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RINGS ON WATER AND THEIR ENTROPY
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Abstract

We introduce the entropy of a family of planar curves in terms of the number of intersections of the family
with a random line, calculate it for key examples, and discuss the entropy of a pattern of rings produced
by an impulse on the surface of still water.
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1. Disturbance on water

A raindrop or a falling stone—how complex are the disturbances they excite on the
surface of still water? We quantify disturbance by proposing a definition of entropy
of a family of planar curves in Section 2, which is normalized to handle diverging
or converging concentric rings in Section 3. The spread rates of rings generated by
an impulse on water are determined by a simple estimate in Section 4. These results
are combined in Section 5 to conclude that the disturbance on water has an entropy
independent of the wave type, and that this entropy is in fact maximal. On the other
hand, the sound emitted by the impulse does depend on whether the source was a
raindrop or a falling stone, and Section 6 gives an order-of-magnitude analysis of
different pitches.

A haiku of Bashou from 1686 (see Figure 1) touched on this circle of problems.

2. Entropy of planar curves

Let Γ = {γ1, γ2, . . .} be a family of rectifiable curves in the plane such that the sum
of the lengths |Γ| =

∑
n |γn| converges. We denote the convex hull of

⋃
n γn by C(Γ) and

the boundary of C(Γ) by ∂C(Γ).
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F 1. A haiku of Bashou.

F 2. Permeable Γ: L ∩C(Γ) , ∅ yet L ∩ Γ = ∅.

A line L in the plane is specified by its distance r to the origin and the angle θ its
normal makes with the horizontal. The space of lines that intersect C(Γ) is endowed
with a (conditional) probability measure (

∫
L:L∩C(Γ),∅

dr dθ)−1 dr dθ. Write pn for the
probability that a random line L intersects Γ in exactly n points. Then the Shannon
entropy h(Γ) of Γ is

h(Γ) = −
∑
n>0

pn log pn,

with the usual convention that 0 × log 0 = 0. Higher-dimensional generalizations
suggest themselves, but we shall stick to planar curves.

First, we bound the entropy. We say that Γ is impermeable when L ∩C(Γ) = ∅ if
and only if L ∩ Γ = ∅. We give an example of a permeable Γ in Figure 2.

T 1. The Shannon entropy is bounded above:

h(Γ) 6 log
( 2|Γ|
|∂C(Γ)|

+ 1
)

+ 1.

Moreover, if Γ is impermeable, then the bound can be sharpened:

h(Γ) 6 log
2|Γ|
|∂C(Γ)|

+ 1.

R 2. Via an extension of a classical theorem of Steinhaus [10], we recognize
the quotient inside the logarithm as the expected number of intersections of Γ with a
random line: 2|Γ|/|∂C(Γ)| =

∑
n>0 n pn.

https://doi.org/10.1017/S1446788713000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000013


[3] Rings on water and their entropy 93

P. Using Lagrange multipliers to maximize the function −
∑

n>0 xn log xn, subject
to the constraints xn > 0,

∑
n>0 xn = 1, and

∑
n>0 n xn = E, we find that the maximum

is attained when xn = (1 + 1/E)−n−1/E. If Γ is impermeable, then p0 = 0 and the
maximum is attained when xn = (1 − 1/E)n−1/E. �

We define the entropy H(Γ) of Γ by

H(Γ) :=
h(Γ)

log(2|Γ|/|∂C(Γ)| + 1) + 1

or, if Γ is impermeable, by

H(Γ) :=
h(Γ)

log(2|Γ|/|∂C(Γ)|) + 1
.

The bounds above imply that 0 6 H(Γ) 6 1. Thus our entropy quantifies complexity
more compactly than its thermodynamic namesake, whose range is unbounded above.
In the image of rings on water, low entropy (that is, H ≈ 0) should correspond to
simple disturbance, and high entropy (that is, H ≈ 1) to complex disturbance. Note
that, in contrast to entropy, energy quantifies the size rather than the complexity of
disturbance. By construction, H is invariant under rescaling (homothety) of the plane.

3. Families of concentric rings

Suppose that Γ = {γ1, γ2, . . .} is a family of concentric circles (rings) of radii r1,
r2, . . . , and ΓN

M , where M < N, is the subfamily {γM , γM+1, . . . , γN} of Γ. We derive
formulae for the Shannon entropy of the subfamily ΓN

M in two cases: when rn increases
to ∞ (diverging rings), and when rn decreases to 0 (converging rings). We then give a
normalized definition for the entropy of Γ itself.

Case 1: rn→∞. The probability that a random line intersects ΓN
M in exactly 2n

points, where 1 6 n 6 N − M, is

p2n =
rN−n+1 − rN−n

rN
,

setting rM = 0 for convenience so that
∑N−M

n=1 p2n = 1. The Shannon entropy of ΓN
M is

h(ΓN
M) = −

N−M∑
n=1

rN−n+1 − rN−n

rN
log

rN−n+1 − rN−n

rN

= −

N−1∑
n=M

rn+1 − rn

rN
log

rn+1 − rn

rN

= log rN −
1
rN

N−1∑
n=M

(rn+1 − rn) log(rn+1 − rn).

https://doi.org/10.1017/S1446788713000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000013


94 M. Mendès France and T. Tokieda [4]

Case 2: rn→ 0. This time, setting rN = 0,

p2n =
rM+n−1 − rM+n

rM

when 1 6 n 6 N − M. Hence

h(ΓN
M) = log rM −

1
rM

N−1∑
n=M

(rn − rn+1) log(rn − rn+1).

In these cases, unlike in Section 2, h(Γ) may become infinite. To obtain a finite
value, it is natural to normalize the definition of entropy as follows:

H(Γ) := lim
λ→∞

lim
M→∞

h(ΓλM
M )

log(2|ΓλM
M |/ maxn∈[M,λM] |γn|) + 1

.

When the limits fail to exist, upper and lower entropies are defined using lim sup and
lim inf.

R 3. First, in earlier papers [3–7], the first-named author chose a slightly
different definition of entropy: h(ΓλM

M ) was normalized by the factor log |ΓλM
M | rather

than by log(2|ΓλM
M |/ maxn |γn|) + 1. In the information-theoretic context, a list of

canonically desirable properties forces a unique definition of entropy. Here, we
are attempting to model a concept of complexity in a new context where desirable
properties are less canonical, so there is freedom in the definitions adopted. Exitus
acta probat.

Second, we comment on the subfamily ΓλM
M . Take the case when rn→∞. Intuitively

M, N→∞ in ΓN
M means that we are zooming out as the wave expands and bringing

more and more rings into our view. This motivates making M, N grow in a coordinated
fashion, as suitable functions of each other. The choice N = λM seems most natural,
and leads to reasonable results. The case when rn→ 0 is similar.

4. Types of wave and spread rates

An impulse applied to the surface of water excites a wave whose crests propagate
as concentric rings. Their analysis was set as a prize problem by the Académie des
Sciences de Paris in 1816 and treated by Cauchy and Poisson [1, 9].

Suppose that we are given some dispersion relation between the wave frequency ω
and the wave number k. If the impulse is localized at the origin, then after time t the
water surface can be shown to have the profile

z = Re
1

2π

∫ ∞

0
exp(iω(k)t)J0(kr)k dk

in cylindrical coordinates r, θ, z (the variable θ is ignorable). Kelvin [12] pioneered
the method of stationary phase to approximate such integrals (Stokes did some even
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F 3. Rings of capillary wave and gravity wave (1 6 n 6 7).

earlier work [11]). But here we can resort to a short-cut, because we are interested
only in spacing between crests and not in amplitude: all we need is the condition that
krn − ωt ∈ 2πZ for the phase of the nth crest, extracting the representative k from the
group velocity equation

rn

t
=

dω
dk
.

The approximation is accurate provided ω in the neighborhood of this representative k
is close to being quadratic, that is, provided the dimensionless test ratio is small:

d3ω

dk3

/√
t
∣∣∣∣∣d2ω

dk2

∣∣∣∣∣3� 1.

When ω ∝ ka (where a , 1), we find that

rn

t
∝ ka−1, 2πn = |krn − ωt| ∝

(rn

t

)1/(a−1)

rn, rn = Cn1−1/a,

where C denotes a constant that may not be the same at each occurrence.
For a capillary wave (a raindrop), the relevant parameters being the surface tension

σ and the density ρ of water, we can see dimensionally that the dispersion relation
must be of the form ω ∼

√
σk3/ρ. The power a is 3/2, so

rn ∼

(27σt2πn
2ρ

)1/3

= Cn1/3

accurately provided that
√
σt2/ρr3� 1. The radius rn is increasing in n, which means

that for a capillary wave, r1, r2, . . . are ordered from the innermost ring, gradually
crowding outward (Figure 3). For a gravity wave (a falling stone), ω ∼

√
gk, where g

is the gravitational acceleration. The power a is 1/2, so

rn ∼
gt2

8πn
= Cn−1,

accurately provided that
√

2r/gt2� 1. The radius rn is decreasing in n, which means
that for a gravity wave, r1, r2, . . . are ordered from the outermost ring, gradually
crowding inward (Figure 3).
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To get the dispersion relations between ω and k above, we got away with
dimensional analysis. These relations are in fact the deep-water limits, kh� 1, of
the exact relation

ω2 = (σk3/ρ + gk) tanh(kh),

where h is the depth of the water. Our approximate estimates are endorsed by a full
analysis by the method of Kelvin using this exact dispersion relation.

5. H for polynomial and exponential families

Recall from Section 3 that N = λM. Throughout this section, α > 0.

E 4. Suppose that rn = nα. Then

h(ΓN
M) = log Nα −

1
Nα

N−1∑
n=M

αnα−1 log αnα−1 + o(log N)

= α log N −
α(α − 1)

Nα

∫ N−1

M
xα−1 log x dx + o(log N)

= α log N −
α − 1

Nα
(Nα log N − Mα log M) + o(log N)

= log N + (α − 1)
( M

N

)α
log M + o(log N).

We introduce a normalizing factor of log(2
∑N

n=M nα/Nα) + 1, which can be seen to be
equal to log N + log(1 − (M/N)α+1) + o(log N), and it follows that

H(Γ) = lim
λ→∞

lim
M→∞

log λ + (1 + α−1
λα

) log M

log λ + log M + log(1 − 1
λα+1 )

= lim
λ→∞

(
1 +

α − 1
λα

)
= 1.

E 5. Suppose that rn = n−α. Mimicking the steps of Example 4,

h(ΓλM
M ) = log M −

α + 1
λα

log(λM) + o(log M).

If α , 1, then
λM∑

n=M

n−α/M−α = M(λ1−α − 1)/(1 − α) + o(M),

so H(Γ) = 1. If α = 1, then

λM∑
n=M

n−1/M−1 = M log λ + o(M),

so again H(Γ) = 1.
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1

1 2 3 4

F 4. Entropies for exponential families.

Together with the estimates on capillary and gravity waves from Section 4, we see
that both a raindrop (Example 4, where α = 1/3) and a falling stone (Example 5,
where −α = −1) excite disturbances of the same maximal entropy 1 on the surface of
still water.

Of course, there exist families for which H(Γ) < 1. To wit, consider exponentially
diverging rings.

E 6. Suppose that rn = eαn. Then

h(ΓN
M) = αN − α(eα − 1)e−αN

N−1∑
n=M

neαn − (eα − 1) log(eα − 1)e−αN
N−1∑
n=M

eαn.

The latter geometric sum is equal to (eαN − eαM)/(eα − 1), while the former is equal to

∂

∂α

eαN − eαM

eα − 1
=

NeαN − MeαM

eα − 1
− (eαN − eαM)

eα

(eα − 1)2
.

Hence

h(ΓλM
M ) = αMe−α(λ−1)M +

(
αeα

eα − 1
− log(eα − 1)

)
(1 − e−α(λ−1)M),

and, on normalizing by log(2
∑λM

n=M eαn/eαλM) + 1, it follows that

H(Γ) =
α(eα − 1)−1 − log(1 − e−α)

1 + log 2 − log(1 − e−α)
.

As the plot of H against α shows (Figure 4), every value between 0 and 1 is realized
as the entropy of some exponential family. Speciously, the entropy of an exponential
family converges to the common entropy 1 of polynomial families as α is reduced to
0, though the vertical tangency when α = 0 bears witness to the gap that distinguishes
these spread rates.

E 7. Suppose that rn = e−αn. For exponentially converging rings, rescaling
invariance tells us that H is identical in form to the result of Example 6. (Rescaling is
inapplicable between Examples 4 and 5.)
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A

V

F 5. Acoustics in a cavity, and a spring in a bottle.

E 8. Suppose that rn = (log n)±α. Such rings turn out to have H = 0, and
H(rn = 1) = 0 trivially from the definition of the Shannon entropy.

We end this section with a question: given an arbitrary value between 0 and 1, can
we drive a point on the surface of water according to some function of time t so that
the entropy of the generated rings takes that value? For example, we have seen that
H = 1 can be generated by δ(t). We believe the answer is yes.

6. Acoustic appendix

A body of diameter d falling on water emits a sound—‘splitch’ for a raindrop,
‘glop’ for a stone. How does the pitch of the sound depend on d? On impact the
body dents the water, forming a cavity that is quickly pinched to a bubble. The body’s
wettability influences the type of splash produced [2]; for the estimate below to work,
it is necessary only that a cavity be formed as in Figure 5, which happens whenever
the contact angle of the water against the body is neither too large nor too small. What
is responsible for the sound is the oscillation of air inside the cavity. Let us try a naive
model that the air in the bulb of the cavity, of volume V , acts like a spring, while the
air in the neck of the cavity, of length l and cross-sectional area A, acts like a mass
attached to this spring. Write ρ and p for the density and pressure of air, ∆p for the
pressure difference between outside and inside the cavity, and say the air in the neck is
displaced vertically by z. The air in the bulb has compressibility κ, given by

κ = −
∂V/∂p

V
≈ −

Az/∆p
V

.

But κ = 1/γp for a perfect gas (where γ denotes the ratio of specific heats). So we can
read off the frequency ν from the spring equation ρlAz̈ = A∆p, namely,

2πν ≈

√
A
Vl
γp
ρ
.
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Now
√
γp/ρ is the speed of sound in air, which is 345 m/s at 22◦C, comfortably warm

for Bashou’s frog. Substituting our cavity geometry, l ≈ d, A ≈ d2, V ≈ (2d)3, we get

ν ≈
345 × 100

2π
√

8d
= Cd−1,

where d is measured in centimeters. This predicts 647 Hz or E5 (‘middle C’ is C4) for
a stone of diameter 3 cm, and 6.47 kHz for a raindrop of diameter 0.3 cm. The accord
with observation is surprisingly fair: after all, a mere factor of 2 would have shifted
the estimated note by a whole octave.

Blowing across the top of a bottle as a wind instrument involves similar acoustics;
[8, Ch. XII, Section 6] contains an analysis based on energy rather than on force,
essentially equivalent to ours. For a bottle of Bordeaux with l ≈ 8 cm, A ≈ π cm2,
V ≈ 700 cm3, the predicted ν is 130 Hz or C3. Tuned to the Steinway of Trinity Hall,
the observed pitch was B2—just one note off.
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