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Abstract

Minsky and Papert claim that, for any positive integer n, there exist predicates of order 1 whose
conjunction and disjunction have order greater than n . Their proof is amended and a stronger
result obtained of which their claim is a special case.

1991 Mathematics subject classification (Amer. Math. Soc.): 68 G 99.

1. Introduction

The perceptron is a simple parallel computing device, and its capabilities
and limitations have been studied by Minsky and Papert [2]. They claim
[2, Section 1.5] to have shown that for any positive integer n there exist
predicates y, and y, of order 1 for which both ¥, Ay, and y, V y, have
order greater than n. This is called the AND/OR Theorem. Their argument
[2, Chapter 4] establishes the existence of predicates y, and y, of order 1
for which y, A v, has order greater than n. A similar argument establishes
the existence of predicates y, and y, of order 1 for which y; vV v, has
order greater than n. However the arguments do not seem to guarantee that
vy =y, and v, =y;.

We amend their proof by adapting their techniques to prove a more general
result, of which the AND/OR Theorem is a special case.
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2. Preliminaries

Let R be a finite set. A predicate on R is a function ¢ of subsets of
R whose values, depending on the context, may be thought of as TRUE
and FALSE, or 1 and 0. To pass conveniently between these two kinds of
predicate values, square bracket notation is used: if ¢(X) is a statement
about X then . .

1if ¢(X) is true.
[BOI=1 . .
0if ¢(X) is false.

Let ® be a family of predicates on R, which is finite since R is finite. A
predicate y is called a linear threshold function with respect to @ if there
are numbers 6, and o é for each ¢ € ® such that

v = | Y a8 > 6] .
pED
Let L(®) denote the set of linear threshold functions with respect to @ .
The support S(¢) of a predicate ¢ is the smallest subset S of R for
which

(*) (VX C R) ¢(X) = (X NS)

The support exists because () is satisfied when S = R and if any (finite)
collection of subsets S satisfies (x) then their intersection also satisfies ().
Note however that if R is allowed to be infinite then the notion of support
need not make sense.)

The order of a predicate y is the smallest number k& for which there is a
set ® of predicates for which ¥ € L(®) and |S(¢)| < k forall o € .

If A C R then the mask of A, denoted u,, is the predicate defined by

x) { 1 ifACX
Ha ~ 1 0 otherwise.

It is easy to see that S(u,) =A4. If A= {a} denote u, alsoby u,.

THEOREM 1 [2, 1.5.3). A predicate y has order k if and only if k is the
smallest number for which there exists a set ® of masks such that y € L(D)
and |S(¢9)| <k forall p€D.

Denote the (symmetric) group of all permutations of a set X by Sym(X).
Let " be a subgroup of Sym(R). If y is a predicate on R and y € I, then
define the predicate wy by

yy(X) = yp(y(X)) for X CR.
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Call predicates ¥ and ¢ I'-equivalent, written y = ¢, if ¥ = ¢y for some
y € I'. The Relation = is an equivalence because I" is a group. Note that,
for masks, if 4, B C R then u y = Byt 4y for any y € I so that

p,=ugp ifandonlyif A=By forsomeyel.
Call a predicate y invariant under T' or I'-invariant if

w=ywy forallyerl.

THEOREM 2 (Group Invariance Theorem) [2, 2.3). Let R be a finite set,
I' a subgroup of Sym(R) and ® a set predicates on R closed under T con-
laining p, the mask of the empty set. Suppose that w € L(®) and that y
is T-invariant. Then

v= [Z B> 0}
oI5

where the coefficients B depend only on the T-equivalence class of ¢, that
is,if p=¢' then B, =B, .

Note (for when we apply this theorem later) that if ® is the set of masks
of support size < k then ® is closed under I' and contains u 6"

Let y,, ..., ¥, be a sequence of predicates or formulae. Define a col-
lection AND/OR(y,, ..., y,,) of predicates or formulae inductively:

AND/OR(y,) = {v,},
AND/OR(y,, ..., ¥ ,) ={¥Vy, ., YAy, | v € AND/OR(y,, ..., ¥;)}
fori=1,...,m—1.

Thus AND/OR(y,, ..., ¥,,) contains 2m-! predicates or formulae, ob-
tained from y, by successively conjoining or disjoining y;’s. For example
AND/OR(V/l s Wz) = {'//1 \ V,, ¥, A '//2} , and

AND/OR(y,, ¥, ¥3) = {WVy, Vs, (W VL) AYs, ¥, AW AW, (W AY,)V s}
The following is a trivial but important observation: if y,(X) = {(1) for all
i=1,...,m then y(X)= {(1) for all ¥ in AND/OR(y,, ..., ¥,,)-

The last result we shall need is an adaptation of [2, Lemma 1].

THeoREM 3 (Compactness). Let Q,(x,, ..., X,), Q)(x,...,X,),...
be an infinite sequence of nonzero polynomials of m variables of degree at
most N, and let n , n,,... be an infinite increasing sequence of positive
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integers. Suppose ¢: Z" — {0, 1} is a function (predicate) such that for each
i=1,2,... wehave for all integers x_, ..., x, between —n, and n,

é(xy5 ..., X)) =[0,(x,, ..., x,,) >0].

Then there exists a nonzero polynomial Q(x,, ..., x,,) of degree < N such
that for all integers x,, ..., x,,
1
o >0
Axyy ey X)) = implies Q(x,, ..., x,) {<0
0 <0.

PrOOF. Let x be a vector of coordinates ranging over all products of
powers of x , ..., x,, in which for each product the sum of the exponents
is at most N. Polynomials in Xx,,..., x, of degree < N are then dot
products x-¢ where ¢ is a vector of constant coefficients. Thus for each i

Q,x,,...,x,)=x-c; forsomec,.

But the set {&, =¢,/|lc;]||i =1, 2, ...} lies on the surface of the unit hyper-
sphere which is compact [1], so has a limit point ¢ of length 1. In particular
c#0. Let Q(x,,...,x,) =x-c, so Q is nonzero of degree < N. Let
X5 ..., X, beany integers. Choose n; larger than each of |x|,..., |x,].
Suppose ¢(x,, ..., x,) =1, so by our hypothesis Qj(xl soees X,) >0 for
j>1i. Thus x-cj>0,so x-éj>0 for j>i.If x-¢ <0 then choose j > i
such that

and so

X-¢=x-¢c+x-(¢ —¢c)<x-c+|[x- (& —¢)
<x-c+|xjfle — ¢|| (by the Cauchy-Schwarz inequality)
Ix-¢|] x-c¢

<x-c+ 0=

2 5 <0,

a contradiction. Hence x.-¢> 0.

Similarly, if ¢(x,, ..., x,) = 0 then Qj(xl, vy X,,) <0 for j > i,
and in the same way one shows that x-c¢ < 0. This completes the proof of
Theorem 3.
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3. The main theorem

The purpose of this section is to prove
THEOREM 4. Let N and m be any positive integers, m > 2. There exist
predicates y,, ..., y,, oforder 1 such that every predicate in
AND/OR(y,, ..., ¥,,)

has order greater than N .
Then Minsky and Papert’s claim follows.

CoROLLARY 5 (the AND/OR theorem). Let N be any positive integer.
There exist predicates y, and y, of order 1 such that both y, A y, and
¥, V v, have order greater than N .

ProoF oF THEOREM 4. To prove Theorem 4, let n be a positive integer
and R any set containing 2nm elements. Express R as the disjoint union
R=4,U---UA, where |4, =2n foreach i.

Define the predicate y,, for i=1 to m, by
v(X)=[XNn4|>n] for X CR.

Note that each y; has order 1 because

viX) = |> u(X)=n

a€A,

Thus for each n we have defined a sequence v, , ..., ,, of order | predi-
cates. We will show that for some n each member of AND/OR(y,, ..., ¥,,)
has order larger than N .

Suppose to the contrary that for each n there is a predicate in

AND/OR(Y, , ..., ¥,,)

of order < N. There are infinitely many n and only 2™"! formulae in
AND/OR(y,, ..., ¥,,), so there exists at least one formula y in

AND/OR(y,, ..., ¥,,)

such that for some infinite sequence of positive integers n, < n,<--- the
predicates y for n=n,, n,,... have order < N.
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For the time being fix n=n ;- Let ® be the set of masks of support size
< N. Then ¥ € L(®) by Theorem 1. Consider the group

'={yeSym(R)|y(4,)=4;, fori=1,..., m}.
Then each predicate y; is I'-invariant since
X N4, = [7(X nA4)] = y(X) N y(4)] = 7(X) N 4]
foreach y €I’ and X C R. By a simple induction all members of
AND/OR(y,, ..., ¥,,)
are I'-invariant. Hence  is I'-invariant, so by Theorem 2,

y= [Zﬂ¢¢>0]

D

for some coefficients S A which depend only on the I'-equivalence class of

¢. Let
V={v=(,,...,v,)€Z"|0<v,<2n
fori=1tomandv, +---+v, < N}.
Then

D= ],

\ 514
where ®, = {masks y,|ANA4;| = v, fori =110 m}. Since I'|, = Sym(4,),
the @, are the equivalence classes of ® under I" as v ranges over V. Hence

[ZBN(X >o]

vey

w(X)= |3 B,4(X)>0

PED

where B, = B, for any ¢ € ®, and N, (X) is the number of masks in ¢,
whose support is contained in X . But then

w0 = (AN . (04
1 m
where (7') is by definition m(m —1)---(m —r + 1)/r! so that (7) =0 if
m<r.
Hence each N, (X) is a polynomial in the m variables y, =|XN4,]|,...,
=|XnNA,| of degree v, +---+ v, < N. But a linear combination of
polynomials of degree < N is also a polynomial of degree < N, so

y(X)=I[P(y,,...,¥,,) >0]
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for some polynomial P(y,, ..., y,) of degree < N. Note that 0 <y, <2n
since |4,| = 2n for each i. Put x; =y, —n, so that —n < x; < n for each
i. Now put

Qj(xl, ces X)) =P(x,+n,..., X, +n)
which is a polynomial in x,, ..., x, of degree < N. The subscript j is to

remind us that n=n Iz Thus
w(X) =1Q;(x,, ..., X,) > 0]

where —n; <x,...,X%, < n;.
Define functions ¢;: Z" — {0, 1} for i =1 to m by
1 ifz;>0
¢"(Z"“"Z'")={o if z, < 0.
Then y(X)=¢,(x,,..., x,,) where as before x, = |XNA4|—n for i=1
to m. Let ¢ € AND/OR(¢,, ..., ¢,,) be built using A and V in exactly
the same way as . Then ¢: Z” — {0, 1} and for the x; defined above
#xy5 ..., Xx,,) =w(X). Thus
(xy, ..o X,) =1Q;(x, ..., x,) > 0]
where —njgxl,... s Xy Snj.

This holds for each j, so by Theorem 3 there exists a nonzero polynomial
Q(x,, ..., x,,) of degree < N such that

r >0
A, ooy X)) = 0 implies Q(x,, ..., x,,) <0
for all integers x,, ..., x,, .
d
Put Q(x,,...,x,) = x,q(x,...,x,_,) + r(x,,...,x,) where
g(x,,...,x,_,) is a nonzero polynomial in x,,...,x, , and
r(x,, ..., x,) is either the zero polynomial or a nonzero polynomial such

that the highest power of x,, appearing is less than d . Note that ¢ = @' A ?,
or ¢ =¢'ve, forsome ¢’ € AND/OR(¢,,..., ¢, ,),and thatforall x,,

, 1 ifx,...,x, >0
Xiyeeos X, )= .
¢ (% m) {0 ifx;,...,x,_,<0.
If ¢ = ¢'/\¢m choose x,,...,x, , >0, whilst if ¢ = ¢'V¢m choose
X5 ers X, <0 for which ¢g(x,,...,x,_,)# 0. In both cases
1 ifx, >0
Xyyeeey X, )= oom=
o m) {0 if x,, <0
so that 50 ifx >0
if x
Xisones =3 7 om=
Qx> - Xm) {50 if x_<0.
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If d is even then

0< lim Q(x,,...,%,) = lim xng(x,,...,x

X, —00 m—1
. d .
= xmll’rr_looxmq(xl NN I xmll.n_loo Q(xy,...,x,)<0

sothat im  _ Q(x,,...,x,) =0, which contradicts that g(x,, ... ,x,,_)
#0. "

Hence d is odd. Now, if ¢ = ¢' A, choose x,, ..., x,_, <O, whilst
if $=¢ v, choose x,...,x, , >0 for which g(x,,...,x,,_,) #0.
In the first case é(x,, ..., x,,) =0 so that Q(x,, ..., x,,) <0 forall x,,
whilst in the second case ¢(x,, ..., x,) =1 sothat Q(x,, ..., x,) >0 for
all x,, . But, since d is odd,

lim Q(x,,...,x,,)=-_lim Q(x,,...,Xx,)

xm—voo Xm—'—OO

so that in both cases lim, _, _ Q(x,, ..., x,,) = 0, which again contradicts
that g(x,, ..., x,,_,) # 0. This completes the proof of Theorem 4.
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