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Abstract
Future communication and radar sensing systemswill require synchronizationmethods which
are more versatile in terms of the systems involved in the synchronization process. We present
an over-the-air frequency synchronization algorithm based on the standard and the gen-
eralized Kuramoto model which uses continuous wave (CW) signals. In contrast to other
approaches, all nodes of the network participate equally, and synchronization can even be
achieved in presence of a non-cooperative node. By changing the parameters of the radar
or by modifying the synchronization algorithm, synchronization accuracy can be adjusted as
well. All claims are supported by measurements conducted with CW radars. It will be demon-
strated that our algorithm enables synchronization accuracies down to 1.92 ppb and thus could
provide sufficient accuracy for velocity measurements on pedestrians.

Introduction

With the advent of integrated communication and sensing (ICAS) and its potential integration
into 6G, new possibilities emerge for expanding this technology: Systems that are designed for
both communication and radar sensing tasks can be used to realize cooperative sensor net-
works, which not only share environmental information between each other, but also work
together by realizing multistatic radar networks. This allows to increase diversity gain and thus
the probability of detection of radar targets, to cover blind spots and to improve target classifi-
cation capabilities. Applications like automated driving and lower airspace surveillance would
highly benefit from these improvements: To increase road traffic safety and to enable a smoother
and thus more environmentally friendly traffic flow, comprehensive perception of even com-
plex environments like urban road intersections is required. Similarly, imminent heavy use
of airspace by drones requires surveillance systems which are able to cover widespread areas
populated along all three spatial directions [1].

The realization of ICAS networks requires synchronization methods which in perspective
not only enable control of wireless access to avoid interference, but realize coherent operation
of all network nodes.This would permit the simultaneous operation of several transmitters and
thus a targeted illumination of the environment as well as multistatic operation of distributed
transceivers [2]. Second, to enable also the integration of mobile nodes, the use of over-the-air
synchronization is necessary. Finally, synchronization should be possible independent from the
nodes involved so that a cooperative operation can be realized in as many scenarios as possible.
Although synchronization methods were investigated both for communications and radar in
the past, they mostly rely on hierarchical master-slave configurations, thus requiring either the
presence of a master node or clock [3–6], or demand cooperative behavior from all nodes for
successful synchronization [7–9].

If the measurement of target velocities shall be enabled between distributed nodes, special
requirements are placed on the synchronization accuracy of frequency synchronization algo-
rithms: A pedestrian radially moving toward amonostatic radar at a walking speed of v= 1m/s
causes a Doppler shift of approx. fD = 2fcv/c0 = 527.03Hz at fc = 79GHz. To resolve such
targets, synchronization accuracies below fD/fc = 6.67 ppb are required, possibly even less if
the target is not moving radially toward the radar or if a bistatic configuration is used. Here, the
unit ppb refers to “parts per billion” and agrees with the factor 10−9. The mentioned accuracy
is well below the requirements of modern communication standards like 5G new radio (NR),
where frequency synchronization accuracies of 50 ppb are necessary [10]. However, if ICAS
functionalities are to become part of future 6G technology, the aforementioned much stricter
requirements for synchronization will have to be met.

In this publication, we will focus on an over-the-air frequency synchronization method
based on the standard and generalized Kuramoto self-synchronization model [11, 12]. An
earlier version of this paper was presented at the 20th European Radar Conference (EuRAD)
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2023 and was published in its proceedings [13]. Our method
has the advantage that it does not need a master-slave structure
between the nodes, since all contribute in the same way to the
synchronization process. Moreover, it can even work if one of the
nodes does not participate in the synchronization process and
therefore is non-cooperative. This behavior was already investi-
gated in theory and by simulation in prior publications, which
focused on the synchronization of pulse repetition frequencies
of pulse radars [14, 15]. Here, we will apply this approach to
correct the carrier frequency offset (CFO) of continuous wave
(CW) signals by proposing adapted and generalized versions of the
Kuramoto model and verify it by means of measurements. Such
CW signals are widespread both in communications and radar:
They are part of 5G NR, where they are used for channel esti-
mation and denoted as pilot symbols or reference signals [16]. In
radar technology, they can also be found in CW radars for mea-
suring Doppler frequencies, as well as in frequency modulated
CW (FMCW) radars, which often transmit CW signals between
chirps. For this reason, the waveform is a good choice for apply-
ing self-synchronization to it. In comparison to [13], we added
the discussion of the generalized Kuramoto model and compare
its performance to the standard model.

In the following section, we introduce the Kuramoto model
and discuss why it must be adapted for the use of CW sig-
nals. Afterward, we propose our self-synchronization algorithm.
Additionally, we introduce different synchronization functions that
generalize the standard Kuramoto model. In “Measurements and
results” section, we present the measurement setup we use to test
the algorithm and discuss the measurement results. Finally, we
conclude by naming future challenges.

Theoretical background

In [11], Kuramoto described the coupling between a set of har-
monic oscillators with

𝜑′
m = 𝜔m,0 + 𝜀m

M

∑
n=1

g(𝜓nm), (1)

where

𝜓nm = 𝜑n − 𝜑m. (2)

𝜑m is the phase of harmonic oscillator m and 𝜑′
m is its instan-

taneous frequency. Moreover, 𝜀m describes the coupling strength
between oscillators, 𝜔m,0 is the initial angular frequency of oscilla-
torm, and𝜓nm agrees with the phase difference between oscillators
n and m. Equation (1) describes the generalized version of the
Kuramoto model, where g(x) is an arbitrary 2𝜋-periodic function.
The standard model as proposed by Kuramoto approximates g(x)
with

gS(x) = sin x. (3)

For two oscillators, it simplifies to

𝜑′
1 = 𝜔1,0 + 𝜀1 g(𝜓21), (4)

𝜑′
2 = 𝜔2,0 + 𝜀2 g(𝜓12). (5)

For g(x) = gS(x) and by setting 𝜓′
nm = 0, it follows:

𝜓′
nm = arcsin(

𝜔n,0 − 𝜔m,0

𝜀1 + 𝜀2
) . (6)

Since the argument of the arcsine must be ∈ [−1, 1], the following
synchronization criteria can be derived [14]:

𝜀1 = 𝛾1 ∣𝜔2,0 − 𝜔1,0∣ = 2𝜋𝛾1 ∣ f2,0 − f1,0∣ , 𝛾1 ≥ 1, (7)

𝜀2 = 𝛾2 ∣𝜔1,0 − 𝜔2,0∣ = 2𝜋𝛾2 ∣ f1,0 − f2,0∣ , 𝛾2 ≥ 1. (8)

This means that synchronization can be successful if the coupling
factor 𝜀l is 𝛾l ≥ 1 times larger than the initial angular frequency
difference between the oscillators (for l ∈ {1, 2}). In principle,
these equations could be directly used for frequency alignment of
CW signals, since they are meant for synchronization of harmonic
oscillator frequencies. However, in practice it is unlikely that this
approach can be used: The Kuramoto model describes a continu-
ous process, which means that the oscillator frequencies must be
adjusted within a fraction of the signal period Tm = 2𝜋/𝜑′

m to
come close to continuous behavior. For aCWsignal of severalGHz,
this update rate is much too high to be realized with a digital cir-
cuit. In addition, continuous adjustment of the oscillator frequency
is inconsistent with the way radar and communication systems are
operated: A CW radar must take multiple samples while transmit-
ting a CW signal of constant frequency to be able to determine the
velocity of targets. Similarly, pilot symbols in communication pro-
tocol packets remain at a constant frequency and vary from packet
to packet only. For this reason, continuous adjustment of the CW
signal frequency is neither desirable nor technically feasible.

Synchronization of pilot tones

Instead, we propose a self-synchronization method based on CW
signals whose frequency is kept constant during time duration T.
In the following, a CW signal of constant frequency and duration
T will be denominated as a pilot tone. If pilot tones of different fre-
quencies follow one after another, the phase of the signal generated
by systemm can be described after a pilot tones by

𝜑m,a =
aT

∫
0

𝜔m(t) dt = T
a

∑
p=0

𝜔m,p = 2𝜋T
a

∑
p=0

fm,p, (9)

where fm,p is the frequency of the pth pilot tone of system m.
Rewritten as an update equation, it becomes

𝜑m,a = 𝜑m,a−1 + 2𝜋Tfm,a, 𝜑m,0 = 0. (10)

In the following, it will be assumed without loss of generality that
system 1 is the system under control and system 2 is the interferer.
If applying the Kuramoto model described by (4), the frequency of
the oscillator of system 1 is adjusted according to

f1,a+1 = f1,0 + 𝜖1 g(𝜓21,a), (11)

where 𝜀1 = 2𝜋𝜖1. By substitution of (10), 𝜓21,a can be determined
to

𝜓21,a = 𝜑2,a − 𝜑1,a (12)

= 𝜑2,a−1 − 𝜑1,a−1 + 2𝜋Tf2,a − 2𝜋Tf1,a (13)

= 𝜓21,a−1 + 2𝜋TfΔ,a. (14)

Here, fΔ,a is the CFO between the pilot tones of system 2 and
system 1. The calculation of 𝜓21,a corresponds to the sampling of
the phase of a time-varying signal. To fulfill the Nyquist sampling
criterion in this case, TfΔ,a ≤ 0.5 is required. This is achieved
for (14) with an arbitrary scaling factor 𝜅:
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𝜓21,a = 𝜓21,a−1 + 2𝜋T
𝜅 fΔ,a. (15)

Now, the Nyquist criterion TfΔ,a/𝜅 ≤ 0.5 holds. Since fΔ,a ≤
0.5fADC must be equally satisfied, where fADC is the sampling rate
of the radars analog-to-digital converter (ADC), it can be derived:

𝜅 ≥ TfADC ⇒ 𝜅 = NsTfADC, Ns ≥ 1. (16)

By substitution into (15), it follows

𝜓21,a = 𝜓21,a−1 + 2𝜋
fΔ,a

Ns fADC
. (17)

Ns will be denoted as sampling factor in the following.
The synchronization procedure therefore works out as follows:

During time duration T, system 1 records a pilot tone of the inter-
ferer and estimates the CFO ̂fΔ,1 = ̂f2 − f1, e.g. by Fourier
transformation of the recorded signal. For CW radars, this Fourier
transformation is already part of the signal processing chain, since
Doppler frequencies are determined in the same way. Afterward,
the frequency f1,a+1 of the next pilot tone is calculated using (11)
after determining the phase difference𝜓21,a with (17). After setting
the new pilot tone frequency, the process starts again from the
beginning.

It shall be noted that (11) and (14) are comparable to the equa-
tions for PRF synchronization in [14], with the biggest difference
being the quantities used to determine 𝜓21,a. However, if com-
pared to [15], it becomes apparent that one term of𝜓21,a is missing,
which is required to compensate the occurrence of more than
one or less than one pulse of the interfering radar during one
pulse repetition period. Since it is assumed that the signal dura-
tion T is the same for both systems, the acquisition of the pilot
tone takes the same amount of time, rendering the additional term
unnecessary here. However, slightly different pilot tone durations
are acceptable as long as two different pilot tones transmitted by
the interfering radar do not mix up at the system under control,
e.g. due to Fourier transform. This can be prevented with various
strategies like synchronizing pilot tone durations, adding pauses in
between the tones or advanced processing techniques to separate
two subsequent tones received by the radar.

Standard vs. generalized Kuramoto model

g(x) in (1) directly affects the synchronization process, since it
determines how much the frequency of a pilot tone has to change
depending on the phase difference between the tones. It therefore
makes sense to identify other functions in addition to gS(x) that
could positively influence the synchronization process. Therefore,
we investigate how synchronization can be accelerated.

Let 𝜓21,sync = −𝜓12,sync be the phase difference at which
two pilot tone frequencies become synchronized, meaning that
𝜓′
21,sync = 𝜓′

12,sync = 0. If synchronization shall be achieved fast,
two requirements must be fulfilled:

First, to quickly reach 𝜓21,sync, the phase difference 𝜓21 needs
to change fast over time, meaning that 𝜓′

21 must be maximized.
From (4) and (5) follows:

𝜓′
21 = 𝜑′

2 − 𝜑′
1 = 𝜔2,0 − 𝜔1,0 − (𝜀1 + 𝜀2) g(𝜓21). (18)

Here, a strong phase change 𝜓′
21 is only achieved if |g(𝜓21)| is close

to its maximum value for most values of 𝜓21.
Second, for values close to 𝜓21,sync, the frequency difference 𝜓′

21
needs to change fast to quickly reach 𝜓′

21,sync. From (18) can be
derived that

𝜓″
21,sync = −(𝜀1 + 𝜀2) g′(𝜓21,sync). (19)

Here, a strong frequency change 𝜓″
21,sync is only achieved if

|g′(𝜓21,sync)| is maximized. Since this requirement is indepen-
dent from where 𝜓21,sync is located, the strongest increase in
the function even does not have to be at x = 0, as long as the
function is still odd as required in “Theoretical background”
section.

According to the last two requirements, |g(𝜓21)| should take
the maximum value for all values of 𝜓21 except for 𝜓21,sync, where
|g′(𝜓21,sync)| must be maximum. Therefore, all requirements can
be ideally achieved with the sign function

gsgn(x) = { +1 x ≥ 0
−1 x < 0

, x ∈ [−𝜋, 𝜋). (20)

However, substitution of (20) into (18) shows that this function
leads to an oscillation between 𝜔2,0 − 𝜔1,0 ± (𝜀1 + 𝜀2), causing a
degradation in synchronization accuracy.Therefore, the choice of a
suitable g(𝜓nm) points to a compromise between fast and accurate
synchronization.

To investigate this, two different functions for the generalized
Kuramoto model will be used, which are

gP(x) = sin(x)P (21)

and

gΣ,P(x) =
Q

∑
q=−Q

sin(x − mw)P, (22)

where P is odd and w, Q are given in the Appendix. Examples
for both functions are shown in Fig. 1 and Fig. 2, where the
function amplitude is given as dimensionless quantity. It becomes
apparent that for gP(x), the peak around ±𝜋/2 gets narrower
and steeper with increasing P, thus fulfilling the second require-
ment. For gΣ,P(x), a plateau is formed with steep slopes with
increasing P, thus fulfilling both requirements. Moreover, the sim-
ilarity to gsgn increases with higher values of P. It should be
noted that also other functions that fulfill one or both require-
ments could have been selected, such as the Fourier series of a
square wave function.The two functions in this paper were chosen
mainly for convenience, as they can be set with a single param-
eter and allow a better comparison with each other due to their
similarity.

Figure 1. gP(x) for x ∈ [−180∘, 180∘] and different values of P.
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Figure 2. gΣ,P(x) for x ∈ [−180∘, 180∘] and different values of P.

Figure 3. Measurement setups. Left: Setup realized for the standard Kuramoto
model. Right: Setup realized for the generalized Kuramoto model.

In the following, both functions will be used for synchroniza-
tion processes between two CW radars.

Measurements and results

To test the proposed synchronization method, two monostatic
FMCW radars manufactured by Fraunhofer Institute for High
Frequency Physics and Radar Techniques FHR covering a chirp
bandwidth from 68GHz to 93.5GHz and featuring an ADC sam-
pling rate of fADC = 1MHz were used. For this experiment, they
were operated as CW radars around 79GHz. As shown on both
images in Fig. 3, the radars, recognizable by their white lens anten-
nas, were mounted to supports and pointed in the same direction
toward a trihedral located at a distance of approx. 1.5m. Radar
1 operates by recording measurement data during time T, apply-
ing a Hamming window onto the recorded data set, performing
a Fourier transform and using thresholding for target detection.
Moreover, static targets were filtered out by subtracting the mean
from the time domain signal before Fourier transformation to sup-
press reflections caused by antenna mismatch and static surround-
ing.The frequency of the highest peak found by amaximum search
is used as an estimate for the CFO ̂fΔ,a. This value is subsequently
used to calculate f1,a+1 and to adjust the CW frequency of radar 1.

Radar 2 operates the same way, meaning that both radars trans-
mit simultaneously during measurements. After updating their
CW frequencies, both radars repeat the process from the begin-
ning. Due to hardware limitations, only the absolute frequency
value |fΔ,a| can be measured, making it necessary to hand over the
sign to the signal processing methods of both radars as a-priori
information after each measurement. This sign is directly calcu-
lated from the values f1,a+1 used to set the CW frequencies of both
radars.

In the following, three different quantities will be discussed, the
definition of which we give here. The CFO between both radars
after synchronization fΔ,sync is defined to the largest difference
between frequencies observed after synchronization took place.
The synchronization accuracy given in ppb is the aforementioned
CFO in relation to the carrier frequency at 79GHz. The number
of pilot tones or iterations until synchronization is achieved Isync
is measured to be the number of tones until the CFO falls below
fΔ,sync for the first time.

Standard Kuramoto model

Initially, the standard model with g(x) = gS(x) will be used.
Measurements were carried out using the setup shown on the left
side of Fig. 3. f1,0 of radar 1 was set to 79GHz and f2,0 of radar
2 was set 0.4MHz above f1,0. The sampling factor was chosen to
Ns = 64. The pilot tone duration was set to T = 4ms, resulting in
TfADC = 4000 samples per pilot tone. While keeping 𝛾1 = 1.2, the
value of 𝛾2 was varied between 0 and 9.6. In Fig. 4, the variation of
f1,a (dashed lines) and f2,a (solid lines) is shown for 64 pilot tones.
For 𝛾2 = 1.2, both radars adjust their CW frequencies using the
same gamma factor. Due to this, they synchronize to a frequency
lying approximately in the middle of f1,0 and f2,0. For 𝛾2 = 2.4 to
𝛾2 = 9.6, radar 2 forces the synchronization process to frequencies
which are closer to f1,0. The downside of choosing high values for
𝛾2 is a high frequency fluctuation, resulting in low synchronization
accuracy. However, it comes with the advantage that synchroniza-
tion is achieved after a lower number of pilot tones. For 𝛾2 = 0,
radar 2 does not adjust its CW frequency. Nevertheless, synchro-
nization still takes place, since radar 1 adjusts its frequency to f2,0.
This demonstrates that self-synchronization can still be successful
if one system is non-cooperative.

Next, f1,0, f2,0, and T were kept the same and 𝛾1 = 𝛾2 = 1.2
was chosen. Ns was varied between the values 16, 64, and 256.

Figure 4. Synchronization process for different 𝛾2.
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Figure 5. Synchronization process for different Ns.

Figure 6. Synchronization process for different T.

In Fig. 5, the absolute frequency difference |fΔ,a| is shown on loga-
rithmic scale for 256 pilot tones on the y-axis, whereas the number
of iterations is shown as dimensionless quantity on the x-axis. It
can be seen that higher synchronization accuracies are achieved if
a higher sampling factor is chosen: For Ns = 16 the CFO fΔ,sync
is below 19.73 kHz, agreeing with a synchronization accuracy of
256.23 ppb, for Ns = 64 it is below 3.77 kHz, agreeing with a syn-
chronization accuracy of 48.96 ppb and for Ns = 256 it is below
147.6Hz, agreeing with a synchronization accuracy of 1.92 ppb.
However, better synchronization accuracies come at the price of
a slower synchronization process: For Ns = 16, synchronization is
achieved after Isync = 7 pilot tones, for Ns = 64 after Isync = 47
pilot tones and for Ns = 256 after Isync = 109 pilot tones.

Afterward, Ns = 256 was chosen while keeping f1,0, f2,0, 𝛾1,
and 𝛾2 the same as before. Time duration T was varied between
0.5 ms, 1.0 ms, 2.0 ms and 4.0 ms. The use of longer pilot tones
affects the estimation of the CFO |fΔ,a| because it reduces the fre-
quency point spacing in the frequency domain. Longer pilot tones
therefore allow |fΔ,a| to be estimated more accurately. This can
be seen in Fig. 6, where using T = 0.5ms resulted in a lower syn-
chronization accuracy compared to T ≥ 1.0ms. Nevertheless, the
synchronization accuracy could not be improved for values above
T = 1.0ms, possibly because the chosen sampling factor Ns = 256
is the dominant influence on synchronization accuracy from there
on. Thus, sampling factors smaller than Ns = 256 would possibly

Figure 7. Synchronization process for gP(x).

allow for time durations ofT = 0.5ms and smaller. Since the radars
are limited to a minimum time duration of T = 0.4ms, this could
not be investigated.

Generalized Kuramoto model

After studying the standard model, its generalized version was
investigated by application of gP(x) and gΣ,P(x). As parameters,
f1,0 = 79GHz, f2,0 = f1,0 + 0.4MHz, Ns = 64, 𝛾1 = 𝛾2 = 1.2,
and T = 4mswere chosen. Since the experiments were conducted
at a later date, the last setup was reproduced as shown of the right
side of Fig. 3. First, gP(x)was tested for different values of P, result-
ing in the curves shown in Fig. 7, showing the absolute frequency
difference |fΔ,a| on logarithmic scale for 256 iterations on the
y-axis and the number of iterations as dimensionless quantity on
the x-axis again. In comparison to the standardmodel, the number
of required pilot tones can be reduced by increasing P, achieving a
reduction from Isync = 47 to Isync = 35 pilot tones from P = 1
to P = 13. In contrast, fΔ,sync = 6.49 kHz increases to fΔ,sync =
16.43 kHz, agreeing with synchronization accuracies of 82.15 ppb
and 207.97 ppb, respectively. The results show that although faster
synchronization can be achieved, the added value of using gP(x)
is limited. The reason can be seen from the progression of the
curves: For higher values of P, the curves start the synchronization
process later, but achieve synchronization faster afterward, leading
to a small improvement in total. Since gP(x) only fulfills the sec-
ond requirement described in “Standard vs. generalized Kuramoto
model” section, a significant part of the signals shown in Fig. 1
is close to zero and therefore prevents a fast progression of 𝜓21,
delaying the synchronization process.

In comparison, gΣ,P(x) outperforms gP(x) as is shown in
Fig. 8. Here, a reduction from Isync = 51 to Isync = 27 pilot tones
from P = 1 to P = 9 is achieved. fΔ,sync = 8.26 kHz increases to
fΔ,sync = 16.49 kHz with synchronization accuracies of 104.56 ppb
and 208.73 ppb, respectively. This shows that a comparable accu-
racy could be reached with a lower number of pilot tones if com-
pared with gP(x) for P = 13. Although the synchronization speed
is similar for P = 9 and P = 13, this behavior seems to be an excep-
tion, as a further reduction in the number of required pilot tones
can be seen for P = 17. Due to the better performance of gΣ,P(x)
in comparison to gP(x) since the aforementioned first criterion
is not fulfilled for gP(x), the focus is placed on gΣ,P(x) in the
following.
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Figure 8. Synchronization process for gΣ,P(x).

Figure 9. Change in synchronization speed and accuracy for gΣ,P(x).

Figure 9 allows to study the performance of gΣ,P(x). It shows
both Isync as well as the synchronization accuracy for different P
values on the y-axes and the number of iterations as dimensionless
quantity on the x-axis. The nonlinear dependency of the number
or required pilot tones on P hints at the added value of using the
generalizedmodel: For low values ofP, a considerable synchroniza-
tion speed-up can be achieved without a significant deterioration
in synchronization accuracy. For higher values of P, this advan-
tage is lost: Comparing Fig. 5 with NS = 16 from last section
with the results shown for P = 61 in Fig. 9, it becomes apparent
that in both cases synchronization is achieved after Isync = 9
tones, but the change of the sampling factor from NS = 64 to
NS = 16 affects synchronization accuracy significantly less. This
also becomes apparent from evaluating the product of Isync and
synchronization accuracy, which is highest for P = 11. It is there-
fore recommended to apply to the generalized Kuramoto model
only small P values around P = 11 to gain an advantage in terms of
synchronization speed and accuracy.

A comparison of synchronization performance for gP(x) and
gΣ,P(x) is shown in Table 1. The table also contains results from
the last section for comparison. It should be noted that by com-
paring the three cases where NS = 64 and P = 1, a significant
variation in synchronization accuracy can be determined. This
shows that the synchronization is sensitive to environmental influ-
ences, leading to performance fluctuations. However, during the
experiments, consideration was given to changing NS and P over a

Table 1. Performance comparison of different synchronization parameters

Figure NS P Isync Sync. accuracy

5 16 1 7 256.23 ppb

64 47 48.9 ppb

256 109 1.92 ppb

7 64 1 47 82.15 ppb

5 44 136.71 ppb

9 39 181.14 ppb

3 35 207.97 ppb

8 64 1 51 104.56 ppb

5 44 136.71 ppb

9 27 208.73 ppb

13 27 234.81 ppb

17 21 290.63 ppb

range of values that would result in significant changes in synchro-
nization accuracy, which is why the discussed results retain their
validity.

Conclusions

The results presented in the last section show that over-the-air self-
synchronization of two CW radars can be carried out successfully,
even if one radar is non-cooperative. In addition, frequency syn-
chronization accuracies of 1.92ppb could be achieved which would
enable the resolution of a pedestrian moving at 1m/s. However,
these accuracies come at the cost of a slower convergence of the
pilot tone frequencies. A small number of pilot tones required
to achieve synchronization is desirable because the time taken
by these pilot tones is not available for coordinated use of both
systems. It could be shown that sampling factor NS, pilot tone
duration T and synchronization function g(x) affect both synchro-
nization speed and duration.However, the results demonstrate that
a balance must always be struck between the two criteria.

In highly dynamic scenarios, it is expected that changes in the
environment will occur during the synchronization process that
will require resynchronization. If the scenarios are additionally
highly complex, such as in urban traffic situations or in maritime
environments, the synchronization process can also be severely
disturbed. For this reason, environments of higher complexity will
be considered in the future to understand the influence of multi-
path and moving targets onto the synchronization process. As a
very basic approach for frequency estimation based on threshold-
ing and maximum search was used, it is likely that the synchro-
nization accuracy can also be improved by applying curve fitting
to the peak. Since two radars were used for the present study, the
Kuramoto model was designed for the participation of two nodes.
An extension to more nodes is conceivable and feasible and will
also be addressed in the future. Nevertheless, the research in this
publication paves the way for for these investigations by demon-
strating that self-synchronization processes are suitable for the
synchronization of communication and radar systems.
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Appendix
gΣ,P(x) extends gP(x) by superimposing several of its peaks to realize plateaus.
This is achieved by the summation in (22), where w describes the amount by
which the peaks are to be shifted. gP(x) has half of its signal strength at

sin(x)P = 1
2 ⇔ x = arcsin( 1

P√2
) . (A.1)

Since the peak is located at 𝜋/2, its beamwidth can be determined with

w = 2( 𝜋
2 − x) = 2( 𝜋

2 − arcsin( 1
P√2

)) . (A.2)

Only a limited number of R peaks fits into the intervals [−𝜋, 0] and [0, 𝜋].
The highest integer number of peaks within these can be determined as
follows:

R = ⌊ 𝜋
w − 1⌋ . (A.3)

Based on this, the limits ±Q of the sum in (22) can be defined to
Q = (R − 1)/2.
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