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STABILITY OF WEIGHTED DARMA FILTERS

K.J HARRISON, J. A. WARD AND L-J. EATON

ABSTRACT. We study the stability of linear filters associated with certain types
of linear difference equations with variable coefficients. We show that stability is
determined by the locations of the poles of a rational transfer function relative to
the spectrum of an associated weighted shift operator. The known theory for filters
associated with constant-coefficient difference equations is a special case.

1. Introduction. An adaptive DARMA (deterministic, autoregressive, moving av-
erage) filter is alinear operator which associates each sequence x in its domain with a
sequencey which is related to x according to the linear difference equation

r S
Q) > @niyn—i = » bnjxnj foreachne Z,
i=0 =0

where the coefficients an; and bnj, for 0 <i <r,0 <j < s, andn € Z, are complex
numbers. We study certain types of stability of such filters which arise naturally when
the filters are regarded as mappings between the various (P spaces. Two notions, which
we call (p, g)-stability and (p, g)-boundedness, are defined precisely below.

Let S denote the vector space of doubly-infinite complex-valued sequences, and for
1 < p < oo let (P denote the subspace of S consisting of p-summable sequences.
Thus X = (Xo)nez € P if [[X[lp = (Cnez [XalP)YP < oo for p < oo, and x € (> if
[IX|lo = SUPnez [Xa| < o0. A sequence space operator is a linear operator T whose
domain D (T) and rangeR (T) are subspacesof S. A sequence space operator T isafilter
for (1) if x and y satisfy (1) whenever x € D(T) andy = Tx.

DEerFINITION 1. Supposethat T is a sequence space operator, 1 < p,q < oo, and that
X isasubspaceof S. We say that T is (p. g)-stableon X if (PN X C D(T),and Tx € (4
for each x € (PN X, and that T is (p, g)-bounded on X if there exists x > 0 such that
I TX|lq < ||X||p for eachx € (PN X.

A (p, g)-bounded operator is necessarily (p. g)-stable, but the converse does not hold
in general. However, as we shall see in Section 3, there are certain types of sequence
space operators which, if (p, g)-stable, are automatically (p, g)-bounded.
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If, for each i and j, the numbers a,; and b,; are independent of n, (1) becomes a
constant-coefficient difference equation

r S
2 S ayni=> bx.; foreachneZ,
i=0 j=0

wherethea;, 0 <i <r,andb;, 0 < j < sarefixed complex numbers. A standard method
of dealing with (2) is to introduce the shift operator S, which is defined by (SX)n+1 = Xn
for each n € Z and for each sequencex, asin [2]. Then (2) becomes

(€) a(S)y = b(Sx.
where a and b are the polynomial s defined by

aQ) =ao+a+-+al and b(()=bo+bi+- -+ by’

and the stability of filters associated with (3) is essentially determined by the location of
the poles of the rational transfer function

_ b©
(4 0= 20"

There is no satisfactory general theory for the stability of adaptive filters, that is,
filters associated with the variable-coefficient difference equation (1). However Ramsey
[4] givesconditions, in terms of the norms of productsof associated companion matrices,
for the (0o, 00)-stability of adaptivefilters on causal sequences(as defined below). These
results may be used to investigate, for example, the stability of adaptivefilterswhere the
coefficients are periodic or piecewise-constant [5]. In this paper we examine adaptive
filters for difference equations which can be written in the form

®) a(W)y = b(W)x,
where W is the weighted shift defined on S by
(WX)ns1 = WnX,, foreachn € Z andfor eachx € S,

for afixed weight sequencew = (wj,,) of positive numbers.
It is not difficult to show that (1) reducesto (5) if and only if the coefficientsa,; and
bn; satisfy relations of the form

ani =aifnByY and  bnj = biBnsLY.

and bg, by, ..., bs are fixed complex numbers. The weight sequencew is then related to

3 according to the formula

Bne1 =Wn3n foreachn e Z.
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We shall assume that a, and bs are non-zero, and that there are positive numbers p;
and p, such that
(6) O0<pr<wWh<p2<oo fordlneZ.

We shall say that T isaweighted DARMA filter if
a(W)Tx = b(W)x for eachx € D(T),

and in this case we say that T is a filter for (5). We shall see that the stability and
boundedness of such a T are determined by the locations of the non-zero poles of the
transfer function r(¢) defined by (4), relative to certain annular subsets of the complex
plane associated with the weighted shift W. If w, = 1 for al n, then (5) reduces to
(3), and so the stability theory which we shall develop for weighted filters includes the
constant-coefficient case (see[3], for example).

The block diagram in Figure 1 gives a physical realization of (5) in terms of adders,
gains and unit delays. (For simplicity we have assumed here that r = sand that ag # 0.)
It is based on the standard realization of equation (3), but includes at each node an
additional common, time-varying, gain of w, at time n.

Tl selec]
@+~~+» y
> &

FIGURE 1

1.1. Weighted shifts. We include some basic facts about weighted shifts. For a more
detailed discussion see the survey paper [6]. The norm of W, as an operator from (P
into (P, is the supremum of the weights w,. It follows from (6) that this supremum is
bounded. It is also independent of p, and so we write

W] = supwk = SUp Bie1y -
kezZ kezZ

For each positive integer n, the operator norm of W" is the supremum of the sliding
products WiWi+1 * - - Wien—1, for k € Z, that is,

W] = SUPpWicWics1 - = - Wiean—1 = Supﬁkmﬁ[l-
kez kez
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The spectrum of W, as an operator from £P into (P, is an annulus centred at 0 in the
complex plane. The outer radius Ris equal to p(W) the spectral radius of W, and so

. . _1n\1
R=p(W) = fim [ W7 = lim (sup i) "

Theinner radius L of the annular spectrum of W is given by
T . —1 l/n
= m ol A
Since the weights wy are bounded away from 0, W has a bounded inverse as an
operator on (P. In fact,

(W %), = W %1, foreachn € Z and for eachx € S.
and [|W1|| = (infxez W) 2. Furthermore, L~ is the spectral radius of W=, and so
L=pWH™=lim |w™|~,
n—oo

According to the spectral mapping formula, p(W") = p(W)" for any n > 1. Since
[IWP]| > p(W"), it follows that

7 SUP BrekBic = |W1)| > R for eachn > 0.
kez

We are also interested in the behaviour of W when restricted to certain subspaces of
S. Recall that a sequence x = (X,) is causal if it is supported on [0, 00), that is, X, = 0
for all n < 0. The set of all causal sequencesis denoted by S... More generally, for each
subset A of Z, S denotesthe set of sequencessupported on A. The set of sequenceswith
finite support is denoted by Soo. We say a sequence x has finite past if x € Sy for
somek € Z, and we denote the set of all finite past sequencesby S¢,. Thus S, = S ),
and Stp = Uyez Sjko)- We say that a subset X of S is W-invariant if Wx € X for each
x € X. Each of the subspaces Sy ), Srp and Seo is W-invariant. The restriction of W to
S, iscalled aunilateral weighted shift, and is denoted by W;.. The norm of W. is given
by

IWs || = Supwi = SUp Bies1 B
k>0 k>0

and its spectral radius p(W.) = R, isgiven by

R. W[ = lim (Sup BeenBic "

= lim
n—oo

As an operator on £} = (PN S,, W, is not invertible, and its spectrum is the closed
disc centred at the origin and with radius R.. The analogue of (7) is the formula

®) SUp Fneicic - = |WE]| = R for eachn > 0.
k>0
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For the unweighted shift S R = R, = 1. The numbers R and R; are important to the
analysis of stability and continuity of weighted filters.

An operator T is power bounded if the numbers || T"||, n = 1,2,3...., are bounded
above. We shall say that T is power dominated if T/ p(T) is power bounded, where p(T)
isthe spectral radius of T. Thus the weighted shift W is power dominated if the numbers
IW|[R™, n=1.23,..., are bounded above. Clearly the unweighted shift is power
dominated.

1.2. Some simplifications. The following observations will simplify the analysis of
weighted filters. Thefirst concernstheindices p and g.

LEMMA 1. If thereis afilter for (5) whichis (p, g)-stable on S, thenp < g.

PrOOF. Supposethat T is afilter for (5) which is (p, g)-stable on S.. Chooset > s
andx € (7. Write X = Yn=0 X:6™, where 5O is the sequencewith 1 in the n'th place and
0 elsewhere, and let X* = 550 X,6™. Then x* € (%, and so

IbOW)X7lq = fla(W)TX"lq < [la(WI| [ TX"lq < oo.

On the other hand, b(W)x* = -5, bWix*, and since the supports of Wix* for j =
0,1,2...,saredigoint,

IbWX g < [Ib(W)X*[|q < o0 for each].
Since bs # 0 and w is bounded below, it follows that
© Il = 1¢*lq < W ~SIIWex*lq < [l = [ ~5][bWexX*g < oo.
Since (9) holdsfor eachx € (%, p < q.

Thesecond lemmawill allow usto restrict attention to casesin which the polynomials
a(¢) and b(¢) are powers of acommon linear polynomial.

LEMMA 2. Suppose that X is a W-invariant linear subspace of S. Then there is a
filter for (5) which is (p, g)-stable (bounded) on X if and only if, for each non-zero pole
AL of r(), thereis afilter for the equation

(10) (1= AWy™y = (1 - AW)"x

which is (p, g)-stable (bounded) on X, where 1 is the multiplicity of the pole A=, and
wherer > 0isthe multiplicity of A= asa zero of b(().

ProOF. Let A7L Azt ..., At be the non-zero poles of r(¢) with multiplicities
{11, fi2, - - -, pk respectively. Each A\t is a zero of a(¢) with multiplicity i + v for
somev; > 0, and A\t isazero of b(¢) with multiplicity v; if v; > 0.

Suppose that T is afilter for (5) which is (p. g)-stable on X. Choose any one of the
poles A\t of r(¢) and polynomials u;(¢) and vi(¢) such that

(O — Xy +wi(Qb(C) = (1 — Xi)".
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Leta(¢) = a1 — A\¢)™7, and let

(11) Ti = w(W) + a(W)vi(W)T.

Then, since X isW-invariant and T is (p. g)-stable on X, for eachx € X N ¢P

(1= AWYTix= (L= AW (W) + vi(W)a(W)T)x = (1 — AW)"'x,

and so T; is afilter for (10) corresponding to the pole A 1. Furthermore, if T is (p, g)-
bounded on X then sotoois T;.

Now suppose that, for i = 1,...,k, T; is afilter for (10) corresponding to the pole
At whichis (p, g)-stableon X. Let &(¢) = a(()(1 — Ai¢) ™ for eachi. Sincethe greatest
common divisor of the polynomials &((), i = 1,2.....k, isaso adivisor of {"b((), for

someT > 0, there are polynomials ¢;(¢). ¢2(¢), . . . , ¢(¢) such that

k
b)) = ; Ci(Qa(©)-

Let )

(12) T=W"> c¢WT.
i=1

Then

k k
aW)Tx =W~ ;1 c(Wa(W)Tix =W ;1 ci(W)& (W)x = b(W)x

for eachx € X N (P. So T is afilter for (5) which is (p, g)-stable on X. Furthermore, if
each T; is (p, g)-bounded on X then sotooisT.

2. Finite past filters. There is a unique filter for (5) which leaves invariant the
subspace S¢p,. It can be defined in terms of a Laurent series of the transfer function r(¢).
Sincer(¢) is meromorphic, it has an expansion 32, hi¢! which convergesin a punctured
neighbourhood of ¢ = 0. The operator r(W)., which is called the finite past filter for (5),
is defined on S¢p, by
(13) r(W).x=>_"hWx foreachx € Sy,

i=r
This sum converges pointwise for each x € Sgp. In fact, if x € Sy then r(W)sx €
Siksp.o0) aNd

n—k
(r(W)+X)n = Bn 2B % foreachn>k+p.
=

The reason why r(W). is afilter for (5) is best explained in terms of convolution
products. For any two sequences u and v, the (weighted) convolution product u x v is
defined by
(14) UxV)n =B > UV 13 foreachne Z,

i+j=n
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provided that each of the sumsin (14) converges absolutely.

The convolution product u x v is not defined for all pairs of sequences u and v, but
whenitis, it iscommutative and distributive over pointwise addition. It isnot, ingeneral,
associative. However, the subspace S, is afield under the operations of convolution and
pointwise addition, and it is not difficult to check that

a{pl*b=h,

where b = (by) is the sequence of coefficients of b((), h = (hn) is the sequence of
coefficientsin the Laurent seriesfor r(¢), and where ar‘pl isthe uniquefinite past inverse
of a = (an), the coefficient sequence of a((). (We definea, = 0if n ¢ [0.r], b, = O if
n¢[0,s], andh, = 0if n < p.) Therefore

r(W):x=h=xx foreachx € Sp.

It follows that h = r(W).6©, and for this reason h is known as the impulse response
of the filter r(W)... Since (5) can be expressed as the convolution equation a x y = b x X,
we have, for each x € S¢p,

a*r(\N)J,x:a*h*x:a*af}}*b*x: b * x.

The uniqueness of r(W). follows from the fact that if T is another filter for (5) with
domain S¢p, then (T — r(VV)+)x € kera(W), the kernel of a(W). It is easy to check that
kera(W) NS, = {0}, and so if S¢, isinvariant under T then Tx = r(W).x for all x € Sgp.

2.1. Sability on causal sequences. In this section we study the (p, g)-stability and
(p. 9)-boundedness of r(W). on S.. It turns out that these are equivalent because of the
special nature of r(W)... We say a sequencespaceoperator T is causal if, for eachinteger
kand eachx € Sy o) N D(T), T € Sy ). Thefollowing automatic continuity result for
causal sequence space operatorsis well known [1].

LEMMA 3. If Cisa sequencespace operator which is causal and (p, g)-stable on S.,
then C is (p. g)-bounded on S..

COROLLARY 1. Thefinite past filter r(W). for (5) is (p. g)-bounded on S. if and only
ifitis (p.g)-stable on S..

ProoF. Clearly W is causal, and since W—"r(W). is a linear combination of non-
negative powers of W, it too is causal. So by Lemma 3, W"r(W). is (p, g)-bounded on
S+. The sameistrue of r(W)., since r(W). = WPW~r(W)., and WF is (g, )-bounded.

We now obtain a necessary and sufficient condition for the (p. q)-boundednesson S,
of the operator r(W)... First we assume that the rational function r(¢) has a single pole,
in which caser(W). = (1 — AW);* for some . > 0.

LEMMA 4. Thefinite past operator (1 — AW)," is (p, g)-bounded on S. if and only if
1<p<g<ooand|AR. <1l0orp=1,q=o00, =1, |A\R =1andW, is power
dominated.
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PROOF. First supposethat (1 — AW);* is (p. g)-bounded on S.. Since (1 — AW);* is
afilter for the equation (1 — AW)"y = x, Lemma 1l impliesthat p < q.
Let 7 denote the (p, ) norm of (1 — AW);* restricted to S.. Then for any x € (%,

(15) 12 = AW) " Hlq < 7l[X][p-

Now (1 — AQ)™ = 52, (“"7H)A¢", where (T) is the generalised binomial coefficient,
defined for integersnandj > 0, by

(T) _n+1 n+2><...><nj—+j forj >0, and(S) =1

Sofor eachx € Sgp, (1 — AW)Lx = 502 (“* 1) A"WPx, and in particular

n

-1 X2

00 +nNn— 1
(16) AEPVVRRAEDY (“ ; )A"ﬁmkﬁklé(”*k)
n=0
for eachk > 0. Soby (15), (" ) A|"Bnsk3c* < 7 for eachn > 0 andk > 0. Therefore

) (0 e < (0 e <

n \

for eachn > 0 by (8), and hence |\ |R, < 1.
Now supposethat |A|R. = 1. Then (17) impliesthat 1 = 1, and hence

(18) IABrecdict < APIWE = [WIR," < 7

for each k > 0 and each n > 0. So W, is power dominated. Furthermore, (16) becomes
(1= AWM = 52020 A"k 160, and so by (15)

(19) 7> @ = AW 1sW]| >

m
Z )\nﬁmkﬂilfs(mk)
n=0

q
for each m > 0 and each k > 0. Now (18) implies that | A|"BnsBt > 7 LA™ BmexBi t
for0 < n <m. Sohy (19)

7> 7 A BmwiBi = 77 A ™ Bimak B H(m + 1)/

m
3500
n=0

q

for eachm > 0 and eachk > 0 (where 1/ 0o = 0). Therefore, since|A\|R. = 1, it follows
from (8) that 72 > (m+ 1)~/9. Also since (m+ 1)¥/9 — oo asm— oo if q < 00, q = 0.
Now choosek > 0, m> 1 and let

17 a1 1 m ®
X= = 3 AWK = = (1 — AW)TL — AmWMsK,
m 55 m

https://doi.org/10.4153/CMB-1998-009-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-009-1

STABILITY OF WEIGHTED DARMA FILTERS 57
Then
=n+l 1o(n+K O 1o(n+K
(1= W)X = 30 == A 0™ + 5 AV 6.
n=0 n=m

and so [|[(1 — \W);X]|oo > [AMBmekBi L. Since |A|R: = 1, it follows from (8) that
(1 — AW);:1x]|» > 1. On the other hand,

m-1 1 1ol m-11 K 141
I I e Do e
n=0 m p n=0 m p

by (18). So for eachm > 1,
1< (2= AWK < 7llxfp < PP,

and sincem /P — 0asm— oo if p > 1, it followsthat p = 1.
To prove the conversg, first supposethat 1 < p < g < oo and that |A|R: < 1. Then
by (8)

u &, +n—-1
=ty < 55 (") e <
n=

So (1 — AW); " is (p. p)-bounded, and hence (p, g)-bounded, on S..

Now suppose that |A\[R. = 1 and that W, is power dominated. Let 7 =
SUPyo [WEIIRY™. Then (1= AW 5®), = SPyo A MBneidfc ™ < SUpyso AW =7
for each k > 0. Hencefor each x = (x,) € (1,

11— AW) ] 0 < 20 Xl (1 = AW)T16 < 71X 1
n=l

So (1 — AW); 1 is (1, 0o)-bounded on S..

We turn now to the general case, where r(¢) has possibly more than one non-zero
pole. The following result is amodification of Lemma 2.

LEMMA 5. Suppose that X is a W-invariant linear subspace of S. Then r(W). is
(p. g)-bounded on X if and only if, for each non-zero pole A~ of r(¢) of multiplicity s,
(1 — AW); " is(p. )-bounded on X.

PROOF. First supposethat r(W). is (p. g)-bounded on X, and that A=t isapole of r(¢)
of multiplicity u. Then the operator T = v(W)a(W)r(W). + u(W), asgiven by (11) in the
proof of Lemma 2 is afilter for (10) which is (p. g)-bounded on X. But S, isinvariant
under T, and so by the uniqueness of finite past filters, T = (1 — AW)*.

Conversely, if (1 — A\W);" is (p. g)-bounded on X for each non-zero pole A~ of r(()
(with multiplicity u), then the operator T = W™ K, ¢i(W)(1 — A\\W);*, as given by
(12) in the proof of Lemma 2, is afilter for (5) which is (p, g)-bounded on X . Therefore,
since T leaves Sy, invariant, T = r(W),.

Lemma 4 and Lemma 5 provide a necessary and sufficient condition for the (p, q)-
boundedness of r(W). on S..
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THEOREM 1. The finite past filter r(W). is (p.g)-bounded on S. if and only if 1 <
p < g < oo, the non-zero poles of r(¢) lie on or outside the circle [¢| = Ry, and, if r(¢)
has poles on the circle |¢| = R., then each such poleissimple, p = 1, q = oo, and W, is
power dominated.

PROOF. Suppose that A71, A51, ... A\t are the non-zero poles of r(¢) with multi-
plicities p1, o, . . . , ik respectively. By Lemma 4, the conditions in the theorem are
the conditions under which each of the single-pole factors (1 — AW),* of r(W). is
(p. g)-bounded on S;, and by Lemma 5 this is both necessary and sufficient for the

(p. g)-boundednesson S, of r(W)..

Since R. = 1 for the unweighted shift Sy, and S; is power dominated, it is easy
to recover the known conditions [3] for stability of unweighted finite past filter from
Theorem 1.

COROLLARY 2. The unweighted finite past filter r(S). is (p. g)-bounded on S. if and
onlyif 1 < p < g < oo, thenon-zero polesof r(¢) lieon or outsidetheunit circle|¢| = 1,
and, if r(¢) has poles on the unit circle, then each such poleissimple, p = 1, and q = oo.

2.2. Sability onfinite past sequences. Thenatural domain of thefinite past filter r(W).
is Stp, the linear space of all sequenceswith finite past. In this section we give necessary
and sufficient conditions for the (p. g)-stability and boundedness of r(W). on Sgp,

LEMMA 6. The finite past filter r(W). is (p, g)-stable on S, if and only if it is (p. q)-
stableon S..

ProoF. Clearly stability on Sy, implies stability onthe subspaceS.. For the converse,
assume that r(W). is (p. g)-stable on S, and that x € Sy ) N ¢P for somek € Z. Then
Wkx € ¢, and since r(W). commutes with W,

r(W)+X = r(W). WKW *x = W (W), WHx € (9.

THEOREM 2. The finite past filter r(W). is (p, g)-bounded on S, if and only if 1 <
p < q < oo, thenon-zero poles of r(¢) lieon or outside thecircle|¢| = R, and, if r(¢) has
poleson thecircle |¢| = R, then each such poleissimple, p = 1, q = oo, and W is power
dominated.

ProoF. The theorem can be proved by extending the range of k from Z* to Z in the
proofs of Lemma4 and Theorem 1.

Necessary and sufficient conditions for the stability of unweighted finite past on S,
follow immediately from Theorem 2.

COROLLARY 3. The unweighted finite past filter r(S). is (p, g)-bounded on S, if and
onlyif 1 < p < g < o0, thenon-zero polesof r(¢) lieon or outsidetheunit circle|¢| = 1,
and, if r(¢) has poles on the unit circle, then each such poleissimple, p = 1, and q = oo.

Because the necessary and sufficient conditions in Theorems 1 and 2 are different,
there is no automatic continuity result for arbitrary weighted finite past operators on Sp.
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ExAMpPLE 1. Let W be the weighted shift with weights (w;) given by
w,=1/2 forn>0andw,=2 forn<D0.

ThenR =2and R, = 1/2. So (1 — W);! is (p. g)-stable on S¢, by Theorem 1 and
Lemma 6. But (1 — W); is not (p. g)-bounded on S¢, by Theorem 2.

3. Finitefuturefilters. Equation (13) definesthefinite past operator r (W).. interms
of aLaurent seriesexpansion of therational functionr(¢). Other L aurent seriesexpansions
of r(¢) determine other operators, which are also filters for (5) but on different domains.
In particular, the expansion of r(¢) in aneighbourhood of co determines afilter whichin
anatural senseisadual of r(W)..

We say that a sequence x is anticausal if it is supported on (—oo, 0], and that x has
afinite future if x € S(_, i for somek € Z. We denote by S_ the set of all anticausal
sequences, and by Sy the set of al finite future sequences. Thus S_ = S(_., ¢, and
Stt = Ukez S(—oo- Thefinite future operator r(W)_ is defined on S¢; by

r(W)_x= > gWx foreachx € Sy,
j=r—s
where %o gjg‘j is the Laurent series expansion of the transfer function r(¢), which
is valid in a neighbourhood of ( = co. This expansion converges pointwise for each
x € Sy Infact, if x € S0 ig thenr(W)_x € S0 k_r+g, and

k—n
(rW)-x), =Bn > Gifni%wj foreachn<k—r+s.

j=r—s
It is not difficult to verify that
r(W)_x=gx*x foreachx € Si.

whereg = a;! x b, and where a;;* is the unique finite future inverse of ain the field S¢;.
So
axr(W)_x=asxgsx=axag *bxx=bxx foreachxe Sy,

and hencer(W)_ is afinite future filter for (5).

The uniqueness of r(W)_ as a finite future filter for (5) follows from the fact that
kera(W) N St = {0}.

The analysis of r(W)_ is simplified by a natural correspondence between finite past
and finite future sequences. Let H be the reversal mapping, definedon S by

(HX), =x_, foreachn e Z andeachx = (x,) € S.

The map H isisometric on each (P space, H? = 1, and HS¢, = Sy
Let W = HW-1H. Then W is a weighted shift whose weight sequence (W) is given
by

W, =w_}_, foreachne Z.
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Let & and b be the polynomials defined by

aQ)=¢™faC™") and b(Q) =¢™bEC™),

and let
F(Q) =b(Q)/a(@) =r(¢™).
It is easy to check that

A(W)Hr (W)_Hx = HA(W1)r(W)_Hx = HW"~Sa(W)r (W)_ Hx
= HW "Sh(W)Hx = b(W)x.

for each x € S¢p, and so Hr(W)_H is afilter for the equation
(20 a(Wy = b(W)x.

Furthermore Sy, is invariant under Hr(W)_H, and so by the uniqueness of finite past
filters, Hr(W)_H = F(W)., the finite past filter for (20).

Since H is anisometry on each (P, the stability and boundedness properties of r(W)_
on S_ and on S match those of F(W). on S, and on Sy, respectively, and by the results
of the previous section these are determined by the location of the non-zero poles of 7(()
relative to the spectra of W, and W. The spectrum of W, as an operator from (P into ¢P,
is an annulus centred at 0 in the complex plane. The outer radius Ris given by

~ 1 1/n T . —1 _l/n —1-1
R= lim (flél?ﬁk—nﬁk )7 = lim (inf BBic,) =L

Similarly, the spectrum of W, is adisc centred at the origin, whose radius R. is given by

—1/n — L:l

T -1 1/n T . —1
R. = lim (?;Opﬁk—nﬁk )" = lim (inf 55
Clearly ¢, isapole of multiplicity v of ¥(¢) if and only if (;* is apole of multiplicity
v of r(¢). So we have the following necessary and sufficient conditions for the (p, g)-
boundedness of the finite future filter r(W)_ on S_ and S¢;.

THEOREM 3. The finite future filter r(W)_ is (p. q)-bounded on S_ if and only if
1 <p<q< oo, thepolesof r() lie on or inside the circle |¢| = L_, and, if r(¢) has
poles on the circle |¢| = L_, then each such poleis simple, p = 1, g = oo, and W-1 is
power dominated.

THEOREM 4. The finite future filter r(W)_ is (p.q)-bounded on S if and only if
1 <p<qg<oo,thepolesof r(¢) lieonor insidethecircle|(| = L, and, if r(¢) haspoles
on the circle |¢| = L, then each such pole is simple, p = 1, g = oo, and W1 is power
dominated.
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4, Two-sided filters. Inthe previoustwo sectionswe have studied the behaviour of
the ‘one-sided’ finite past and finite future filters for (5). We turn now to the problem of
finding stable two-sided filters for (5), that is, filters whose domainsinclude £P for some
p > 1. In view of Lemma 2, we may restrict attention to the case in which r(¢{) has a
single pole, and so we look for stable two-sided filters for equation (10).

Oneway of obtaining such afilter isby using continuity to extend the domain of either
(1 — AW)." or (1 — A\W)Z*. Suppose, for example, that (1 — AW)." is (p, q)-bounded
on S¢p. (By Theorem 1 this will occur if [A™!| > R, or possibly if |[\7}| = Rin the
exceptional (1, 0o) case). If p < oo, then S, N (P isdensein (P, and so thereis aunique
(p, 9)-bounded extension of (1 — AW)," which is a filter for (10) and whose domain
includes (P. On the other hand, if (1 — AW);* is(co. co)-bounded on S, then | A1) > R
by Theorem 1, and so the seriesfor (1 — A\W); " convergesin operator norm and defines
afilter for (10) whose domain includes £°°.

Similarly, if (1 — AW)~* is (p, g)-bounded on S¢; then its domain can be extended
to include ¢P. (This will occur if [\~ < L, or possibly if [\71| = L in the exceptional
(1, 00) case).

If L < |21 <R then (1— AW);* and (1 — A\W)—* do not have bounded extensions.
However it may still be possible to construct a (p, g)-bounded filter for (10) using both
(1—AW);" and (1— AW)=*. Supposethat L < R. < [A7!| < L_ < R Then(1—\W);"
and (1 — AW)Z* are (p. q)-stable on S and S_ respectively, and we can define

To=(1— AW);"Ps + (1 — A\W)_"P_,

where P is the projection of S onto S. defined, for any x € S, by (P+X), = X, if n >0
and (P+X), = 0if n < 0, and whereP_ = 1 — P,. Then P,x € (% for any x € (P, and
because (1 — AW); " is(p. q)-stableon S, it followsthat (1— AW);#P.x € (9. Similarly,
(1 — AW)—"P_x € (9. Furthermore, since (1 — AW)** (1 — AW); #Pyx = (1 — AW)"P,x
and (1 — AW)*(1 — AW)—FP_x = (1 — A\W)"P_x; it follows that

(1 — AW)™ Tox = (1 — AW (PaX+ P_x) = (1 — AW)’X.

So Ty is a (p, g)-stable filter for (10). In fact, since (1 — AW);" and (1 — AW)_* are
automatically (p. g)-bounded on S, and S_ respectively, Ty is (p. g)-bounded (on S).

For each j > 1 and each complex number )\, we denote by @(j, A) the sequence
whose n'th term is (;";)3,A". The sequences ®(j, A).j = 1.2....,u form a basis of
ker(1 — A\W)*, and

(1 — AW)D(. \) =®( —1.)) forj > 1and (1 — A\W)D(L, \) = 0.

There is aso a ssimple connection between the sequence ®(u:, A) and the impulse
responsesof (1 — AW);" and (1 — A\W)~*. Let @, (u, A) = Po®(u, ), and let d_(j, \) =
P_ad(j, A\). Then

D.(, \) = (L— AW6Q  and  d_(j, \) = —(1 — AW)TI5©,
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EXAMPLE 2. Suppose that w, = 1/2foral n > 0Oandw, = 2forall n < 0, asin
Examplel. ThenR=R_ =L_=2andL =L, = R, = 1/2, and the spectrum of W, as
a bounded linear operator from (P into (P, is the closed annulus {¢ : 1/2 < [¢| < 2}.
Forany 1 < p <q < oo, (1 —W);!isnot (p. g)-bounded on S¢, and (1 — W)=t is not
(p. g)-bounded on S¢;. However

(21) To=(1—W) P+ (1—W)'P_

is atwo-sided (p. g)-bounded filter for the equation (1 — W)y = x. Furthermore, if T
is any other (p, g)-stable filter for this equation, then Tx = Tox + Y(X)P(1, 1), for some
linear functional ) on (P,

We now show that the three constructions of a (p, g)-stable filter for (10) just given
essentially exhaust the possibilities. For this we need some preliminary results. Thefirst
two are extensions of Lemma 3. Proofs based upon the closed graph theorem can be
foundin[1].

LEMMA 7. Suppose that C is causal on S., and that for each x € (%, Cx € (9 +E,
where E is a finite-dimensional subspace of S. Then C is (p. g)-stable on C1¢9 = {x €
(R Cx e (9},

LEMMA 8. Suppose that C is causal and T is (p, g)-stable on S., and suppose that
T — C hasfiniterank. Then if C is (p, g)-stable on Si N Sgo, then C is (p, g)-bounded on
S..

The third result concernsthe boundednessof (1 — AW);* and (1 — AW)~#. It shows
that, in the presence of a (p, q)-stable filter for (10), (1 — AW);" is (p, g)-bounded on S,
if and only if itsimpulse responseisin (9, and similarly for (1 — A\W)Z*.

LEMMA 9. Suppose that (10) has a (p, q)-stable filter. Then (1 — AW).* is (p. q)-
bounded on S if and only (1 — AW);#6© € ¢9, and (1 — A\W)_* is (p, g)-bounded on
S_ifandonlyif (1 — AW)=#6©@ = d_(u, \) € (9.

PROOF. Clearly (1 — A\W):"6@ = @, (u. X)) € (9if (1 — AW);" is (p. q)-bounded
on S.. So supposethat T is a (p. g)-stable filter for (10) and that ®. (i, A) € (9. Then
(1 — AW);g(W)s@ = g(W)D.. (1. \) € (9 for each polynomia g(©). So (1 — AW);*
is (p. q)-stable on S: N Sgo. Now T and (1 — AW);* are both filters for (10), and so
(T— (1 — 2W);")x € ker(1 — A\W)**™, for each x € (%. Since ker(1 — A\W)** is
finite-dimensional, it follows from Lemma 8 that (1 — A\W);" is (p. g)-bounded on S..

Similar argumentswork for (1 — AW)—#.

We are now able to prove the general result concerning the existence of (p, g)-stable
filtersfor (5).

THEOREM 5. Thereisa (p, g)-stablefilter for (5) if and only if, for each non-zero pole
A~ with multiplicity 1 of the transfer function r((), either

1. (1 — AW);* is(p. g)-bounded on Sy, or

2. (L — AW)~* is(p. q)-bounded on S, or

3. (1 — AW); " is(p. q)-bounded on S, and (1 — AW)_* is (p. g)-bounded on S_.
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ProoF. It follows from Lemma 2 that it is sufficient to prove the theorem for filters
for equation (10). So supposethat T isa (p. g)-stable filter for (10) and that (1 — A\W);*
is not (p. g)-bounded on S... We must show that (1 — AW)~* is (p, q)-bounded on S;;.

Since (1 — AW);* is not (p, g)-bounded on S, ®.(u,\) ¢ (9 by Lemma 9, and
|AR«] > 1 by Lemma 4. Suppose that ®.(1,)) € (9. Then by the same lemmas
(1 — 2W); 1 is (p, g)-bounded on S: and |AR.| < 1. So AR = 1, and u = 1 by
Lemma4. But thisis acontradicts ®, (u, A) ¢ (9, and so ®,(1, \) ¢ (9.

Since T6O© — d, (i, A) = (T — (L — AW);#)6©@ € ker(1 — AW)"*, there are scalars

1. s ...y 4y suchthat T6O = &, (i, A) + 12 G &(j, A). Applying the projection P.

ptv

PiT6O = (i, A) + > . (j, A) € (9,
i1
and since the sequences ®.(j, \), j = 1.2,..., u + v are linearly independent over (9,
it follows that ¢; = O for j # p and ¢, = —1. Therefore, T6© = D, (., \) — D(u. \) =
—®_(u, ). Soby Lemma9, (1 — AW)~* is(p, g)-bounded on S_.

It remains to be shown that (1 — AW)~* is (p, g)-bounded on S. N S¢. Let Spv =
S:N St = S+NSgo. Then Sy, = S[o_u) PHA— )\VV)“’SOJ,. We shall show that (1 — AW)~* is
(p. g)-bounded on Sy, and on (1 — AW)*Se., and that the projection of So. onto Sy,
aong (1 — AW)Sy. is (p, p)-bounded.

Since (1 — MW)=#6® € (dfork =0,1...., p—1, (1 — AW)~* is (p. g)-bounded on
S[O,p)- For eachu € So+,

(22) (L — AW~ (1 — AW) U = (1 — AW); (1 — AW)'u=u € (9.
By Lemma 7 (1 — A\W);* is (p, g)-bounded on X, = {x € £} : (1 — A\W);"x € (9}.
Equation (22) showsthat (1 — AW)*Sg+ C X., and since (1 — AW)~* and (1 — AW);"

agree on (1 — AW)" Sy, it follows that (1 — AW)~* is (p. g)-bounded on (1 — AW)" So..
Each x € Sp+ uniquely determines polynomials g(¢) and h(¢) such that

x = ((1 = AW)“g(W) + h(W))s©,

wheredegh(¢) < u. Let E bethe projection of So. onto Sy, along (1— AW)* So. defined
by
Ex = E((1 — AW)'g(W) + h(W))&© = h(w)s®©.

Suppose that E is not (p, p)-bounded on Sp.. Then there are sequences x,n =
1,2.3,...,in So. such that ||EX™||, = 1 for each n, and || x|, — 0 asn — oo. Since
Sio,y is finite-dimensional we may assume, by taking a subsequence if necessary, that
EX" — y € Syo,, where [ly]l = 1. Write xX® = ((1 — AW)*g™ (W) + h®(W))s@ and
y =Yl Gi(1 — AWy 150, Then

(23) @ — AWy gPW)s© +y]j, — 0 asn— oo,

and s0 g (W)5©@ + (1 — AW); "y — 0 pointwise asn — oo.
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Now (1—-AW):"y = 51, ¢ @4 (j. ) # 0,and sincethe ®.(j. A), forj = 1.2...., i, are
linearly independent over ¢9, it followsthat (1 — AW); "y ¢ (9. So ||g™ (W)@ | q — oo
asn— oo. But g"(W)s© = (1 — AW): (1 — A\W)LgM(W)s©@, and since (1 — AW); " is
(p, g)-bounded on (1 — AW)"So., [|(1 — AW)* g0 (W)§@ ||, — oo. Since this contradicts
(23), we concludethat E is (p, p)-bounded and the proof of the theorem is complete.

ExAMPLE 3. Suppose that w, = 1/2foral n > 0Oandw, = 2forall n < 0, asin
Examplesland 2, leta() = (1—3¢0)(1—¢)(1—¢/3) andlet b(¢) = 16. Thenthe transfer
functionr(¢) haspolesat 1/3, 1, and 3. Sincer(() = 27(1 — )t —12(1 -1+ (1—
¢/3)71, the operator T defined by

T=27(1—3W)_* — 12T+ (1 — W/3); %,
where Tg isasgivenin (21), isafilter for
(29 (1-3wW)(1—W)(1—W/3)y=16x

which, for any 1 < p < g < oo, is (p, g)-bounded on Sg. Since (1 — W/3);* and
(1 — 3W)=?! have bounded extensionsto (P, and since Ty is (p. g)-bounded on (P, T has
an extension to (P which is atwo-sided (p, g)-bounded filter for (24).

REMARK. Theconditionsgivenin Theorem 5 for the existence of a (p, g)-stable filter
for (5) can be expressed in terms of the positions of the non-zero poles of the transfer
function. For 1 < p < q < oo and (p.q) # (1, 00), there is a (p, q)-stable filter for
(5) if and only if each non-zero pole A\~! satisfies one of the inequalities |\ 71| < L,
A7 > R, or R, < |¢| < L_. Thefirst and second of theseinequalitiesplace A\~ outside
the spectrum of W. However the third possibility, namely that R, < |¢| < L_, allowsfor
a(p, g)-stable filter even if the transfer function has poles inside the spectrum.
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