸
T1

ωzωz

− 2〈ωzv〉∂Ω̃z

∂y︸ ︷︷ ︸
T2

ωzωz

− 2ωzv
dΩz

dy︸ ︷︷ ︸
T3

ωzωz

− dωzωzv

dy︸ ︷︷ ︸
T4

ωzωz

,

εωzωz = −2

(
∂ωz

∂x
∂ωz

∂x
+ ∂ωz

∂y
∂ωz

∂y
+ ∂ωz

∂z
∂ωz

∂z

)
and

Dωzωz = d2ωzωz

dy2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3)
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