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ABSTRACT

In [M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential
Hodge structures and motivic Donaldson-Thomas invariants, Preprint (2011),
arXiv:1006.2706v2[math.AG]], the authors, in particular, associate to each finite quiver
) with a set of vertices I the so-called cohomological Hall algebra H, which is Zéo—
graded. Its graded component H, is defined as cohomology of the Artin moduli
stack of representations with dimension vector . The product comes from natural
correspondences which parameterize extensions of representations. In the case of a
symmetric quiver, one can refine the grading to ZI;O X Z, and modify the product
by a sign to get a super-commutative algebra (H,*) (with parity induced by the
Z-grading). It is conjectured in [M. Kontsevich and Y. Soibelman, Cohomological
Hall algebra, exponential Hodge structures and motivic Donaldson—Thomas invariants,
Preprint (2011), arXiv:1006.2706v2[math.AG]] that in this case the algebra (H ® Q, )
is free super-commutative generated by a Zéo X Z-graded vector space of the form
V = VPrim @ Q[x], where x is a variable of bidegree (0, 2) € Zéo x Z, and all the spaces

Dz pr};im, v € ZL. are finite-dimensional. In this paper we prove this conjecture

(Theorem 1.1). We also prove some explicit bounds on pairs (v, k) for which Vﬂf’ Em #0
(Theorem 1.2). Passing to generating functions, we obtain the positivity result for
quantum Donaldson—Thomas invariants, which was used by Mozgovoy to prove Kac’s
conjecture for quivers with sufficiently many loops [S. Mozgovoy, Motivic Donaldson—
Thomas invariants and Kac conjecture, Preprint (2011), arXiv:1103.2100v2[math.AG]].
Finally, we mention a connection with the paper of Reineke [M. Reineke, Degenerate
cohomological Hall algebra and quantized Donaldson—Thomas invariants for m-loop
quivers, Preprint (2011), arXiv:1102.3978v1[math.RT]].

1. Introduction

In this paper we study the cohomological Hall algebra (COHA) introduced by Kontsevich and
Soibelman [KS11], in the case of a symmetric quiver without potential. Our main result is the
proof of the Kontsevich—Soibelman conjecture on the freeness of the COHA of a symmetric
quiver.

Consider a finite quiver () with a set of vertices I and with a;; edges from i€ I to j €I,
so that a;; € Z>p. One can choose trivial stability conditions on the category of complex finite-
dimensional representations, so that stable representations are precisely the simple ones, and
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A. 1. EFiMOV

they all have the same slope. In particular, each representation is semi-stable with the same
slope. Then, for each dimension vector

i I
v ={""}ier € Z3,
the moduli space of representations of @) is an Artin quotient stack M, /G, where M, is an
affine space of all representations in coordinate vector spaces C', Gy =1licr GL(v%, C), and the

action is by conjugation (see §2.1). One then defines a Zég—graded Q-vector space H by the
formula

H= P H, H,:=H (M, Q).
vezl,
Note that originally in [KS11], one takes cohomology with integer coefficients, but we will deal
only with the result of tensoring by Q.
Now, for every choice of two vectors i, y2 € Zéo, one has a natural correspondence
M,, ~,/G~, ~, between the stacks M, /G,, and M,,/G,,, which parameterizes all extensions
(§2.1). We get natural maps of stacks

(M'YI/G'YI) X (M’YQ/G’YQ) A M’YL’Yz/G’Yl 2 T 71+72/G71+’Y23

which allow one to define a multiplication
. ° o—2 y
HE, (M) ® HE, (M) — He 2O (0 ), (1.1)

Gy 472

where x@(71,72) is the Euler form

Xo(r72) =Y s — Y airing.
el i,5€1

It is proved in [KS11, Theorem 1] that the resulting product on H is associative, so this
makes H into a Zéo—graded algebra, which is called the (rational) cohomological Hall algebra of
a quiver Q.

Now we restrict to the case of a symmetric quiver @, i.e. to the case a;; = a;;. In this case the
Euler form x¢(v1, 72) is symmetric as well. One defines a (ZI;O x Z)-graded algebra structure on
H, by assigning to a subspace Hé7 (M,) a bigrading (v, k + xq(7,7))- It follows from (1.1) that
the product is compatible with this grading. We also define a parity on H to be induced by the
Z-grading (see §2.3).

In general, the algebra H for symmetric quiver is not super-commutative, but it becomes so
after twisting the product by a sign (§2.3). Denote by * the resulting super-commutative product.
Our main result is the following theorem which was conjectured in [KS11, Conjecture 1].

THEOREM 1.1. For any finite symmetric quiver Q, the (Z, x Z)-graded algebra (H,*) is a
free super-commutative algebra generated by a (Zéo x 7)-graded vector space V' of the form
V= Vprirn. ® Qlz], where x is a variable of degree (0,2) € Zéo x Z, and for any ~y € Zéo the
y/prim
7.k

space is non-zero (and finite-dimensional) only for finitely many k € Z.

The second result in this paper gives explicit bounds on pairs (v, k) for which pr};im #0. For
a given symmetric quiver @, and v € ZZ ~0\10}, we put

:2<Z ai;y'y? + Y max(ai —1,0)7 (7' —1> > i+

i,gel, i€l iel
i#£]
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THEOREM 1.2. In the notation of Theorem 1.1, if V"[™ # 0, then v # 0,
k=xq(v,7) mod2 and xq(v,7) <k <xq(v,7)+2N4(Q).

The only non-trivial statement in Theorem 1.2 is the upper bound on k. In the proofs of both
theorems, we use explicit formulas for the product in H from [KS11, Theorem 2]. Namely, since
the affine space M, is G-equivariantly contractible, we have

H,=H'(BG,),

and the right-hand side is isomorphic to the algebra of polynomials in x;,, where i€ I,
1 < o <~', which are invariant with respect to the product of symmetric groups S.i. Then,
given two polynomials fi € H,,, fa € H,,, their product fi - fo € H,, v =71 + 72, equals the sum

over all shuffles (for any i € I) of the following rational function in variables (27 ,);cs ac (Lo}

(x;:a)iel,ozé{l,-w’)’é}:

Hi,je[ Hallzl Hofg:l(x;'/,ozg - wé,al)a”
’Yi ’Yi °
[lier o =1 Tao=1 (20, = %0,
Theorems 1.1 and 1.2 imply the corresponding results for the generating functions for
cohomological Hall algebras, and, in particular, positivity for quantum Donaldson-Thomas

invariants. The positivity result was used by Mozgovoy to prove Kac’s conjecture for quivers
with at least one loop at each vertex [Mozl11].

Fi((7h o)) f2((270)

The paper is organized as follows.

Section 2 is devoted to some preliminaries on cohomological Hall algebras for quivers. We
follow [KS11, §2]. In §2.1 we give a definition of the rational cohomological Hall algebra for an
arbitrary finite quiver. Section 2.2 is devoted to explicit formulas for the product in cohomological
Hall algebras. In §2.3 we define an additional Z-grading on the COHA of a symmetric quiver,
so that we get a (Zéo x 7)-graded algebra. Then, we show how to modify the product on H by
a sign to get a super-commutative algebra (H, %), with parity induced by the Z-grading.

Section 3 is devoted to the proofs of Theorem 1.1 (Theorem 3.1) and Theorem 1.2
(Theorem 3.10).

In §4 we discuss applications of our results to the generating function of COHA, or, in other
words, to quantized Donaldson—Thomas invariants.

2. Preliminaries on cohomological Hall algebras

In this section we recall some definitions and results from [KS11, §2].

2.1 COHA of a quiver

Let @ be a finite quiver. Denote its set of vertices by I, and let a;; € Z>¢ be the number of
arrows from i to j, where i, j € I. Fix a dimension vector v = (y");es € Zéo. We have an affine

variety of representations of ) in complex coordinate vector spaces C7 :

- ai;y'y?
M, =[] ¢,
i,j€1

The variety M, is acted on via conjugation by the complex algebraic group G-, = [[;¢; GL(v%, C).
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Recall that the infinite-dimensional Grassmannian
Gr(d, o) =lim Gr(d, C"), n — +oo,
is a model for the classifying space of GL(d, C). Put
BG, := H BGL(y%, C) = H Gr(v", 00).
iel el
We have a standard universal G,-bundle E G, — B G, and the Artin stack M, /G, gives a
universal family over B G,:
MY™:=(EG, x My)/Gy—EG,/G,=BG,.
Define a Zéo—graded Q-vector space

H= P H.,
VELL,
putting
7_{7 —HGW ]\477 Q @ Hn Munlv )
n=>0
Now we define a multiplication on H which makes it into an associative unital Zéo—graded
algebra over Q. Take two vectors 71, v € ZI}O, and put v := 1 + 2. Consider the affine subspace

M,, ~, C M., which consists of representations for which the standard subspaces C7 C C7'
form a subrepresentation. The subspace M., ,, is preserved by the action of the subgroup
G, 4, C G-, which consists of transformations preserving the subspaces C" C C". We use a
model for B G, 5, which is the total space of a bundle over B G, with fiber G,/G,, 5, (i.e. a
product of infinite-dimensional partial flag varieties F1(v¢, v;, 00)). We have a natural projection
E G, — B G,, », which is a universal G, ,,-bundle.

Now define the morphism
My pyp 2 Hyy @ Hyy — Hy

as the composition of the Kinneth isomorphism

®:Hg, (M, 0) ® HE (M, Q) — HE (My, x My, Q)

11X Gy

and the following morphisms:

H? (M’Yl ’szQ) 4_>HG

Gy x Gy

(M’Yl Y20 Q) - H.+261 (M Q) - HE:QCHQCQ (M’Y)

711G Goive

Here the first map is induced by natural surjective homotopy equivalences

M. — My X My, Griye = Gy X Gy,

V1,72
The other two maps are natural pushforward morphisms, with
=dim¢c M, —dim¢c M,, ,, c2=dim¢ G, 4, —dimc G,.
THEOREM 2.1 [KS11, Theorem 1]. The constructed product m on H is associative.
Note that

c1+ 2 =—xq(71, 72)s (2.1)
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where
Xo(1,72) =Y s — D amim
il ij€l
is the Euler form of the quiver Q). That is, given two representations R, Ry (over any field) of
the quiver @), with dimension vectors 71, 72 respectively, one has

> (~1)" dim Ext’(Ry, Rp) = dim Hom(Ry, Rp) — dim Ext" (Ry, R2) = xo(11, 72)-
i
2.2 Explicit description of the COHA of a quiver
Since the affine spaces M, are Gy-equivariantly contractible, we have natural isomorphisms
H, 2 H*(B Gy, Q) = (R H*(BGL(, C), Q).
i€l
Recall that
H*(BGL(d,C),Q) 2 Q[1, . . ., xq]%.

For a vector v € Zéo, introduce variables z; o, where i € I, o € {1, . .., 7'}. Then, we get natural
isomorphisms

Hy 2 Ql{wiabicracq,..an e .
From this moment, we identify the elements of H, with the corresponding polynomials.
DEFINITION 2.2. For non-negative integers p, g, we define a (p, ¢)-shuffle to be a permutation
0 € Spiq such that
ol)y<---<a(p), olp+1l)<---<olp+q).
Further, take a pair of dimension vectors i,y € Zéo, and put v:=y + v2. We define a

(71, v2)-shuffle to be an element o € Py := [I;c; S such that for each i €l the component
o; € Syi is a (71, 73)-shuffle.

THEOREM 2.3 [KS11, Theorem 2]. Given two polynomials fi € H,, fa € H,,, their product

f1- fa € Hy, v =71 + 72, equals the sum over all (1, y2)-shuffles of the following rational function

. . ! ) " .
in variables (xi,a)ief,ae{l,...,yip (mz’,a)iel,oze{l,..,,ﬂé}'

H Vf ’Y% ({L‘H — 7 )aij
i,jEI ar1=1 as=1 j,ag 2,01

7 75 " /
Hie[ ar1=1 a2=1($i,a2 - xi,al)

Fi((7f o)) f2((270)

2.3 Additional grading in the symmetric case
Now assume that the quiver @) is symmetric, i.e. a;; = aj;, ¢, j € I. Then the Euler form
XQ(v,72) =Y s = Y i
il ijel
is symmetric as well.

We make H into a (Z;O x Z)-graded algebra as follows. For a polynomial f € H, of degree
k we define its bigrading to be (v, 2k + xq(7,7)). It follows from either (2.1) or Theorem 2.3
that the product on H is compatible with this bigrading. Define the super-structure on H to be
induced by the Z-grading.
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For two elements a. 1 € Hy g, @y x € Hy g7, we have

(=1)xe(r)

Ay, kO K = Ay’ k' Ay -

In general, this does not mean that H is super-commutative. However, it is easy to twist the
product by a sign, so that H becomes super-commutative. This can be done as follows.

Define the homomorphism of abelian groups e : Z! — Z/27Z by the formula

€(7) =xq@(7,7) mod 2.
Note that the parity of the element a. j equals €(7y) (by the definition). We have a bilinear form

2P x 7' = Z)2Z,  (71,72) — (xo(11,72) + e(1)e(12)) mod 2,

which induces a symmetric form 3 on the space (Z/27), such that 3(v, v) = 0 for all v € (Z/27Z)!.
Hence, there exists a bilinear form ¢ on (Z/2Z)! such that

V(71 72) + ¥ (2. M) = B, 72)-
Then the twisted product on H is defined by the formula

_ (_1)1#(%'7’)

Qry | % Q! |/ Gy o+ Aoyl k!

It follows from the definition that the product x is associative, and the algebra (H,x) is
super-commutative. From now on, we fix the choice of bilinear form 1, and the corresponding
product x on H.

3. Freeness of the COHA of a symmetric quiver

THEOREM 3.1. For any finite symmetric quiver Q, the (ZL, x Z)-graded algebra (H,*) is a
free super-commutative algebra generated by a (Zéo x 7)-graded vector space V' of the form
V = VPrim @ Q[x], where x is a variable of bidegree (0,2) € Zéo X 7, and for any ~ € Zéo the
space Vﬁgm is non-zero (and finite-dimensional) only for finitely many k € Z.

Before giving a proof of this theorem, we illustrate it in some examples.

Let Qg be a quiver with one vertex and d loops, d > 0. Then H,, ; is the space of symmetric
polynomials in n variables of degree (k — (1 — d)n?)/2. In this case we do not need to modify
the product by a sign.

Ezxample 3.2. For d =0, the super-commutative algebra H is freely generated by odd elements
Vopt1 = x]f € Hi2k+1, k € Z>0, Thus V ="H; C H, and the space VP"™ ="H; 1 =Q -1y is one-
dimensional.

Ezxample 3.3. For d =1, the super-commutative algebra H is freely generated by even elements
Do) 1= :B’f € Hi2k, k € Z>0, Thus again V = H; C 'H, and the space VP"™ =H; g = Q - ¢ is one-
dimensional.

These two cases were considered in [KS11, §2.5]. However, for d > 2 the picture becomes
much more complicated.

Ezample 3.4. Consider the case d = 2. It is not hard to see that all the spaces V,, n > 1, have to
be non-zero and contain 1 € H,, _,2. We write down here V,, and V"™ for n < 3.
We have to take the component Vi =&, Vi1 to be equal to Hy = EBk>0 H1,2k—1, and hence

lerim = f”jiﬂ = Q- 2Y. Further, the subspace of Hy generated by Hj consists of symmetric
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polynomials divisible by (21 — 22)?. Hence, we have to take Vo C H3 to be some complementary
subspace, for example, Vo = Q[z1 + x2] C Ha. Then Vp“m Vprlm Q- (21 + 22)°. One can
show that subspace of Hs generated by Vi @ V5, consists of symmetrlc polynomials which vanish
on the line {z1 = z9 = z3}. Hence, we can choose V3 =Q[z1 + z2 + z3], and Vprlm =Vl =
Q- (a;l + 9 + .7}3)0.

Proof. Our first step is to construct the space V. It will be convenient to treat H, itself as a
Z-graded algebra (with the usual multiplication of polynomials, and the standard even grading).

To distinguish between the product in H, and the product in H, we will always denote the latter
product by ‘x’

For convenience, we put A, :=Q[{Zia}icr1<a<si] (considered as a Z-graded algebra) and
Py :=Tl;e; Syi- Then we have that H, = Aﬁ”. Further, put

prim .__ . .
A'y = Q[(xj,az — Tio )i Jel, 1<o¢1<w,1<a2<w g Tia € Ay.
i€l )
1<a<y®

Then A, = A2"™ © Q[o,]. Further, we have
H’Y _ ngim ® Q[U'y]a ngim — (Afp;rim)P'y.

Now, for each € ZL), denote by J, the smallest P,-stable Agrim—submodule of the

localization Agrim[(:vm2 — such that for all decompositions v =1 + 7o,

~1
Ti,aq )iEI,1§a1<a2g'yi]’
V1,72 € Zéo\{O}, we have that

J P
HZ}JEI a1 1 H’Y (z Tj,op — xi,m)a”

(o) 7—1—1

e .
Hzel Ha1 1115,= ~i +1(xi7042 - xi,al)

Remark 3.5. Some arguments below become simpler in the case when the quiver @ has at least
one loop at each vertex, i.e. a;; > 1, i € I. The reason is that in this case J, C Apnm and we do
not need to take the localization.

It is not hard to see that Jf T C Hl),rim. Namely, we have that
Jy C Agrim M7 M= H H (i — Tia)s
i€l 1<a<f<y’
and
(A MY (A, M =1,
Define V7 rim. ngim to be a graded subspace such that

B . P
prim __ {/prim oY%
HET = YPm g g

Further, put

V, = VP @ Qlo,] C =P v
76220

We will prove that V freely generates H, and that all the spaces V3 M are finite-dimensional
(this would imply the theorem).
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LEMMA 3.6. The subspace V C 'H generates H as an algebra.

Proof. Note that for each v € Zéo, the image of the multiplication map

@ Hy, @ Hy, = Hy
Y1+72=7,
Y1,72€2L4\{0}
is precisely Jf " ® Q[o,]. Indeed, this image clearly is contained in (J, ® Q[o])™ = Jf " @ Qo).
On the other hand, the latter space is linearly spanned by P,-symmetrizations of expressions of

the form
Vi J g
; ; [Lijer o= H12:71+1($j7a2 — Ty )™
@i 1 <a <) fo(@; gyyis L S B<) - v > : . (3.1)
Hie[ Hallzl OQ:,y’i'_A'_l(‘/L‘i;O& - $Z’,Ozl)

where 71 + 72 = 7. Taking first symmetrization with respect to P,, x P,, C P,, we may consider
only expressions (3.1) with f; € H,, fo € H,,. The Py-symmetrization of such an expression is,
up to a constant, just a product fi x fo.

Hence, it follows by induction on ) ; ~" that the subspace 'H., is contained in the subalgebra
generated by V. This proves the lemma. O

Remark 3.7. The proof of the above lemma shows that, for any possible choice of a free generating
subspace V, we have that V, ® (JéD " ® Q[oy]) =H,. Our choice just reflects the fact that
V = VPrim @ Q] as a graded vector space, with deg z = (0, 2).

Now we will show that the spaces V"™ are finite-dimensional.

LEMMA 3.8. For each v € ZI>07 the space prrim is finite-dimensional.

Proof. In other words, we need to show that the ideal Jf T C H?,rim has finite codimension. First
note that if we replace a;; by a; + 1, then the fractional ideal J, would become smaller or equal.
Hence, we may and will assume that a;; > 0 for ¢ € I, and so J, C AY"™.

Since we have natural injective morphisms
. P .
prim vy prim
HEM /Ty — AR

it suffices to show that the ideal J, € A®™ has finite codimension. It will be convenient to treat
the algebra Agrim as the algebra of functions on the hyperplane W C Agig 71, given by equation
oy(x)=0.
It suffices to show that
Supp(Agrim/JW) ={0}CcW.

Assume the converse is true. Then there exists a point y € W, y # 0, such that all the functions
from J, vanish at y. Since o,(y) =0, we have that not all of the coordinates y; o are equal to
each other. Since the ideal J, is P,-stable, we may assume that there exists a decomposition

v =71+ 72, 11, 72 € ZL,\{0}, such that

Yiow # Ui for 1< ar <4470 +1<ag <7
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Then, however, the function

J
Hz’,je[ al 1H7

ag= 'y+1

~i
Hie[ ocllzl ZQZ,Y;'JA (xi,cm - xl}%)

( ],OCQ - wival)aij

e J,

does not vanish at y, a contradiction.

The lemma is proved. o

It remains to prove the freeness.
LEMMA 3.9. The subspace V' C 'H freely generates H.

Proof. We have already shown the generation. So we need to show freeness.
Choose an order on I, and fix the corresponding lexicographical order on Z o (denoted by

v = '). Further, denote by e, g, 1 < 8 < dim Vp“m a homogeneous basis of Vp“m We have the
lexicographical order on all of the elements e, g (for all v and f3). Further, the elements e, go}!
(for all 7, B, m) form a basis of V', and again we have a lexicographical order on them, which we
denote by >.

Fix some v € Z’;O Consider the set Seq, of all non-increasing sequences (e«ﬂﬂlafy’il, R
4,840 ") such that:

L)+ +r=y7

(2) an equality (vi, Bi, mi) = (Vit+1, Bi+1, Mi+1) implies €(v;) = 0.

Clearly, we have a natural lexicographical order on Seq, (which we again denote by =). For a
sequence t € Seq,, we denote by M; € H, the corresponding product.

What we need to show is non-vanishing of each non-trivial linear combination:

T=> NMy#0, t1,...,tn€Seq, ti=--=tn, A... A #0. (3.2)
=1

Fixsomet;, ..., t, and A1, ..., Ay asin (3.2). Denote by (71, . . ., 7) the underlying sequence
of elements in Zéo for the sequence 1 € Seq,,. Then v + -+ -+, =7, and v; # 0, 1 <i < k. We
have a natural isomorphism

Ay EA) @A, = Ay,
which induces an inclusion

L:H C_>H71®."®H7k::7’—z;'

Put ]3; =Py, x---x P, . Then we have ’H,y = A . Further, take the ideal

(Jyy MAPTYAL oo (T, MAPT™ AL =2 ], C A,
We will write azgpo)t € ;{; for variables from the pth factor A, C Zy

@ _ @)

CrAM. The elements (x4, — T; 4,

ring

)€ Aﬂ,, 1<p<q<k, are not zero divisors in the quotient
Ay s
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Proof. For convenience, we may assume that the sequence i, ..., is not necessarily non-
increasing, and ¢ = k. Any element g € A, can be written (in a unique way) as a sum

g= Z gyazk, gy € A'Yl R ® A'kal ® Agiim'
v=0

The following are obviously equivalent:
(i) g g J’y§
(ii) for some v €{0,..., N}, gu §Z,J;
Now suppose that g & 77 We need to show that

% —
(@), — 2 g & T, (3.3)
We may assume that gy & JN7 Put
1 1
(k) ._ (k) _
Ty = . E x; =
* Zie[ ’y;;‘ i i ZZGI ’yk o

Then acgk) — xgw) e Apnm and we have
k k 1 y
( §7O)<2 - xgoo)q)g = (ﬂfg, )2 - Jj(k) - x( ) )g + x(k) Ze[ ng ’]y\li—i_l + Z g’//O-’Yk

for some g, € Ay, @ ---® Ay, @ AP Since (1/ Yie; i) 9N & J, by our assumption, this
implies (3.3). The claim is proved. O
We put

—~/ —~I. 5

— —_— _
A’\/ = AV[(ZB‘S?;Q - ng,pozl)lglp<qgk]’ H’Y = (A'Y )P’Y‘

We denote by the same letter L the localization maps L : ANV — ;4;,’ L: 7?7 — 777/. Also put
:T;/ = Z,/L(j;) It follows directly from the claim that the induced maps

—~ ~ —~ ~ 5
L: ATy — A [T, LMy ()P =1 ()T (3.4)
are injective.
Now, let r € {1, ..., n} be the maximal number such that the underlying sequence of elements
in ZL, for ¢, coincides with (71, ..., 7). Then it is straightforward to check that

Lu(My,) € (:7;/)13; forr+1<l<n.

Thus, it suffices to show that

Li (; )\thi) ¢ (.. (3.5)

For all relevant (3;, m; we have the following comparison:

mi 4. .. M
Li(ey gy 05" %+ - - x ey, 0000)

=Fy Z s(T )671767(1) V.. Ve sBr k) O T(k> mod (J )PW (3.6)

T
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where the sum is taken over all permutations 7 € Sy, such that 4, =y, for all pe {1,..., k},

and s(7) is the Koszul sign (recall that the parity of e, go* equals €(v)), and F,, . 5, € 77/ is
(up to sign) the product of some powers (positive and (—1)st) of the differences

(a:(-q) (p))EA 1<p<qg<k.

7,2 'L fIe3]

Thus, F, . -, is invertible, and, according to (3.6) and injectivity of the maps (3.4), we are left
to check that

/—\_/P
mMr(1) Y
E : s(T )671757(1) Q- ewﬁf(k) ¢ Jy

T

However, this follows from the condition (2) in the above definition of the set of sequences Seq.,
and from the definition of e,, g. This proves (3.3), hence the desired linear independence (3.2),
and hence free generation. The lemma is proved. O

The theorem is proved. o

It is clear that if Vprlm # 0 in the notation of the above theorem, then k= xg(v,y) mod 2
and k > xq(7, 7). Our next result is an upper bound on k (depending on ) for which V,, , # 0.

For a given symmetric quiver Q and v € ZL\{0}, we put

1 o
:2<Z aij'y"y]—i—Zmax(aii—l,O)fy 7t —1) > ny +2.

t,jel, iel i€l

i#]
THEOREM 3.10. In the notation of Theorem 3.1, if pr’gm #0, then v # 0,

k=xq(y,7) mod 2 and xqQ(7,7) Sk <xqQ(7,7) + 2N4(Q).
Proof. According to the proof of Theorem 3.1, we have
dim V3™ = dim (KR /g3 )kxe(0) (3.7)

Recall that Py =]];c; S,

‘ ' im\ P
AT = Q{8100 — i D << PR = (AT
and .J, is the smallest P,-stable Agrim—submodule of the localization

AP (5,05 —

1
v I%al)z‘ef,lsalmz@i]’

such that for all decompositions v =71 + 2, 71, 72 € ZL(\{0}, we have that

J
Hi,je] al 11_[7

az="] +1( Jyaz — Li,an )aij

€J,. (3.8)
Hzel Ha1 1115,= ~i +1($i,042 - xi70¢1)

Recall that we take the standard even grading on AY™ with deg(zjay — Tia,) = 2, and the
induced grading on H5™™.

According to (3.7), it suffices to prove inclusions

(Arimyd c g, for d > 2N(Q). (3.9)
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For any 7,5 € I, put

max(1, a;) ifi=j.

;i if 4 ]
a;j = { K 7

Take the quiver Q' := (I, a;;). Note that N,(Q) = N,(Q'), and if we replace Q by Q" then the
new fractional .J, will be contained in the initial one. Hence, in order to prove inclusions (3.9),

we may and will assume that a; > 1 for ¢ € I, and so J, C Agrim. We will deduce (3.9) from the
following more general result.

LEMMA 3.11. Let k be an arbitrary field, and consider the graded algebra of polynomials
B=X[z1,..., 2], n>1, with grading deg(z;) = 1. Suppose that Iy, ...,ls € B are pairwise
linearly independent non-zero linear forms in z;. Take some non-empty set of polynomials
{Pi1,..., P} C B of the form

P, = lilﬂ L lgis’
where d;; € Z>o. Put dj := maxi<i<, dij, 1 <j < s. Then the following are equivalent.
(i) Béc(P,...,P) ford>dy +---+ds—n+1.
(ii) The ideal (P, ..., P.) C B has finite codimension.
(iii) For any sequence pi, ..., p, of numbers in {1, ..., s}, such that d;,, >0 for 1 <i<r, the
linear forms I, , ..., 1, generate the space B 1
Proof. Both implications (i) = (ii) and (ii) = (iii) are evident. So we are left to prove implication
(iii) = (i).
Put D:=di+---+ds—n+1. If D<O0, then one of the polynomials P; is constant, and
there is nothing to prove. So, we assume that D > 0.

We proceed by induction on D+n. If D+n=2 then n=s=d;=D=1, hence
(P1,...,P) D (z1), and the statement is proved.

Assume that the implication holds for D +n < kg > 2. We will prove that it holds for
D + n = kg. Consider the following cases.

Case 0. One of P; is constant. Then, there is nothing to prove.

Case 1. We have P; = [; for some ¢, j. Then it suffices to show that the images of P, with d;; =0
in B/(l;) generate (B/(l;))? for d > D. If n =1 then this is clear, and if n > 1 then this follows
from the induction hypothesis.

Case 2. All P; have degree at least 2. Take d > D, and f € B%. Choose some sequence pi, . . . , P,
of numbers in {1, ..., s}, such that d;,, >0 for 1 <i <r. Then by statement (iii) we can write

T
f:leig’h g eBdil‘
i=1
It suffices to show that for each 1 < i < r, the polynomial g; belongs to an ideal generated by Pj
with I, { Py, and Py /1, with [, | P;». However, this follows from the induction hypothesis.

In each case, we have proved the desired implication. The induction statement is proved. The
lemma, is proved. O

Now, consider the cases. If >, 7' =1, then N, (Q) =1, and AP"™ — , and hence inclusions
(3.9) hold. Further, if > ,7*>2, then we apply Lemma 3.11 to B= Agrim, the linear
forms (2ja, — %iq,) (defined up to sign), and polynomials which are in the P,-orbit of the
expressions (3.8). They generate precisely the ideal .J, C AP We have already shown in the
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proof of Theorem 3.1 that the ideal J., C Agrim has finite codimension. Therefore, the implication
(ii) = (i) from Lemma 3.11 gives the desired inclusions (3.9). Indeed, we have that

1 o o .
dit oo tdy= g (Z aigy'y’ + 3 (@i = )7'(3" - 1)>, n=>7'-1,
17]617 el i€l
i#]
and hence N,(Q) =di + - - -+ ds — n + 1. The inclusions (3.9) and the theorem are proved. 0O

4. Applications to quantum DT invariants

Define the generating function for the COHA H of a symmetric quiver @ by the following formula:
Ho({tibier, @)= Y. (=1)Fdim(H, x)t7¢"? € Z((q2))[[{t: }ies]],
Y€ZLy keZ
where 17 :=[],; t;yl Note that we have an equality
(—gq2)Xe(r:)

o=, L —g)(1—¢2) ... (1—q7)

vezl,

£, (4.1)

Recall the notation

(51000 =[] (1—q"2)
TLEZ;Q
(the so-called g-Pochhammer symbol).

COROLLARY 4.1. Let Q be a symmetric quiver. Then we have a decomposition
-1 k—1
Ho({titier.a)= [ (¢ 9& o,
YEZL ) kEL
where c, j, are non-negative integer numbers. Moreover, if ¢}, # 0, then v # 0,

k=xq(v,7) mod 2 and xq(7v,7) <k <xq(7,7)+2N,(Q).

In particular, for a fixed «y only finitely many of ¢, are non-zero.

Proof. The corollary follows immediately from Theorems 3.1 and 3.10 if we put ¢, ; = dim VWp Zim.
Indeed, the generating function of the free super-commutative subalgebra generated by one
element of bidegree (7, k) equals

(1— qk/QtV)(—l)’“’l'
The resulting decomposition follows from free generation of H by V', and from Theorem 3.10. O

In the notation of Corollary 4.1 and the terminology of [KS11], the polynomials
1
Q)(9) = cyud"/? € Z[g™2]
keZ

are quantum Donaldson—Thomas invariants of the quiver ) with trivial potential, trivial stability,
and the dimension vector 7. It follows from Corollary 4.1 that for v # 0 we have

Q(7)(q) = ¢2X20V0(7)(q),

where Q(7)(q) is a polynomial with non-negative coefficients, Q(7)(0) = 1, and deg(Q(7)(q)) <
Ny (Q).
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We would like to mention a connection with the paper of Reineke [Reill]. In that paper, for
each integer m > 1, the following g-hypergeometric series is considered:

LmD)
l-g¢t)(A-¢g2) - (1-g™)
Denote by @, the m-loop quiver (a quiver with one vertex and m loops). Since xq,,(n1, n2) =
(1 — m)ning, the formula (4.1) implies

Hy(g, 1) = Hq,, (1) 'tq" =™/ ¢7h).

Also, we have N,(Qm)=(m —1)(;) —n+ 2. Therefore, Corollary 4.1 implies the following
corollary.

H(g,t)=Hpm(g, )=

n=>0

t" € Z(q)[[t]]-

COROLLARY 4.2.
_ AN (—_1Y(m=1)n
Hy(q, (=)™ ') = [ (dFtrsq7h) D7 s,
n>1,k€Z
where d,, ) are non-negative integers, and the inequality d,, j, > 0 implies

n—1<k<(m—1)<2).

In particular, for a fixed n only finitely many of d,, ;. are non-zero.

This corollary is stronger than Conjecture 3.3 in [Reill]. According to the notation
of [Reill], the quantized Donaldson-Thomas type invariant DT,(lm) (q) equals >,y dn kq". Thus,
Corollary 4.2 implies that DTT(lm)(q) is a monic polynomial of degree (m — 1)(2‘), divisible by
g™ !, with non-negative coefficients.

With the above said, the numbers d,, ;. are the dimensions of graded components of the finite-

prim

dimensional graded algebras Hp /J>7. It would be interesting to compare this interpretation
with the explicit formulas for DT, ,(Lm)(q) in [Reill, Theorem 6.8].
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