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Abstract – It was recently shown that blind source separation (BSS), as originally developed in the signal
processing community, can be used in operational modal analysis to separate the responses of a structure
into its individual modal contributions. This, in turn, allows the application of simple single-of-degree-
freedom techniques to identify the modal parameters of interest. Several publications have recently at-
tempted to give a posteriori physical interpretations to BSS – as initially developed in telecommunication
signal processing – when applied to the field of structural dynamics. This paper proposes to follow the
route the other way round. It shows that several separation criteria purposely dedicated to operational
modal analysis can be deduced from general physical considerations. Three such examples are introduced,
based on very different properties that uniquely characterise a structural mode. The first criterion, coined
the “principle of shortest envelope”, conjectures that the envelope of a modal response has, among all
possible envelopes, the shortest length. That such a principle leads to the governing differential equation of
a single-degree-of-freedom oscillator is proved from calculus of variation. The second criterion, coined the
“principle of minimum spectral variance”, conjectures that the frequency spectrum of a structural mode
is maximally concentrated around its central frequency. Finally, the third criterion, coined the “principle
of least spectral complexity”, states that a structural mode has the lowest possible entropy in the fre-
quency domain. All three criteria can be expressed in terms of a mixing matrix whose columns contain
the unknown mode shapes. The recovery of the latter is then trivially achieved by minimising the criteria.
Extensive simulations show that the proposed criteria lead to figures of merit very similar to those of the
state-of-the-art, while at the same time providing physical insight that other algorithms issued form the
signal processing community may dramatically lack.

Key words: Operational modal analysis / blind source separation / least action principle / calculus of
variation / structural dynamics

Résumé – Principes de moindre action pour la séparation aveugle de modes. Des recherches
récentes ont montré que certaines méthodes de séparation aveugle de sources, initialement développées
pour les signaux de télécommunication, permettent de décomposer les réponses vibratoires d’une struc-
ture en ses différentes contributions modales. L’avantage qui s’ensuit pour l’analyse modale opérationnelle
est une identification immédiate des paramètres modaux par application des techniques traditionnelles
dédiées aux systèmes à un degré de liberté, et ceci sans connaissance des forces excitatrices appliquées à
la structure. L’approche est dite �� aveugle ��, car elle ne nécessite aucune connaissance préalable des pa-
ramètres structuraux. Plusieurs publications ont récemment tenté de donner a posteriori une interprétation
physique aux méthodes de séparation aveugle de sources, lorsque appliquées en dynamique des struc-
tures. Cette communication propose de suivre la démarche inverse en montrant que des critères de
séparation inédits et ad hoc peuvent être définis suivant des considérations physiques générales. Trois
exemples sont donnés. Le premier critère, dit de �� moindre longueur de l’enveloppe ��, stipule que l’en-
veloppe d’une réponse modale est la plus courte parmi toutes les trajectoires possibles. L’équation du
mouvement qui en découle est obtenue par calcul variationel. Le second critère, dit de �� moindre variance
spectrale ��, stipule que la densité spectrale d’une réponse modale est la plus concentrée possible autour
d’une fréquence centrale. Enfin, le troisième critère dit de �� moindre complexité spectrale �� stipule qu’une
réponse modale a la plus faible entropie possible dans le domaine fréquentiel. Tous ces critères peuvent
être exprimés selon une intégrale de moindre action en fonction de la matrice de mélange qui contient
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les déformées modales inconnues. L’estimation de celles-ci est solution de leur minimisation. Plusieurs
simulations montrent que l’approche proposée donne lieu à des résultats de séparation très similaires à
ceux de l’état de l’art, l’avantage principal étant d’être issus de considérations physiques spécifiques à la
problématique de l’analyse modale opérationnelle contrairement aux autres méthodes de séparation aveugle
de sources.

Mots clés : Analyse modale opérationnelle / séparation aveugle de sources / principe de moindre action /
calcul des variations / dynamique des structures

Nomenclature

BSS Blind Source Separation

MAC Modal Acceptance Criterion

MSEnt Minimum Spectral Entropy

MSV Minimum Spectral Variance

OMA Operational Modal Analysis

SHE Shortest Envelop

SNR Signal to Noise Ratio

SOBI Second Order Blind Identification

1 Introduction

Operational modal analysis (OMA) aims at identify-
ing the modal properties of a structure given only its re-
sponses in ambient environment, that is without having
access to actual excitation forces. This happens whenever
specific excitation setups cannot be installed, because of
technological or financial reasons, or simply because ar-
tificial excitations would not be representative enough of
the actual in-situ force field. Many techniques have been
proposed over the last decades to solve the OMA prob-
lem from different angles of attack – see e.g. [1, 2]. One
recent and elegant solution consists of viewing the modal
expansion of a set of structural responses as a mixture
of modal coordinates – the “source signals” – where the
mode shapes fill the columns of a mixing matrix. Then,
under quite mild assumptions concerning only the mutual
independence of the sources, it is possible to identify all
constituents of the mixture up to an arbitrary scaling of
the mode shapes [3–20]. In turn, standard single-degree-
of-freedom techniques can be applied on the separated
modal coordinates to identify the global modal parame-
ters. Such an approach is referred to as “blind”, since it
does not require the knowledge of the mass and stiffness
matrices, as is usually the case to recover mode shapes
– e.g. from an eigenvalue decomposition. It is also dif-
ferent from classical modal identification, since it is not
based on any parametric model. The current state-of-
the-art in the context of operational modal analysis is
rooted on the so-called Second-Order Blind Identification
(SOBI) algorithm, which has proven extremely robust: its
principle consists in separating sources – i.e. modal coor-
dinates – which are least mutually correlated at several
time-lags [4,6–9,20]. This was shown to work surprisingly
well, even though the assumption of mutual decorrelation
of modes is not truly fulfilled as soon as the system is

non-conservative (i.e. presence of damping). Like many
other BSS algorithms, SOBI was initially discovered in
the signal processing community [21–25] and the fact that
it found pertinent applications in the field of structural
dynamics might be more a fortunate coincidence than the
result of an intended research program. As a matter of
fact, several publications have recently attempted to give
a posteriori physical interpretation to SOBI [3, 4, 9, 20].

The objective of this paper is specifically to tackle the
issue the other way round. Given the mixture model sug-
gested by the modal expansion theorem, can one devise
ad hoc criteria – inspired from general physical principles
– that can separate individual modes?

The answer to this question is shown to be positive. In
addition, it appears quite surprisingly that many such cri-
teria exist, which result in as many new separation algo-
rithms. This paper explores three of them, based on very
different properties that uniquely characterise a structural
mode. The first criterion, coined the “principle of short-
est envelope”, conjectures that the envelope of a modal
response has, among all possible envelopes, the shortest
length. That such a principle leads to the governing dif-
ferential equation of a single-degree-of-freedom oscillator
is proved from calculus of variation. The second criterion,
coined the “principle of minimum spectral variance”, con-
jectures that the frequency spectrum of a structural mode
is maximally concentrated around its central frequency.
Finally, the third criterion, coined the “principle of least
spectral complexity”, states that a structural mode has
the lowest possible entropy in the frequency domain. All
three criteria can be expressed in terms of a mixing ma-
trix whose columns contain the unknown mode shapes.
The recovery of the latter is then trivially achieved by
minimising the criteria. One difference with SOBI – and
other related BSS algorithms – is that mode shapes are
recovered one by one, in a deflation way, rather than si-
multaneously in batch way. Extensive simulations show
that the proposed criteria lead to figures of merit very
similar to those of SOBI. Their main advantage is yet
conceptual rather than algorithmic; indeed, least action
principles provide physical insight into the mechanism of
BSS that other algorithms issued form the signal pro-
cessing community may dramatically lack. No doubt that
other physical properties could be exploited to define still
new separation criteria by following the lines of this paper.

2 Blind separation of modal responses

It was recently shown that blind source separation
(BSS), as originally developed in the signal processing
community, can be used in operational modal analysis

https://doi.org/10.1051/meca/2013086 Published online by Cambridge University Press

https://doi.org/10.1051/meca/2013086


J. Antoni et al.: Mechanics & Industry 14, 397–411 (2013) 399

(OMA) to separate the responses of a structure into its in-
dividual modal contributions. The central idea is to view
the modal expansion of a set of responses as a mixture
of modal coordinates. Namely, let yi (t), i = 1, . . . , m, be
the structural responses, measured by a set of m sensors,
of an n-degree-of-freedom system with modal coordinate
ηj (t), j = 1, . . . , n, and mode shape components φij (t).
According to the modal expansion theorem,

yi (t) =
n∑

j=1

φijηj (t) + ni (t) (1)

where the extra term ni (t) accounts for possible measure-
ment noise. Put into a matrix form, this reads

y (t) = Φη (t) + n (t) (2)

where x (t) = [x1 (t) . . . xn (t)]T (x = y, η and n). Equa-
tion (2) exhibits a strong similarity with the mixture
model found in BSS, where the modal coordinates play
the roles of the sources and the mode shapes fill the
columns of the mixing matrix. This has suggested the
application of BSS on the measured structural responses
yi (t) in an attempt to recover the modal matrix Φ to-
gether with the individual modal coordinates ηj (t) with
no other assumption than the mutual independence of
the latter. One prominent tool in the state-of-the-art is
the SOBI algorithm, which achieves separation of sources
by forcing their decorrelation at several time-lags. Specif-
ically, let Ry (τ) =

〈
y (t)y (t − τ )H

〉
be the correlation

matrix of the measurements under steady state regime at
time-lag τ , where 〈. . .〉 = limT→∞ T−1

∫
T

. . .dt denotes
the time-averaging operator and H stands for the com-
plex conjugate operation (complex data will be considered
further on). Then, from equation (2),

Ry (τ) = ΦRη (τ)ΦH + σ2
nδ (τ) I, (3)

where temporally and spatially white noise has been as-
sumed. Since the sources are assumed mutually inde-
pendent, Rη (τ) should be a diagonal matrix for any
value of τ . Therefore, Φ happens to be the generalised
matrix of eigenvectors which diagonalises all matrices
Ry (τ) in a given set of time-lags. This provides the
mode shapes of interest. In turn, the diagonal elements of
Rη (τ) return the autocorrelation functions of individual
modal coordinates, from which global modal parameters
can be extracted from standard single-degree-of-freedom
techniques.

The physical significance of SOBI when applied
to structural responses was investigated in refer-
ences [3, 4, 9, 20]. In particular, it has been pointed out
that the assumption of mutually independent (and there-
fore uncorrelated) modes does not hold true except for
conservative systems, i.e. with no damping. However,
SOBI happens to be very robust against this assump-
tion, for instance much more than JADE which was his-
torically the first choice to solve the OMA problem [3].
Rather than trying to justify a posteriori the applicability

of BSS algorithms to structural dynamics, this paper pro-
poses to follow the other way round. A general approach
is proposed which results in the deduction of several new
separation criteria based on first physical principles.

3 Separation from ad hoc criteria – general
principles

This section briefly describes the proposed method-
ology on a general basis. The effort is put on a deduc-
tive presentation, so that the same mechanism can be
applied to the various separation criteria to be presented
hereafter. First of all, the concept of modal filter is re-
viewed, since this is where BSS and OMA meet each
other. Second, the concept of “action” is introduced for
blindly estimating modal filters. Third, a deflation ap-
proach to separation is adopted since this has some algo-
rithmic advantages, even though a batch approach may
be envisioned as well.

3.1 The concept of modal filter

The natural way to inverse equation (1) – or its ma-
trix version (2) – is to find a set of coefficients wij ,
i = 1, . . . , n, j = 1, . . . , m, such that

η̂i (t) =
m∑

j=1

w∗
ijyj (t) = wH

i y (t) (4)

(wherein ∗ denotes the conjugate symbol) returns a
“good” estimate of the modal coordinate ηi (t). Vector wi

is referred to as a “spatial” or “modal filter”, a concept
which largely precedes the introduction of BSS in struc-
tural dynamics [26]. These are the primary unknowns of
the problem. It now remains to specify how these can be
found blindly, i.e. without measuring anything else than
the structural responses yi (t) and independently of any
parametric model.

3.2 Action integral

Inspired by the variational principles of mechanics, let
us define a functional S (x, ẋ), the “action”, which takes
an arbitrary signal x (t) and its derivative ẋ (t) as inputs.
The central idea of the proposed methodology consists
in designing S (x, ẋ) such that it achieves a minimum if
signal x (t) fulfils some physical property of a modal coor-
dinate, that is when x (t) ≡ ηi (t). After substituting the
estimated modal coordinate wH

i y (t) for its theoretical
value ηi (t), the issue of blindly estimating the modal fil-
ter wi amounts to minimising the following cost function

J (w;y) = S (wHy,wH ẏ
)

(5)

with respect to w. In many cases, the above minimisa-
tion will be efficiently carried out by means of a gradient
descent algorithm (see Appendix).
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3.3 Iterative separation

Let us assume that a first modal filter, w1, has been
found which minimises J (w;y) and therefore provides an
estimate η̂1 (t) of η1 (t). In order to proceed to the extrac-
tion of a second modal coordinate, the effect of the first
mode must be subtracted from the structural responses
before trying to minimise J (w;y) again. This may be
achieved as follows. Let ϕ̂1η̂1 (t) = ϕ̂1w

H
1 y (t) be an esti-

mate of the modal responses ϕ1η1 (t), where mode shape
ϕ1 stands for the first column of the modal matrix Φ. The
minimum mean-square estimate of ϕ1 is found as ϕ̂1 =
Argminϕ

〈
|y (t) − ϕη̂1 (t)|2

〉
=
〈
y (t) η̂1 (t)∗

〉/〈|η̂1 (t) |2〉.
Therefore,

y.1 (t) = y (t) − ϕ̂1η̂1 (t) =
(
I− ϕ̂1w

H
1

)
y (t) (6)

is an estimate of the structural response free of the effect
of mode 1. By repeating the same procedure recursively,
one arrives at the following separation algorithm:

step 1:

w1 = ArgminwJ (w;y) (7)

y.0 (t) = y (t)

step k:

η̂k (t) = wH
k y.(k−1)! (t) (8)

ϕ̂k =
〈
y.(k−1)! (t) η̂k (t)∗

〉/〈|η̂k (t) |2〉 (9)

y.k! (t) = y.(k−1)! (t) − ϕ̂kη̂k (t) =
k∏

i=1

(
I − ϕ̂iw

H
i

)
y (t)

(10)

wk+1 = ArgminwJ (w;y.k!) (11)

stop when k = n.

where y.k! (t) denotes an estimate of the structural re-
sponse free of the effect of modes 1 to k. The algorithm di-
rectly returns an estimate of the modal matrix, Φ̂, which
contains mode shapes ϕ̂k in its k-th column, and of the
corresponding modal coordinates η̂k (t). If needed, an es-
timate of the overall separation matrix (i.e. the estimated
inverse Φ̂−1of Φ such that η̂ (t) = Φ̂−1y (t)) is returned
by the matrix whose kth raw is

ϕ̂i = wH
k

k∏
i=1

(
I − ϕ̂iw

H
i

)
(12)

Please note that the series of recursions given by equa-
tions (7) to (11) extracts modes one by one without forc-
ing them to be mutually orthogonal (i.e. uncorrelated at

time time-lag τ = 0) contrary to other BSS algorithms
such as JADE or SOBI. This removes a strong and arti-
ficial condition actually conflicting with the true physics
of the problem.

The next section now proposes three least action prin-
ciples which will furnish relevant candidates for the action
S (x, ẋ) and its corresponding cost function J (w;y).

4 Least action principles

A general attribute of a structural mode is to con-
centrate most of its energy around a specific frequency.
This will be declined in three different ways. The first
one is inspired from the concept of geodesic in the time-
domain, the second one from that of barycentre in the
frequency domain, and the third on from that of entropy
in the frequency domain. All derivations are made un-
der the assumption of steady state regime and stationary
random excitations, yet without restriction (extensions to
other scenario, e.g. transient responses, are also possible
following similar lines).

Details of the results reported in this section are given
in the Appendix.

4.1 Principle of shortest envelope (SHE)

Let us construe the modal coordinate η (t) as the “tra-
jectory” of the corresponding mode in the time-domain.
Let us then define the quadratic envelope of the mode
as |ηa (t) |2, where ηa (t) denotes the analytical signal
version of η (t) [27] (see Appendix C.1 on how to com-
pute the analytical signal). The principle of shortest en-
velope conjectures that, among all possible trajectories,
a mode will try to minimise that trajectory with the
shortest envelope. More specifically, let dl be the ele-
ment of length of the envelope |ηa (t) |2 corresponding
to time increment dt such that, from the Pythagorean
theorem, dl2 = dt2 +

(
d|ηa (t) |2)2 (see Fig. 1). Thus

the total length over a time interval of duration T reads∫
T

dl =
∫

T
dt

√
1 +
(
d|ηa (t) |2/dt

)2. For stationary sig-
nals, the action is defined as the average envelope length
per unit of time,

S (ηa, η̇a) = lim
T→∞

1
T

∫
T

dt

√
1 +
(

d
dt

|ηa (t) |2
)2

= 〈L(ηa, η∗
a, η̇a, η̇∗

a)〉 � 1 (13)

with Lagrangian

L(ηa, η∗
a, η̇a, η̇∗

a) =
√

1 + 4� (η̇aη∗
a)2 (14)

This is schematically illustrated in Figure 1. Note that
the quadratic envelope |ηa (t) |2 was actually considered
in equation (13) because it physically reflects fluctua-
tion of energy, a quantity which is naturally minimised
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Fig. 1. Illustration of the principle of shortest envelope. Signal (a) is a mixture of two modes with natural frequencies 0.05
and 0.12 (arbitrary units); the length of its envelope is S = 1.0473. The length of the envelopes of modal constituents shown
in (b) and (c) is S = 1.0004 and S = 1.0010, respectively. Signals (d−f) bear the same interpretation in the case of two closely
space natural frequencies, at 0.05 and 0.06, which better emphasises the increase in length of the mixture (d) due to a beating
phenomenon. Note the theoretical length of a pure sine is S = 1.

at the thermodynamic equilibrium of a system, and also
because it is easily tractable. The envelope magnitude
|ηa (t) | could have been considered instead of its square,
leading to

S (ηa, η̇a) = lim
T→∞

1
T

∫
T

dt

√
1 +
(

d

dt
|ηa (t) |

)2

= 〈L(ηa, η∗
a, η̇a, η̇∗

a)〉 � 1 (15)

with Lagrangian

L(ηa, η∗
a, η̇a, η̇∗

a) =

√
1 +

� (η̇aη∗
a)

|ηa|2
2

(16)

a criterion very similar to equation (14) up to a normali-
sation by |ηa|2 under the square root. The authors did not
find significant difference between criteria (14) and (16)
in terms of separation capability; nevertheless, since it is
less involved algorithmically than the latter, the former
criterion only will be considered from now on.

Because a mode has no defined magnitude and to
avoid the trivial solution, the minimisation of the action
must be achieved under the constraint of constant – say
unitary – energy

〈|ηa (t) |2〉 = 1. Expressed in terms of
the unknown modal filter w, action (13) provides the cost
function

J (w;ya) =

〈√
1 + 4

(� (wH ẏa(t)ya(t)Hw)
wHRyaw

)2
〉

(17)

where ya stands for the analytic signal version of y and
Rya =

〈
ya (t)ya (t)H

〉
.

In practice, J (w;ya) will be easily minimised by
means of a descent gradient algorithm, as shown in Ap-
pendix C.3. Yet, it is also interesting to work out the min-
imum from a theoretical point of view by applying the
Euler-Lagrange equations to equation (13). After some
calculus, this leads to the following “equation of motion”

d
dt

� (η̇aη∗
a) = 0 (18)

of the mode, to which ηa (t) = eiλ(t), λ(t) ∈ R is, one solu-
tion for arbitrary real time-varying phase λ(t). In words,
pure sinusoids (with possible frequency modulations) are
those trajectories with shortest envelope, S (ηa, η̇a) = 1;
in terms of geodesics, this corresponds to straight lines.
Although actual modal coordinates will never equal pure
sinusoids due to the presence of dissipation, this result
tells is that the minimisation of J (w;ya) will separate
modes which are the closest possible to sinusoids, which
is consistent with the property of modes to be highly con-
centrated around specific frequencies.

In a more abstract way equation (18) may be seen
as the conservation law of quantity � (η̇aη∗

a). From
Noether’s theorem [28], this implies invariance of the La-
grangian (14) under translation and scaling (i.e. change of
units) transformations, as expected from the stationarity
assumption inherent to the steady state regime and from
the normalisation of modal coordinates to unity.
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V = 279.84; H = -5.3191 V = 1.99; H = -5.7724 V = 4.47; H = -5.7698

ff

= +

(a) (b) (c)

f

Fig. 2. Illustration of the principles of minimum variance and minimum entropy. Spectrum (a) is a mixture of two modes with
natural frequencies 0.05 and 0.12 (arbitrary units); its spectral variance is V = 279.84 and spectral entropy H = −5.3191. The
spectral variances and entropies of the modal constituents shown in (b) and (c) are V = 1.99, H = −5.7724 and V = 4.47,
H = −5.7698, respectively.

4.2 Principle of minimum spectral variance (MSV)

The principle of shortest envelope proceeds from a
time-domain vision of modal responses. A frequency do-
main vision may be well-suited as well, especially to re-
flect the property of high energy concentration of a mode
around a central frequency. To see this, let us define
Sη (f) the power spectrum (energy spectrum in the case of
transient responses) of the modal coordinate η (t). View-
ing the latter as a probability density function of the
mode “trajectory” in frequency, a measure of concentra-
tion around the barycentric frequency f0 is given by the
spectral variance∫∞

0
Sη(f)(f − f0)2df∫∞

0 Sη(f)df
� 0 with f0 =

∫∞
0

Sη(f)fdf∫∞
0 Sη(f)df

(19)
This is illustrated in Figure 2. Converted back to the time-
domain by use of the Parseval’s identity, this returns the
action (see Appendix A)

S (ηa, η̇a) =
〈|ηa|2

〉 〈|η̇a|2
〉− 〈� (η̇aη∗

a)〉2 (20)

Thus, the modal filter w should achieve the minimum of
the following cost function

J (w;ya) =
wHRẏaw
wHRyaw

−
(
� (wHRẏayaw

)
wHRyaw

)2

(21)

where Rẏa =
〈
ẏa (t) ẏa (t)H

〉
and Rẏaya =〈

ẏa (t)ya (t)H
〉
.

In contrast to equation (13), action (20) is difficult to
express in terms of a Lagrangian. However it does not pre-
vent application of calculus of variation from producing
the “equation of motion” (see Appendix B)

−η̈a

〈|ηa|2
〉

+ 2iη̇a 〈� (η̇aη∗
a)〉 + ηa

〈|η̇a|2
〉

= 0 (22)

of the mode, to which ηa (t) = ei(λt+ϕ), λ ∈ R, is found as
a solution with S (ηa, η̇a) = 0. Note this is more restric-
tive than the solution previously found for the principle

of shortest envelope since it precludes frequency modula-
tion, yet at the same time it is also more physical in this
respect. Indeed, for this particular solution, the action

S (ηa, η̇a) =
〈|η̇a|2

〉
+ λ2

〈|ηa|2
〉︸ ︷︷ ︸

=1

= 2 (K + U) (23)

boils down to (twice) the total energy of a simple oscilla-
tor with mass 1, kinetic energy K = 1

2

〈|η̇a|2
〉
, potential

energy U = 1
2λ2
〈|ηa|2

〉
, and stiffness λ2. Therefore min-

imising the spectral variance amounts to minimising the
kinetic energy K of the mode given a constant potential
energy U = 1

2λ2 (remember the constraint
〈|ηa|2

〉
= 1).

4.3 Principle of minimum spectral entropy (MSEnt)

Keeping on with the interpretation of the power spec-
trum Sη (f) as the probability density function of the tra-
jectory of a mode in the frequency-domain (see Fig. 2),
another least action principle is to conjecture that the
trajectory should be the less erratic as possible, that is
with the least entropy

H(Sη) = −
∫ ∞

0

Sη(f)∫∞
0 Sη(f)df

ln

(
Sη(f)∫∞

0 Sη(f)df

)
df.

(24)
The motivation of this conjecture is as follows. As known
from the field of information theory, the largest possible
entropy will correspond to a flat spectrum, Sη (f) = σ2

η,
whereas the smallest possible one will correspond to a
delta spectrum, Sη (f) = A2δ(f − f0), i.e. a pure line.
The principle of minimum spectral entropy will therefore
again favour highly concentrated structures in frequency
– that is pure sinusoids in the time-domain. Equation (24)
also shares a strong similarity with equation (19), where
in both cases the minimization is achieved by squeezing
the mode resonance by suitably tuning a notch filter: in
the former case the notch filter has the parabolic shape
(f − f0)2, whereas in the former it is directly returned by
the “inverted resonance” − ln Sη(f).

The time domain counterpart of H(Sη), the action
S (ηa, η̇a), is unfortunately difficult to express and does
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not actually give further insight. For this reason, this third
least action principle will not be assigned an equation of
motion. The corresponding cost function

J (w;ya) = −
∫ ∞

0

wHSy (f)w
wHRyaw

ln
(

wHSy (f)w
wHRyaw

)
df

(25)
will directly be minimised with respect to w, where Sy (f)
denotes the spectral matrix of the measurements and
where the Parseval’s identify

∫∞
0

Sy (f)df = Rya has been
used.

4.4 Discussion

Several remarks are in order at this juncture. First,
the fact that the proposed least action criteria do not
depend on the structural parameters (e.g. mass, stiffness
and damping values) cannot be overemphasised. Indeed,
this complies with the BSS philosophy to be able to sepa-
rate the independent components passing through a sys-
tem without any knowledge of the system itself. It also ex-
plains why the homogeneous “equations of motion” (18)
and (22) are quite different from the usual differential
equation, η̈a +2ω0ζ0η̇a +ω2

0ηa = f , which requires knowl-
edge of parameters ω0 and ζ0 and of the unknown forcing
function f(t).

Second, it was found that minima of criteria (13),
(19) and (24) are returned by pure sines which, strictly
speaking, are solutions of conservative systems only. For-
tunately it does not mean that the proposed criteria will
fail in the presence of energy dissipation, but simply that
they will try to separate the most lightly damped modes
among all possible solutions. Again this perfectly com-
plies with the physical definition of a mode, to which cri-
teria (19) and (24) are quite explicit in this respect (they
minimise the modal bandwidth which is inversely propor-
tional to the damping ratio). Intuitively, a lightly damped
mode will produce slowly modulated sinusoids that are
quite close to the theoretical solutions. Specifically, let

ηa(t) = a(t)ej(ω0t+φ(t)) (26)

be the polar form of the modal response ηa(t), where a(t)
stands for amplitude modulation and φ(t) for phase mod-
ulations around the natural frequency ω0 of the mode.
Note that the amount of damping will directly affect the
rapidity of the fluctuations in a(t) and φ(t): the lighter
the damping, the slower the modulations. Then, it is read-
ily checked that the principles of shortest envelope and of
minimum spectral variance minimise the quantities〈√

1 +
ȧa

〈a2〉

〉
(27)

and 〈〈
ȧ2
〉

〈a2〉 +
〈
(ω0 + φ̇)2

〉〉
, (28)

respectively. This means the later tries to separate modes
with least amplitude and phase fluctuations, whereas the
later bothers about amplitude fluctuation only. In other
words, components are separated which are as lightly
damped as possible, i.e. as close as possible to sinusoids.
This proves to some extent the validity of the proposed
criteria in the presence of dissipation. However, from a
purely numerical point of view, it is clear that the de-
gree of damping will directly impact upon the convergence
rate when minimising the proposed criteria. This will be
demonstrated in Section 5.

Third, although the case of steady state regime has
been assumed (stationary signals) hitherto, the proposed
principles are not at all limited to that specific configu-
ration and apply just as well to transient responses with
minor modification in the corresponding algorithms. This
issue is not carried on here.

Finally, it is noteworthy that the principle of least en-
velope happens to be more general than the two other
ones, for it also accepts modal contributions with modu-
lated frequency as solutions. This opens interesting per-
spectives in all application concerned with time-varying
or non-linear systems [27, 29], which are not investigated
here due to lack of space.

5 Experimental validations

The three proposed principles are now demonstrated
and validated on both synthetic and real data. A partic-
ular attention is paid to comparisons with SOBI which
stands as a point of reference in the literature; as a con-
sequence, this section is not intended to bring any com-
parison with experimental modal analysis (i.e. when exci-
tations are measured) since this has already been covered
in several other research works.

5.1 Parametric analyses

This subsection aims at comparing, through simula-
tions, the principles of shortest envelope, minimum spec-
tral variance, and minimum spectral entropy with SOBI,
a BSS algorithm introduced in Section 2 which serves as
a point of reference in OMA.

The data are synthesised by first numerically simu-
lating the steady state acceleration responses ηi(t), i =
1, . . . , n of n uncoupled oscillators to independent and
identically distributed (white Gaussian noise) excitations,
then mixing them with a n×n random (Gaussian) modal
matrix Φ, and finally adding additive white Gaussian
noise n (t)to produce the system responses given by
equation (2).

The separation algorithms are then run with a tenta-
tive number of degrees of freedom, ne, which may differ
from the actual one, n. Care is taken to assign the same
stopping rule to each algorithm (e.g. a fixed threshold on
the relative error norm of the estimated separation ma-
trix). In all experiments SOBI is first run with 2 times-lags
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Fig. 3. Comparison of separation results for increasing values of damping ζω/Fs with SNR = 20 dB and m = n = ne = 4:
(a) correlation coefficient, (b) MAC, (c) relative “cross-talk” error.
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Fig. 4. Comparison of separation results for increasing values of SNR with ζω/Fs = 10−2 and m = n = ne = 4: (a) correlation
coefficient, (b) MAC, (c) relative “cross-talk” error.

τ = {0, 1} (which corresponds to the so-called AMUSE al-
gorithm [25]) and next with 10 times-lags τ = {0, . . . , 9}.
The following figures of merit are displayed:

(a) the correlation coefficient, 0 � ρ2 � 1, between the
separated modal coordinates and the actual ones;

(b) the MAC (Modal Acceptance Criterion) between the
estimated mode shapes (columns of separation ma-
trix) and the actual ones;

(c) the relative energy of “cross-talk” errors

e =

√√√√ 1
n(n − 1)

n∑
i=1

∑
j �=i

∣∣∣∣∣ ϕ̂
iϕj

ϕ̂iϕi

∣∣∣∣∣
2

(29)

where ϕ̂i is the ith raw of the separation matrix (12),
which is ideally zero for perfect separation.

Please note all these statistics are invariant under mode
scaling, a necessary condition to cope with the fundamen-
tal indeterminacy of BSS. In each experiment the figures
of merit are averaged over 100 realisations of different
modal matrices, oscillator excitations, and additive noise.

The first experiment takes m = n = ne = 4 and
compares the results for increasing values ζωFs (Fs =
sampling frequency) of the damping in the system (see
Fig. 3). The signal-to-noise-ratio (SNR) is 20 dB and the
natural frequencies of the modal coordinates are 0.1Fs,

0.1587Fs, 0.2520Fs, and 0.4Fs. The second experiment
takes a fixed damping ζω/Fs = 10−2 and compares the
results for increasing values of the SNR for the same sys-
tem settings as before (see Fig. 4). The third experiment
compares the results for increasing values of the condition
number1 κ of the modal matrix (see Fig. 5). Finally, the
fourth experiment compares the results for increasing val-
ues of the number n of degrees of freedom of the systems
(m = n = ne) given n natural frequencies logarithmically
spaced from 0.1Fs to 0.4Fs (see Fig. 6).

All experiments show that the proposed least action
criteria have behaviour very similar to SOBI with 2 time-
lags: namely, separation results are all the better as damp-
ing is light [20], the SNR is high, and the condition num-
ber is low. The fact that separation tends to be more
difficult in the presence of many degrees of freedom is
probably to be blamed more on algorithmic issues than
on the criteria themselves and, in that respect, the ma-
trix implementation of SOBI seems slightly inferior to the
deflation approach proposed here. Incidentally, the defla-
tion approach will always separate the same first k modes
whatever the estimated total number of active modes,
ne � k, which is not the case of SOBI where the latter
has an influence on the separation results. Considering

1 The condition number of the modal matrix was imposed
by artificially scaling the logarithm of its singular values.
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Fig. 6. Comparison of separation results for increasing numbers of degrees of freedom n with ζω/Fs = 10−2, SNR = 20 dB,
and m = n = ne: (a) correlation coefficient, (b) MAC, (c) relative “cross-talk” error.

the difficulty of setting a priori (and somewhat arbitrar-
ily) the value of ne in practice – in particular because
ne will typically underestimate the actual value of actives
modes, n – this appears a definite advantage over SOBI
and other similar batch algorithms. Next, it is noteworthy
that SOBI with 10 time-lags evidences a slightly better
performance than other criteria in all situations, which is
consistent with the fact that, in some sense, it combines
9 criteria instead of one. Finally, among the proposed cri-
teria, the principle of minimum spectral entropy seems to
display the best performances, even though it is based on
the same physical principle as the principle of minimum
spectral variance. This is probably due to the use of the
logarithm in its definition which can better handle large
dynamics between modes than a linear description. How-
ever, experiments carried out in the next sections will not
confirm the generality of this superiority.

5.2 Example of application to synthetic data

This subsection demonstrates the application of the
proposed criteria on a simulated 15 degree-of-freedom
system purposely designed to produce complex, heavily
damped, and strongly coupled modes – a configuration
which was demonstrated to be unfavourable to SOBI in
reference [20] – as well as some local modes. The system

and its corresponding mode shapes – are displayed in
Figure 7.

Mass, stiffness and damping values are mi =
10/386.09 kg, i = 1, . . . , 10, mi = 0.5/386.09 kg, i = 11,
. . . , 15, k = 1000 N/m, c1 = c2 = 0.20 kg/s, c3 =
0.05 kg/s, respectively. The system is excited by white
Gaussian forces and acceleration responses are collected
at all m = 15 degrees of freedom. Signals are sampled at
T−1

s = 1024 Hz for a total of 163 840 samples. Figure 8
displays the power spectral densities (weighted with a
512-long Hanning window) of the system responses and of
the modal coordinates separated by the proposed least ac-
tion criteria. Separation with SOBI is not shown because
it is qualitatively very similar to Figure 8b (see Ref. [20]
for a thorough investigation of SOBI on the same exam-
ple). It is seen that all criteria return satisfactory sep-
aration of the 15 modal coordinates, despite some diffi-
culties for the principle of minimum spectral entropy to
resolve between strongly couples modes. Figures of merit
of the separation algorithms are returned in Table 1. Sur-
prisingly, the principle of minimum spectral entropy is
seen to reach the lowest cross-talk error among the pro-
posed least action criteria although the separated spectra
were not perfect. This is actually not contradictory, since
the separated spectra reflect the estimation of the modal
coordinates whereas the cross-talk error is indicative of
the estimation of the mode shapes; thus very different
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Fig. 7. (a) Simulated 15 degree-of-freedom system and (b) corresponding mode shapes.
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Table 1. Figures of merit of the separation algorithms.

Separation SOBI (with 10 time- SOBI (with 2 time- SHE MSV MSEnt
method lags) lags)

Cross-talk error 0.0369 0.0389 0.0597 0.0565 0.0526
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Fig. 9. Matrices of values eij = |ϕ̂iϕj |/|ϕ̂iϕi| reflecting the
closeness of the separation matrix to the actual inverse of
the modal matrix (eij are ideally the elements of the iden-
tify matrix).

quantities are considered. Note that these figures of merit
are actually subjected to small random fluctuations due
to random initialisation of the algorithm of Section 3.3
and therefore are statistically very similar. However, the
cross-talk errors of the least action criteria are, on the av-
erage, about 1.5 as large as that of SOBI (whether used
with 2 or 10 time-lags) in this example. Finally, Figure 9
displays the individual quantities

eij =

∣∣∣∣∣ ϕ̂
iϕj

ϕ̂iϕi

∣∣∣∣∣ (30)

which reflect the closeness of the separation matrix (12)
to the actual inverse Φ−1 of the modal matrix (eij should
be ideally one for i = j and zero otherwise).

5.3 Example of application to real data

This last subsection illustrates the least action criteria
on a set of data provided for modal parameter estima-
tion round robin on occasion of the IMAC XXVII 2011
conference [30]. A scaled model of a wind turbine blade
(see Fig. 10) was considered to evaluate the performance
of OMA techniques on a simple experimental structure.
The structure was fixed at the root and excited by means
of random tapping. Responses were measured in all three
directions at 16 locations, with sampling rate of 512 Hz,

 

x y 

z 

Fig. 10. Scaled model of wind turbine blade.

for a total of 156 160 samples per channel. Figure 11 dis-
plays the power spectral densities (weighted with a 512-
long Hanning window) of the system responses and of
the modal coordinates separated by SOBI (with 10 time-
lags) and by the proposed least action criteria. On the
one hand, very satisfactory separation of 10 modal co-
ordinates is achieved, with natural frequencies of about
13 Hz, 68 Hz, 112 Hz, 124 Hz, 149 Hz, 160 Hz, 181 Hz,
193 Hz, 216 Hz, 234 Hz; on the other hand, 6 separated
signals (not shown in Fig. 11) could easily be recognised
as “numerical modes” because of non-physical features
and thus were removed. Comparison of the criteria is dif-
ficult without point of reference and, indeed, seems to
depend on the frequency band of interest. Finally, Fig-
ure 12 displays the estimated mode shapes returned by
the principle of minimum spectral variance (very similar
results were obtained from other criteria).

6 Conclusion

BSS was lately recognised as a potential solution to
OMA. This discovery may be qualified as “accidental”,
since algorithms initially developed in and for the field of
(telecommunication) signal processing were then trans-
posed and tested with some success to structural dynam-
ics. This led to a number of attempts to justify a pos-
teriori their physical relevance. The goal of this paper is
to show that the route could have been taken the other
way round and separation algorithms deduced from first
physical principles. Three principles of least action have
been proposed in this endeavour: the principles of short-
est envelope, of minimum spectral variance, and of min-
imum spectral entropy. The algorithmic implementation
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Fig. 11. Power spectra of (a) the system responses and of the separated modal coordinates by (b) SHE, (c) MSV, and (d) MSEnt
(frequency resolution Δf = 1 Hz).

Fig. 12. Estimated mode shapes from MSV.
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of these criteria naturally leads to a deflation approach
where modes are extracted one by one, a definite advan-
tage when their actual number is not known a priori. Ex-
tensive simulations have shown that the proposed criteria
lead to figures of merit very similar to those of SOBI, a
point of reference in the current state-of-the-art. Their
main advantage is yet conceptual rather than algorith-
mic; indeed, least action principles provide physical in-
sight into the mechanism of BSS that other algorithms
issued form the signal processing community may dra-
matically lack. No doubt that other physical properties
could be exploited to define still new separation criteria
by following the lines of the paper. Another perspective is
to combine the proposed criteria into a single one (or to
apply a criterion on the successive derivatives of the same
signal which should preserve unchanged the properties of
a mode) in order to improve the overall robustness. As a
final remark, it is reminded that the results of the paper
have been established under the steady-state regime (sta-
tionary signals), yet extension to transient regimes should
be no problem.

Appendix A: Proof of equation (20)

Equation (19) is first rewritten as:

∫ +∞
−∞ Sηa(f)f2df −

(∫ +∞
−∞ Sηa(f)fdf

)2

∫ +∞
−∞ Sηa(f)df

(A.1)

where the integration is now from −∞ to +∞ thanks to
the substitution of the analytical signal ηa(t) in place of
the real signal η(t). Now, because (j2πf) is the frequency
response function of the time derivative operator, it comes
that Sη̇a(f) = 4π2Sηa(f)f2 and Sη̇aηa(f) = j2πSηa(f)f
where Sη̇a(f) stands for the power spectrum of η̇a(t) =
dηa(t)/dt and Sη̇aηa(f) for the cross-spectrum of η̇a(t) and
ηa(t). Therefore, equation (A.1) becomes

∫ +∞
−∞ Sη̇a(f)df −�

(∫ +∞
−∞ Sη̇aηa(f)df

)2

4π2
∫ +∞
−∞ Sηa(f)df

(A.2)

Finally, using Parseval’s identify,
∫ +∞
−∞ Sηa(f)df =〈|ηa|2

〉
,
∫ +∞
−∞ Sη̇a(f)df =

〈|η̇a|2
〉
, and

∫ +∞
−∞ Sη̇aηa(f)df =

〈η̇aη∗
a〉. Since the action is defined up to a constant, mul-

tiplying by 4π2
〈|ηa|2

〉
then returns equation (20).

Appendix B: Calculus of variation

This appendix introduces calculus of variation for sta-
tionary and complex-valued signals. If the action integral
is defined as the time average

S(x, ẋ) = lim
T→∞

1
T

∫ t0+T

t0

dtL(x, x∗, ẋ, ẋ∗; t)

= 〈L(x, x∗, ẋ, ẋ∗; t)〉 , (B.1)

of a real Lagrangian L(x, x∗, ẋ, ẋ∗; t), then Euler-
Lagrange’s equation reads

∂

∂x
L =

d
dt

∂

∂ẋ
L (B.2)

independently of signal x being complex. The initial con-
ditions x(t0) and ẋ(t0) can be set arbitrary since

lim
T→∞

1
T

(
∂L
∂ẋ

∣∣∣∣
t0

δx(t0)

)
=

(
∂L
∂ẋ

∣∣∣∣
t0

δx(t0)

)
× lim

T→∞
1
T

= 0

(B.3)
and similarly at t0 + T . The equation of motion (18) im-
mediately follows by application of these results to equa-
tion (14). Arriving at equation (20) needs a slightly dif-
ferent route since action (20) is not associated with a
Lagrangian in the form of equation (B.1). The stationary
point of the action is then sought by setting

δS(x, ẋ) = S(x + δx∗, ẋ + δẋ∗) − S(x, ẋ) = 0 (B.4)

where δx∗ and δẋ∗ are infinitesimal perturbations on the
conjugate signal x∗. Application of the above condition
to action (20) yields

〈η̇aδη̇∗
a〉
〈|ηa|2

〉
+ 〈ηaδη∗

a〉
〈|η̇a|2

〉
+ i 〈� (η̇aη∗

a)〉 〈η̇aδη∗
a − ηaδη̇∗

a〉 = 0. (B.5)

Using integration by parts together with the same ar-
gument that led to equation (B.3), one finds 〈η̇aδη̇∗

a〉 =
−〈η̈aδη∗

a〉. Therefore

− 〈η̈aδη∗
a〉
〈|ηa|2

〉
+ 〈ηaδη∗

a〉
〈|η̇a|2

〉
+ i 〈� (η̇aη∗

a)〉 〈η̇aδη∗
a + η̇aδη∗

a〉 = 0 (B.6)

The fact that this result must hold whatever the value of
δx∗ finally proves equation (22).

Appendix C: Methodological guidelines

The aim of this appendix is to provide some method-
ological guidelines as how to implement the minimisation
of the proposed criteria.

C.1. Analytical signal

All criteria have been devised with complex modal co-
ordinate ηa(t) of which the complex exponential ejλt is a
particular solution. Physically speaking, this constrains
the space of solutions to have positive frequencies only.
This is not only convenient in the formulation of the crite-
ria, but it also allows the recovery of complex mode shapes
to some extent, as demonstrated in reference [7], although
this is not carried on in the present paper. From an al-
gorithmic point of view, the constraint is easily forced by
taking the analytical versions of the structural responses
yi(t), i = 1, . . . , m, that is by zeroing the negative fre-
quencies in their Fourier transforms.
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C.2. Discrete time

Although the proposed criteria have been devised in
the continuous time setting, they will apply to discrete-
time signals in practice. On the one hand, this is no
problem at all for the frequency domain criterion (25)
where the spectral matrix Sy(f) is simply to be computed
from the discrete Fourier transform. On the other hand,
because they operate in the time-domain, criteria (17)
and (21) need a specific discretisation scheme of the
derivative operator d/dt. Let y[n] denote the discrete ver-
sion of y(t) at time t = nTs with Ts the sampling period.
Simulations have shown that a reasonable approximation
of the time derivative ẏa(t) in criterion (17) is returned
by the simple finite difference (ya[n] − ya[n − 1])/Ts. Cri-
terion (21) requires more care since it has been verified
that higher-order schemes are necessary. In the present
work, the derivative was approximated by a FIR filter
with 21 coefficients,

ẏa(nTs) ≈ 1
Ts

10∑
k=−10

wk
(−1)k

k
ya[n − k] (C.1)

where wk is a Hanning window.

C.3. Gradients

Criteria (17), (21) and (25) can be efficiently min-
imised with a gradient descent algorithm. This subsec-
tion provides the required gradient expressions assuming
the modal filters are real-valued. Let q0 = wHRyaw =

n∑
i,j=1

wiwjRij and q1(t) = 2� (wH ẏa(t)ya(t)Hw
)

=

2
n∑

i,j=1

wiwj�
(
ẏa,i(t)y∗

a,j(t)
)

with wi ∈ �. Then, the gra-

dient of criteria (17) with respect to the ith component
wi of the modal filter w reads

∂J

∂wi
=

〈
q1(t)

q0∂iq1(t) − q1(t)∂iq0√
q2
0 + q1(t)2

〉
(C.2)

with

∂iq0 =
∂q0

∂wi
= 2

n∑
j=1

wj� (Rij)

and

∂iq1(t) =
∂q1(t)
∂wi

= 4
n∑

j=1

wj�
(
ẏa,i(t)y∗

a,j(t)
)

(C.3)

Let us now define q2(t) = � (wHRẏayaw
)

=
n∑

i,j=1

wiwj�
(
ẏi,a(t)ẏ∗

j,a(t)
)
. Then, the gradient of crite-

ria (21) reads

∂J

∂wi
=

q0 〈∂iq1(t)〉 − 〈q1(t)〉 ∂iq0

q2
0

+2
〈q2(t)〉

q3
0

× (q0 〈∂iq2(t)〉 − 〈q2(t)〉 ∂iq0) (C.4)

with

∂iq2(t) =
∂q2(t)
∂w∗

i

=
n∑

j=1

wj�
(
ẏi,a(t)ẏ∗

j,a(t) + ẏj,a(t)ẏ∗
i,a(t)

)
(C.5)

Finally, let Q(f) = wHSy(f)w =
n∑

i,j=1

wiwjSyiyj(f).

Then, the gradient of criteria (25) reads

∂J

∂wi
=

1
q2
0

∫ ∞

0

(Q(f)∂iq0 − q0∂iQ(f))
(

1 + ln
Q(f)
q0

)
df

(C.6)
with

∂iQ(f) =
∂Q(f)
∂wi

= 2
n∑

j=1

wj�
(
Syiyj (f)

)
. (C.7)
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